Brief Introduction to Algorithmic Data Analysis in English

Esther Galbrun
Autumn 2020
Part I

Frequent Itemset Mining
Problem
Discover items that often co-occur in a dataset

Classical setting: *Shopping basket data*

- Each product of the supermarket is an item
- Record customer transactions as sets of items
- Identify products that are often bought together

 Frequent itemset \{butter, bread, ham, pickles\}

- Extract rules that capture typical buying behaviour

 Association rules \{bread, ham\} \Rightarrow \{butter, pickles\}

- Insights for marketing and shelf placement
Frequent Itemset Mining

Discover items that often co-occur in a dataset

Shopping basket data Customer transactions
Identify products often bought together

Text mining Bag of word model
Identify co-occurring terms and keywords

More complex data types (spatio-)temporal data, graph data

Other analysis tasks Building block for clustering, classification, outlier detection
A pizzeria offers to compose your pizza by freely choosing ingredients among *ham, jalapeno, mozzarella, olives and tuna*. To put together a menu, the pizzaiolo would like to know what are favorite combinations.
The database \mathcal{T} is a collection of sets, called transactions, from a universe U of items:

$$\mathcal{T} = \{T_1, T_2, \ldots, T_n\}, \text{ where } T_k \subseteq U, \forall k \in [1, n]$$

The total number of items is $m = |U|$.

If we fix an order over U, each transaction can be represented as a binary vector of size m.

Then, the database can be represented as a binary matrix with n rows and m columns.

Each transaction has a unique identifier, its tid.
Pizzeria example

The universe of items is the set of five ingredients
{ham, jalapeno, mozzarella, olives, tuna}

For short, \(U = \{h, j, m, o, t\} \)

Each pizza constitutes a transaction, represented by the corresponding set of ingredients
For instance, a ham and mozzarella pizza is represented as \(T = \{h, m\} \), also simply denoted \(hm \)

Ordering the items alphabetically according to corresponding ingredient names, this pizza is represented by the binary vector \(\langle 1, 0, 1, 0, 0 \rangle \), also simply written 10100
Pizzeria example

The database then records all pizzas sold

<table>
<thead>
<tr>
<th>tids</th>
<th>pizzas</th>
<th>sets</th>
<th>matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>ham mozzarella olives</td>
<td>{h, m, o}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>2)</td>
<td>mozzarella</td>
<td>{m}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>3)</td>
<td>jalapeno mozzarella</td>
<td>{j, m}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>4)</td>
<td>ham jalapeno mozzarella olives</td>
<td>{h, j, m, o}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>5)</td>
<td>ham jalapeno mozzarella olives</td>
<td>{h, j, m, o}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>6)</td>
<td>ham</td>
<td>{h}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>7)</td>
<td>ham jalapeno mozzarella tuna</td>
<td>{h, j, m, t}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>8)</td>
<td>mozzarella</td>
<td>{m}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>9)</td>
<td>olives</td>
<td>{o}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>10)</td>
<td>ham jalapeno mozzarella olives</td>
<td>{h, j, m, o, t}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>11)</td>
<td>ham mozzarella tuna</td>
<td>{h, m, t}</td>
<td>■■■■■</td>
</tr>
<tr>
<td>12)</td>
<td>ham mozzarella</td>
<td>{h, m}</td>
<td>■■■■■</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

...
An **itemset** I is a set of items, i.e. $I \subseteq U$

A **k-itemset** is an itemset that contains exactly k items, i.e. such that $|I| = k$

The **support set** of an itemset I in \mathcal{T} is the set of transactions from \mathcal{T} that contain I

$$\text{supp}_\mathcal{T}(I) = \{T \in \mathcal{T}, I \subseteq T\}$$

We call $|\text{supp}_\mathcal{T}(I)|$ the **absolute support** of I in \mathcal{T} and $|\text{supp}_\mathcal{T}(I)| / |\mathcal{T}|$ its **fractional support**

We denote $\text{supp} \%_\mathcal{T}(I)$ the fractional support given as a percentage, i.e.

$$\text{supp} \%_\mathcal{T}(I) = 100 \cdot \frac{|\text{supp}_\mathcal{T}(I)|}{|\mathcal{T}|}$$
An itemset I is a set of items, i.e. $I \subseteq U$

A k-itemset is an itemset that contains exactly k items, i.e. such that $|I| = k$

The support set of an itemset I in \mathcal{T} is the set of transactions from \mathcal{T} that contain I

$$\text{supp}_\mathcal{T}(I) = \{T \in \mathcal{T}, I \subseteq T\}$$

We call $|\text{supp}_\mathcal{T}(I)|$ the absolute support of I in \mathcal{T} and $|\text{supp}_\mathcal{T}(I)| / |\mathcal{T}|$ its fractional support

! There are variations in the use of support terminology
! The database is often left out from the notation, as it is clear from the context
In this database, for itemset $l = \{t\}$

$$supp(l) = \{7, 10, 11\}$$

$$|supp(l)| = 3$$

$$supp\% (l) = 25$$

<table>
<thead>
<tr>
<th>tid</th>
<th>set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>{h, m, o}</td>
</tr>
<tr>
<td>2)</td>
<td>{m}</td>
</tr>
<tr>
<td>3)</td>
<td>{j, m}</td>
</tr>
<tr>
<td>4)</td>
<td>{h, j, m, o}</td>
</tr>
<tr>
<td>5)</td>
<td>{h, j, m, o}</td>
</tr>
<tr>
<td>6)</td>
<td>{h}</td>
</tr>
<tr>
<td>7)</td>
<td>{h, j, m, t}</td>
</tr>
<tr>
<td>8)</td>
<td>{m}</td>
</tr>
<tr>
<td>9)</td>
<td>{o}</td>
</tr>
<tr>
<td>10)</td>
<td>{h, j, m, o, t}</td>
</tr>
<tr>
<td>11)</td>
<td>{h, m, t}</td>
</tr>
<tr>
<td>12)</td>
<td>{h, m}</td>
</tr>
</tbody>
</table>
Pizzeria example

<table>
<thead>
<tr>
<th>tid</th>
<th>set</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>{h, m, o}</td>
</tr>
<tr>
<td>2)</td>
<td>{m}</td>
</tr>
<tr>
<td>3)</td>
<td>{j, m}</td>
</tr>
<tr>
<td>4)</td>
<td>{h, j, m, o}</td>
</tr>
<tr>
<td>5)</td>
<td>{h, j, m, o}</td>
</tr>
<tr>
<td>6)</td>
<td>{h}</td>
</tr>
<tr>
<td>7)</td>
<td>{h, j, m, t}</td>
</tr>
<tr>
<td>8)</td>
<td>{m}</td>
</tr>
<tr>
<td>9)</td>
<td>{o}</td>
</tr>
<tr>
<td>10)</td>
<td>{h, j, m, o, t}</td>
</tr>
<tr>
<td>11)</td>
<td>{h, m, t}</td>
</tr>
<tr>
<td>12)</td>
<td>{h, m}</td>
</tr>
</tbody>
</table>

In this database, for itemset $I = \{h, m\}$

$supp(I) = \{1, 4, 5, 7, 10, 11, 12\}$

$|supp(I)| = 7$

$supp\% (I) = 58.33$
Frequent Itemset Mining

Given a set of transactions $\mathcal{T} = \{T_1, T_2, \ldots, T_n\}$, where each transaction T_i is a subset of items from U, and a minimum support threshold σ, determine all itemsets I that occur as a subset of at least σ transactions in \mathcal{T}.
Pizzeria example

Enumerate all distinct pizzas

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>tids</th>
</tr>
</thead>
<tbody>
<tr>
<td>hmo</td>
<td>65</td>
<td>{1...}</td>
</tr>
<tr>
<td>m</td>
<td>74</td>
<td>{2, 8...}</td>
</tr>
<tr>
<td>jm</td>
<td>28</td>
<td>{3...}</td>
</tr>
<tr>
<td>hjmo</td>
<td>47</td>
<td>{4, 5...}</td>
</tr>
<tr>
<td>h</td>
<td>74</td>
<td>{6...}</td>
</tr>
<tr>
<td>hjmt</td>
<td>30</td>
<td>{7...}</td>
</tr>
<tr>
<td>o</td>
<td>178</td>
<td>{9...}</td>
</tr>
<tr>
<td>hjmot</td>
<td>93</td>
<td>{10...}</td>
</tr>
<tr>
<td>hmt</td>
<td>49</td>
<td>{11...}</td>
</tr>
<tr>
<td>hm</td>
<td>96</td>
<td>{12...}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>tids</th>
</tr>
</thead>
<tbody>
<tr>
<td>hj</td>
<td>16</td>
<td>{...}</td>
</tr>
<tr>
<td>hjm</td>
<td>42</td>
<td>{...}</td>
</tr>
<tr>
<td>hjo</td>
<td>8</td>
<td>{...}</td>
</tr>
<tr>
<td>hjot</td>
<td>0</td>
<td>{}</td>
</tr>
<tr>
<td>hjt</td>
<td>4</td>
<td>{...}</td>
</tr>
<tr>
<td>hmot</td>
<td>108</td>
<td>{...}</td>
</tr>
<tr>
<td>ho</td>
<td>43</td>
<td>{...}</td>
</tr>
<tr>
<td>hot</td>
<td>28</td>
<td>{...}</td>
</tr>
<tr>
<td>ht</td>
<td>7</td>
<td>{...}</td>
</tr>
<tr>
<td>j</td>
<td>29</td>
<td>{...}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>count</th>
<th>tids</th>
</tr>
</thead>
<tbody>
<tr>
<td>jmo</td>
<td>7</td>
<td>{...}</td>
</tr>
<tr>
<td>jmot</td>
<td>9</td>
<td>{...}</td>
</tr>
<tr>
<td>jmt</td>
<td>3</td>
<td>{...}</td>
</tr>
<tr>
<td>jo</td>
<td>16</td>
<td>{...}</td>
</tr>
<tr>
<td>jot</td>
<td>3</td>
<td>{...}</td>
</tr>
<tr>
<td>jt</td>
<td>14</td>
<td>{...}</td>
</tr>
<tr>
<td>mo</td>
<td>20</td>
<td>{...}</td>
</tr>
<tr>
<td>mot</td>
<td>27</td>
<td>{...}</td>
</tr>
<tr>
<td>mt</td>
<td>13</td>
<td>{...}</td>
</tr>
<tr>
<td>ot</td>
<td>17</td>
<td>{...}</td>
</tr>
<tr>
<td>t</td>
<td>8</td>
<td>{...}</td>
</tr>
</tbody>
</table>

UEF//School of Computing

BADA: FIM
Pizzeria example: Enumerating all distinct pizzas

\[
\begin{array}{c}
\emptyset \\
0 \\
\{
\end{array}
\]

\[
\begin{array}{cccccc}
\text{h} & \text{j} & \text{m} & \text{o} & \text{t} \\
74 & 29 & 74 & 178 & 8 \\
{6\ldots} & {\ldots} & {2,8\ldots} & {9\ldots} & {\ldots}
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{hj} & \text{hm} & \text{ho} & \text{ht} & \text{jm} & \text{jo} & \text{jt} & \text{mo} & \text{mt} & \text{ot} \\
16 & 96 & 43 & 7 & 28 & 16 & 14 & 20 & 13 & 17 \\
{\ldots} & {12\ldots} & {\ldots} & {3\ldots} & {\ldots} & {\ldots} & {\ldots} & {\ldots} & {\ldots} & {\ldots}
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{hjm} & \text{hjo} & \text{hjt} & \text{hmo} & \text{hmt} & \text{hot} & \text{jmo} & \text{jmt} & \text{jot} & \text{mot} \\
42 & 8 & 4 & 65 & 49 & 28 & 7 & 3 & 3 & 27 \\
{\ldots} & {\ldots} & {\ldots} & {1\ldots} & {11\ldots} & {\ldots} & {\ldots} & {\ldots} & {\ldots} & {\ldots}
\end{array}
\]

\[
\begin{array}{cccccccc}
\text{hjmo} & \text{hjmt} & \text{hjot} & \text{hmot} & \text{jmot} \\
47 & 30 & 0 & 108 & 9 \\
{4,5\ldots} & {7\ldots} & {\ldots} & {\ldots} & {\ldots}
\end{array}
\]

\[
\begin{array}{c}
\text{hjmot} \\
93 \\
{10\ldots}
\end{array}
\]
Pizzeria example: Aggregating supports

\[
\begin{array}{cccccc}
\emptyset & 0 \\
\{0\} & \\
\h & 74 \\
\{6\ldots\} & \{\ldots\} & \{2,8\ldots\} & \{9\ldots\} & \{\ldots\} \\
\j & 29 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\m & 74 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\o & 178 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\t & 8 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j & 16 \\
\{\ldots\} & \{12\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \m & 96 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \o & 43 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \t & 7 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\j \m & 28 \\
\{3\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\j \o & 16 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\j \t & 14 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\m \o & 20 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\m \t & 13 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\o \t & 17 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \m & 42 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \o & 8 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \t & 4 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \m \o & 65 \\
\{1\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \m \t & 49 \\
\{11\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \o \t & 28 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \m \t \o & 7 \\
\{1\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \m \o \t & 3 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \m \o \t \o & 108 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \m \o \t \m & 9 \\
\{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\h \j \m \o \t \o \t & 93 \\
\{10\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} & \{\ldots\} \\
\end{array}
\]
Pizzeria example: Aggregating supports

The diagram illustrates a hierarchical structure representing supports in a pizzeria example. The nodes represent sets, and the numbers indicate the count of orders for each set.

For instance:
- hjm: 42
- hjot: 0
- hjmot: 93

The sets are connected in a way that each set is a subset of the one above it, forming a tree-like structure with the root node at the top and the leaf nodes at the bottom.

The numbers next to the nodes represent the support count, which is a measure of how often a set of items is ordered together.
Support properties

Monotonicity of support
The support of every subset \(J \) of \(I \) is at least equal to that of the support of itemset \(I \)

\[
\forall J \subseteq I, \quad \text{supp}(I) \subseteq \text{supp}(J)
\]

and hence

\[
|\text{supp}(I)| \leq |\text{supp}(J)|
\]

Downward closure property
Every subset of a frequent itemset is also frequent
Pizzeria example: Lattice of ingredient combinations
Pizzeria example: Frequent ingredient combinations

for minimum support
\[\sigma = 116 = 0.10 \cdot |\mathcal{T}| \]
Pizzeria example: Frequent ingredient combinations

for minimum support

\[
\sigma = 289 = 0.25 \cdot |\mathcal{T}|
\]
Maximal and closed itemsets

A frequent itemset I is **maximal** at a given minimum support level σ, if it is frequent, and no superset of it is frequent.

An itemset I is **closed**, if none of its supersets have exactly the same support count as I.

Condensed representations
Knowledge of maximal frequent itemsets allows to reconstruct the set of frequent itemsets, but not their supports.
Knowledge of closed frequent itemsets allows to also recompute the supports.
Pizzeria example: Frequent and maximal itemsets

For minimum support $\sigma = 116 = 0.10 \cdot |T|$
Pizzeria example: Frequent and maximal itemsets

\[\sigma = 289 = 0.25 \cdot |T| \]
Algorithms
Algorithms for mining frequent itemsets

Support counting is expensive

Explore the space of itemsets by increasing lengths, i.e. *level-wise enumeration*

Avoid generating itemsets twice by using a canonical order

Exploit the *downward closure property* to prune itemsets
Level-wise enumeration: *Apriori* algorithm

\[k \leftarrow 1 \]
\[\mathcal{F}_k \leftarrow \{ \text{all frequent singleton itemsets} \} \]

while \(\mathcal{F}_k \neq \emptyset \) **do**

- Generate \(\mathcal{C}_{k+1} \) by extending itemsets from \(\mathcal{F}_k \)
- Prune itemsets that violate downward closure

\[\mathcal{F}_{k+1} \leftarrow \{ S \in \mathcal{C}_{k+1}, \text{supp}_D(S) \geq \theta \} \]
\[k \leftarrow k + 1 \]

return \(\bigcup \mathcal{F}_i \)
Candidate generation

\[k \leftarrow 1 \]
\[\mathcal{F}_k \leftarrow \{ \text{all frequent singleton itemsets} \} \]
\[\text{while } \mathcal{F}_k \neq \emptyset \text{ do} \]
\[\quad \text{Generate } \mathcal{C}_{k+1} \text{ by extending itemsets from } \mathcal{F}_k \]
\[\quad \text{Prune itemsets that violate downward closure} \]
\[\quad \mathcal{F}_{k+1} \leftarrow \{ \mathcal{S} \in \mathcal{C}_{k+1}, \text{supp}_D(\mathcal{S}) \geq \theta \} \]
\[\quad k \leftarrow k + 1 \]
\[\text{return } \bigcup_i \mathcal{F}_i \]
Level-wise enumeration: *Apriori* algorithm

Candidate pruning

\[
k \leftarrow 1 \\
\mathcal{F}_k \leftarrow \{\text{all frequent singleton itemsets}\} \\
\textbf{while } \mathcal{F}_k \neq \emptyset \textbf{ do} \\
\quad \text{Generate } \mathcal{C}_{k+1} \text{ by extending itemsets from } \mathcal{F}_k \\
\quad \text{Prune itemsets that violate downward closure} \\
\quad \mathcal{F}_{k+1} \leftarrow \{\mathcal{S} \in \mathcal{C}_{k+1}, \text{supp}_D(\mathcal{S}) \geq \theta\} \\
\quad k \leftarrow k + 1 \\
\textbf{return } \bigcup_i \mathcal{F}_i
\]
Level-wise enumeration: *Apriori* algorithm

Support counting

\[
k \leftarrow 1 \\
\mathcal{F}_k \leftarrow \{\text{all frequent singleton itemsets}\} \\
\textbf{while } \mathcal{F}_k \neq \emptyset \textbf{ do} \\
\quad \text{Generate } \mathcal{C}_{k+1} \text{ by extending itemsets from } \mathcal{F}_k \\
\quad \text{Prune itemsets that violate downward closure} \\
\quad \mathcal{F}_{k+1} \leftarrow \{S \in \mathcal{C}_{k+1}, \text{supp}_D(S) \geq \theta\} \\
\quad k \leftarrow k + 1 \\
\textbf{return } \bigcup_i \mathcal{F}_i \]
Pizzeria example: Apriori algorithm

Enumerate singleton itemsets

\[
\emptyset
\]

\[
\begin{align*}
h & \quad j & \quad m & \quad o & \quad t
\end{align*}
\]

for \(\sigma = 289 \)

1156
Pizzeria example: *Apriori* algorithm

Count supports

![Count supports diagram](image)

for $\sigma = 289$
Frequent singleton itemsets

for $\sigma = 289$
Pizzeria example: Apriori algorithm

Generate candidates itemsets of length 2

for $\sigma = 289$
Pizzeria example: *Apriori* algorithm

Count supports

![Support Count Diagram]

for $\sigma = 289$
Pizzeria example: *Apriori* algorithm

Frequent itemsets of length up to 2

for $\sigma = 289$
Pizzeria example: *Apriori* algorithm

Generate candidates itemsets of length 3

for $\sigma = 289$
Pizzeria example: Apriori algorithm

Prune candidates

for $\sigma = 289$
Pizzeria example: *Apriori* algorithm

Count supports

![Apriori algorithm diagram]

for $\sigma = 289$
Pizzeria example: *Apriori* algorithm

Frequent itemsets of length up to 3

```
for σ = 289
```
Generate candidates itemsets of length 4

for $\sigma = 289$
Prune candidates

for $\sigma = 289$
Pizzeria example: *Apriori* algorithm

Frequent itemsets of length up to 4

for \(\sigma = 289 \)
Pizzeria example: Enumeration tree

Items ordered alphabetically, prefix growth

for $\sigma = 289$
Pizzeria example: Enumeration tree

Items ordered by decreasing frequency, prefix growth

for $\sigma = 289$
Items ordered by increasing frequency, prefix growth

for $\sigma = 289$
Support counting is expensive

According to the monotonicity of support

\[\forall J \subseteq I, \text{ supp}(I) \subseteq \text{ supp}(J) \]

Make support counting more efficient

• Prune irrelevant transactions
• Reuse support counting from previous steps

Recursively project the database down the enumeration tree
Vertical apriori algorithm

\[k \leftarrow 1 \]
\[\mathcal{F}_k \leftarrow \{ \text{all frequent singleton itemsets} \} \]
Generate \(\text{tid} \) list for each frequent singleton itemsets

\textbf{while} \(\mathcal{F}_k \neq \emptyset \) \textbf{do}

Generate \(\mathcal{C}_{k+1} \) by joining pairs of itemsets from \(\mathcal{F}_k \)
Prune itemsets that violate downward closure
Generate \(\text{tid} \) list for each candidate by intersecting tid lists of associated pair of \(k \)-itemsets

\[\mathcal{F}_{k+1} \leftarrow \{ \mathcal{S} \in \mathcal{C}_{k+1}, \supp_D(\mathcal{S}) \geq \theta \} \]
\[k \leftarrow k + 1 \]

\textbf{return} \(\bigcup_i \mathcal{F}_i \)
Vertical apriori algorithm

Vertical database representation

\[k \leftarrow 1 \]
\[\mathcal{F}_k \leftarrow \{ \text{all frequent singleton itemsets} \} \]

Generate *tid* list for each frequent singleton itemsets

while \(\mathcal{F}_k \neq \emptyset \) **do**

Generate \(\mathcal{C}_{k+1} \) by joining pairs of itemsets from \(\mathcal{F}_k \)

Prune itemsets that violate downward closure

Generate *tid* list for each candidate by intersecting tid lists of associated pair of \(k \)-itemsets

\[\mathcal{F}_{k+1} \leftarrow \{ \mathcal{S} \in \mathcal{C}_{k+1}, \text{supp}_D(\mathcal{S}) \geq \theta \} \]

\[k \leftarrow k + 1 \]

return \(\bigcup_i \mathcal{F}_i \)
Tid lists

- Allow to compute supports faster
- Require memory space for storage

Use dedicated data structures that support efficient counting
The **FP-tree** is a compact representation of the database

- Extract conditional projected database for a given suffix
- Update counts efficiently

FP-growth is a recursive suffix-based pattern growth algorithm
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 1
Transaction mho
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 2
Transaction m
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 3
Transaction mj
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 4
Transaction mhoj
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 5
Transaction mhoj
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 6
Transaction h
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 7
Transaction mhtj
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 8
Transaction m
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 9
Transaction 0
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 10
Transaction mhotj
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 11
Transaction mht
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

```
Step# 12
Transaction mh
```
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 100
Transaction mho
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 101
Transaction mot
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)

Step# 1155
Transaction ho
Construction of the FP-tree

Inserting transactions (items sorted by decreasing frequency)
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$

Suffix m
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$

Suffix h
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$

Suffix mh
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for \(\sigma = 289 \)

Suffix o
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$
Suffix mo
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

![Diagram of recursive pattern growth]

for $\sigma = 289$

Suffix ho
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$
Suffix mho
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$

Suffix t
Recursive pattern growth

for $\sigma = 289$

Suffix mt
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$
Suffix ht
Suffix-based pattern growth with the FP-tree

Recursive pattern growth

for $\sigma = 289$

Suffix j

UEF//School of Computing BADA:FIM
Pizzeria example: Enumeration tree

Items ordered by decreasing frequency, suffix growth

```
∅ 1156
 ø
  m 711
   ∅ 710
    h 669
     ∅ 413
      t 349
       ∅ 319
        ho 392
          ∅ 332
           mt 376
              ∅ 313
               mh 530
                  ∅ 313
                   mho
```
Association rules
Association rules

Frequent itemsets can be used to generate association rules

Classical setting: *Shopping basket data*

- Identify products that are often bought together

 Frequent itemset \{butter, bread, ham, pickles\}

- Extract rules that capture typical buying behaviour

 Association rules \{bread, ham\} \Rightarrow \{butter, pickles\}

- Insights for marketing and shelf placement
Frequent itemsets can be used to generate association rules.

Consider two itemsets X and Y such that

$$X \subset U, \quad \emptyset \neq Y \subseteq U, \quad X \cap Y = \emptyset$$

The confidence of the association rule $X \Rightarrow Y$ is the \textit{conditional probability} that a transaction contains $X \cup Y$ given that it contains X

$$\text{conf}(X \Rightarrow Y) = \frac{|\text{supp}(X \cup Y)|}{|\text{supp}(X)|}$$

X and Y are called the \textit{antecedent} and \textit{consequent} of the rule, respectively.
Association rules

$X \Rightarrow Y$ is an association rule at minimum support σ and minimum confidence γ if

$$\text{supp}(X \cup Y) \geq \sigma \quad \text{and} \quad \text{conf}(X \Rightarrow Y) \geq \gamma$$
1. Mine all the frequent itemsets for minimum support σ

2. Split the frequent itemsets into association rules of minimum confidence γ

Monotonicity of confidence

Let X_a, X_b and l be itemsets such that $X_a \subseteq X_b \subseteq l$, then

$$\text{conf}(X_b \Rightarrow l \setminus X_b) \geq \text{conf}(X_a \Rightarrow l \setminus X_a)$$