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Abstract—We are interested in understanding the underlying
generation process for long sequences of symbolic events. To
do so, we propose COSSU, an algorithm to mine small and
meaningful sets of sequential rules. The rules are selected using
an MDL-inspired criterion that favors compactness and relies on
a novel rule-based encoding scheme for sequences. Our evaluation
shows that COSSU can successfully retrieve relevant sets of closed
sequential rules from a long sequence. Such rules constitute an
interpretable model that exhibits competitive accuracy for the
tasks of next-element prediction and classification.

I. INTRODUCTION

Long sequences of symbols are ubiquitous. Examples in-
clude DNA sequences, server logs, traces of network packets,
and even long texts. Discovering regularities in such sequences
allows for a better understanding of the sequence generation
process, and can be useful e.g., for diagnostic and prediction.

Some models, such as LSTMs [1], excel at detecting those
regularities and use them for accurate prediction. On the down-
side, such models are hardly understandable by human users.
Models based on pattern mining, in contrast, provide high-
level human-readable descriptions of the underlying structure
of the data. However, this interpretability typically comes at
the cost of a restricted predictive power. We focus on the latter
category of models, since we are interested in prediction but
also in knowledge discovery.

In the realm of pattern mining, sequential rules are a well-
established model for understanding and predicting sequential
data. Sequential rules take the form A ⇒ C, where both
the antecedent A and the consequent C are sequences of
items, e.g., events, nucleotides, or words. A confidence score
is often attached to the rule to measure how likely it is to
observe C after A in the sequence. For instance, the rule
A1A2A3 ⇒ PowerFail with confidence 80% tell us that there
is a four in five chance of undergoing a power failure after
having observed the sequence of alarms A1, A2 and A3. This
can be used both for prediction, i.e., to issue an early warning,
and for diagnostic, i.e., to identify the link between the alarms
and the power failure.

While sequential rule mining has been extensively studied
in the literature [2, 3, 4, 5, 6], two major issues remain.
First, the vast majority of approaches consider a database of
short sequences rather than a long sequence. While a long

sequence can always be split into a database, this incurs a
loss of information at the boundaries. Second, to the best
of our knowledge, no approach for sequential rule mining
addresses the so-called pattern explosion, the fact that millions
of sequential rules may be produced due to the combinatorial
search space.

We propose the first sequential rule mining approach that
takes as input a long sequence and outputs a compact set of
rules. The selection of the rules is based on the principle of
Minimum Description Length (MDL), a paradigm that has
proved effective for model selection in pattern mining [7, 8].
MDL approaches rely on an encoding scheme. Ours is pre-
sented in Section IV, along with our algorithm to mine
rules, in Section V. Experiments, presented in Section VI,
demonstrate the relevance of the rules found, as well as their
predictive power for the tasks of next-element prediction, and
classification for long sequences.

II. BACKGROUND

Our work stands at the crossroads of sequential and MDL-
based pattern mining. Below we give brief overviews of these
two fields, in turn.
Sequential Pattern Mining. Mining sequential patterns on
data is a well-studied problem that has given rise to a plethora
of methods accounting for different notions of patterns. The
vast majority of approaches assume a database of sequences
as input, where sequences are ordered collections of itemsets.
We refer the reader to the survey in [2] for a detailed account.

Among the most recent works, Fumarola et al. [5] mine
frequent closed sequences, i.e. sequences of maximal length
such that any extension will inevitably have lower support.
Closed sequences can alleviate pattern explosion to some
extent as they are a subset of frequent sequences. Other
approaches [4, 6, 9] mine sequential rules of the form A⇒ C
where A and C may be itemsets [6, 9] or sub-sequences [4]
with the constraint that C occurs after A. Itemsets are gen-
erally easier to mine than sequences, however they are less
expressive because they do not account for items’ order of
appearance. Still, none of these methods is directly portable to
long sequences as they all assume the data has been partitioned
into small sequences (and hence often rely on a different
definition of support). A few methods [3, 10] can natively mine



rules on long sequences. Unfortunately, such methods are not
resilient to pattern explosion and are limited to association
rules between itemsets, thus they do not capture the order
between items within the antecedent and the consequent.

Mining patterns with an MDL criterion. The principle of
Minimum Description Length (MDL) [11] is a criterion rooted
in information theory that stipulates that the best model for a
dataset is the model that compresses it best. For a dataset D
and a family of models H, the best model for D, according to
the (two-parts) MDL, is the one that minimizes the description
length

H∗ = arg min
H∈H

L(H) + L(D|H) , (1)

where L denotes code length in bits. Equation (1) strikes a
balance between model complexity, as measured by L(H), and
fitness to the data, as measured by L(D|H). When applying
MDL to pattern mining, a model is a collection of patterns,
e.g., itemsets [7], sequences [8] or, in our case, sequential
rules. One of the main ingredients of any MDL-inspired
approach is the encoding scheme, namely, the protocol to
encode the data with the patterns and to encode the patterns
themselves. Once an encoding mechanism is in place, we can
generate candidate sets of patterns, calculate the corresponding
code lengths, and select the set H∗ resulting in the shortest
description length.

KRIMP [7] was one of the pioneering efforts to apply
MDL to pattern mining, more specifically to itemset mining.
Given a (large) collection of itemsets mined from the data,
KRIMP selects a small representative subset. The selected
itemsets were also empirically shown to be effective for
classification. Recently, Fischer and Vreeken [12] proposed an
approach to mine compact sets of rules from data without the
sequential dimension. The approaches proposed in [13, 14]
extract sequences with gaps (but not rules) from univariate
and multivariate long sequences. Unlike KRIMP [7], they
combine the generation and selection of candidate patterns,
which boosts efficiency and pattern quality. Shokoohi-Yekta
et al. [15] draw inspiration from the MDL principle to mine
sequential rules from time series discretized into an integer
domain. A mining approach tailored for the streaming setting
is proposed in [16], but its compliance with the MDL principle
is debatable.

III. DEFINITIONS AND NOTATION

A sequence S of length n over an alphabet Σ is an ordered
collection of n occurrences of symbols from Σ. We denote
by S[i] the i-th element in S (1 ≤ i ≤ n), and let S[i, j]
denote the contiguous sequence 〈S[i] . . . S[j]〉 when 1 ≤ i ≤
j ≤ n or the empty sequence ∅ otherwise. For simplicity, we
write the sequence 〈σ1, σ2 . . . σk〉 as σ1σ2 . . . σk. We denote
the concatenation of two sequences by ⊕.

We say that sequence S′ is a subsequence of S (respectively
S is a supersequence of S′), denoted as S′ v S, iff there exist
i and j in [1, n] such that S′ = S[i, j]. Then, we call S[i, j]
a match of S′ in S. More specifically, we denote by S′ vi S
the fact that S′ is a subsequence of S with a match starting at

position i, i.e. S′ = S[i, i+ |S′| − 1], and by S′ vj S the fact
that S′ is a subsequence of S with a match ending at position
j, i.e. S′ = S[j − |S′|+ 1, j].

The support of a subsequence S′ in S, denoted by
suppS(S′), is the number of distinct matches of S′

in S, that is, suppS(S′) = |{i ∈ [1, n] : S′ vi S}| =∣∣{j ∈ [1, n] : S′ vj S}
∣∣. Finally, a sequence S′ is closed in

S if there is no supersequence S′′ A S′ in S such that
suppS(S′′) = suppS(S′).

Example 1: Sequences. Given the sequences S =
abceabcadeab and S′ = abc, S′ v1 S, S′ v5 S, S′ v3 S
and S′ v7 S are all true, hence suppS(S′) = 2.

A rule is a pair of sequences (A,C) over alphabet Σ, such
that C 6= ∅. It is denoted as A⇒ C. A and C are called the
antecedent and the consequent of the rule, respectively. A rule
such that A = ∅ and |C| = 1 is called a singleton rule. The
set of singleton rules over alphabet Σ is ΨΣ = {∅ ⇒ 〈σ〉 :
σ ∈ Σ}.

A rule R : A ⇒ C triggers on sequence S at position i,
denoted as R `i S, iff the antecedent has a match in S ending
at position i, i.e., iff A vi S. The rule R applies on sequence
S at position i, denoted by R i S, iff the antecedent has a
match in S ending at position i and the consequent has a match
in S starting at position i+ 1, i.e. if A vi S and C vi+1 S.
Clearly, R i S implies R `i S.

The support of a rule is the number of times it applies in the
sequence, whereas its confidence is the ratio of the number of
times the rule applies to the number of times the rule triggers:

suppS(R) = |{i ∈ [1, n] : R i S}|

and

confS(R) =
|{i ∈ [1, n] : R i S}|
|{i ∈ [1, n] : R `i S}|

.

Example 2: Rules. In sequence S from Example 1, rule
R : ab ⇒ c has support suppS(R) = 2 and confidence
confS(R) = 2/3, because R triggers at positions 1, 5 and
11 but only applies at positions 1 and 5.

Given a sequence S up to position m and a rule R : A ⇒
C, we say that R is active at stage j (0 ≤ j < |C|) and
predicts C[j + 1], if A ⊕ C[1, j] = S[m − |A| − j,m]. This
corresponds to cases where the antecedent of R is followed by
the first j elements of its consequent (empty in case j = 0)
in S. Formally, we define the predicates active(R,S, j), to
indicate that rule R is active on sequence S at stage j, and
predict(R,S, j), to return C[j + 1] if active(R,S, j) is true.

IV. ENCODING SCHEME

To illustrate our encoding scheme, we resort to a sender-
receiver metaphor, where the sender first transmits a set of
rules and their corresponding weights, followed by a sequence
of code words, one for each element of the sequence, in such
a way that the receiver can reconstruct the original sequence.

Encoding a Sequence via Sequential Rules. Assume we
want to predict the next element after cabba, based on two
rules R1 : abba ⇒ b and R2 : ba ⇒ cd. If the confidence



of R1 is higher than the confidence of R2, we would guess
that b is more likely than c to appear next. We rely on this
simple principle to encode a sequence element by element
using a set of sequential rules. Assuming the receiver knows
the set of rules and their confidence, as represented by weights,
as well as the history of the sequence decoded so far, they
can compute a probability distribution over the possible next
elements. Hence, the sender can represent the next element as
a code word chosen according to this probability distribution.
If the set of rules effectively produces a probability distribution
concentrated on the element that indeed occurs next, the code
word for that element will be short, allowing for a concise
representation of the input sequence.

Given a sequence S of m elements seen so far, and a set
of weighted rules (AR ⇒ CR, wR), such that AR, CR, and
wR are respectively the antecedent, the consequent, and the
weight of rule R, our goal is to compute the probability of
the next element given this set of rules – denoted by R. This
amounts to computing a probability distribution over Σ. For
each possible next element σ ∈ Σ, we sum the weights of the
active rules that predict σ and divide by the sum of weights
of all active rules:

PR,S(σ) =

∑
(R,j)∈AS,σ wR∑
(R,j)∈AS wR

where AS = {(R, j), (R,wR) ∈ R s.t. active(R,S, j)}, and
AS,σ = {(R, j) ∈ AS s.t. predict(R,S, j) = σ}. A full
sequence S of length n is transmitted element by element.
At each step m, we encode the next symbol S[m] with a code
word chosen according to the probability assigned to it based
on R and the portion of the sequence seen so far, S[1,m−1].
Hence, the overall code length for the full sequence is

L(S|R) =
∑

m∈[1,n]

− log2

(
PR,S[1,m−1](S[m])

)
. (2)

The receiver, having the same collection of rules R and
previous elements of the sequence, can perfom the same
computation to dynamically reconstruct the code at his end,
and decode the transmitted element, using an agreed canonical
order on the alphabet to break ties if necessary.

To ensure comparability, the models must achieve lossless
compression. For this reason, by construction our models
always contain the singleton rule set ΨΣ. This way, every
symbol of the alphabet receives a non-zero probability of
occurrence at any step, and can hence be transmitted. In fact,
the singleton rule set constitutes the basis of the simplest
possible model, what we call the empty model and denote
by R∅, since it does not contain any proper rule. To each
rule Rσ ∈ ΨΣ we associate a weight equal to the background
probability of the predicted element, estimated as its frequency
in the sequence, fσ = |{i ∈ [1, n] : S[i] = σ}| /n.

Encoding the Rules. For the receiver to have access to
the rules R, the sender must transmit the antecedents, con-
sequents, and weights at the start of the exchange. The
antecedent and consequent are subsequences, hence they can

be encoded simply by stating the length of the sequence then
listing their elements using codes of length − log2(fσ), in
order. The weight, on the other hand, is a real number of
bounded precision in (0, 1). Each weight is written as a finite
list of decimals that we encode by applying universal coding to
the integer value obtained by listing these decimals in reverse
order. Put differently, we encode weight w = 0.d1d2d3...dk
with a code word of length LD(w) = LN(dk...d3d2d1). LN(z)
is the length of the code word assigned by the universal code
to integer z, which is such that LN(z) = log∗2(z) + log2(c0),
with c0 a constant adjusted to ensure the Kraft inequality is
satisfied. This penalizes weights by the number of significant
digits they contain rather than by their value. Overall, the code
length for a rule R is the sum of the lengths of the code words
for the antecedent, the consequent and the weight, respectively:

L(R) =

LN(|AR|+ 1) +
∑
σ∈AR

− log2(fσ)



+

LN(|CR|) +
∑
σ∈CR

− log2(fσ)

 + LD(wR) .

We encode a rule table by stating the number of rules and
then listing them:

L(R) = LN(|R|) +
∑
R∈R

L(R) . (3)

V. THE COSSU ALGORITHM

We now introduce an algorithm to mine a set of sequential
rules that compresses the input sequence well under the
encoding scheme presented in Section IV. Finding such a set
of rules is intractable in practice, thus we resort to heuristics.

Our COSSU (COmpact Sets of Sequential rUles) algorithm
is outlined in Algorithm 1. Given a sequence S over alphabet
Σ as input, COSSU returns a set of rules R in two phases.
First, rule construction (lines 1–2) generates a collection
of candidate rules C, which are then evaluated during rule
selection (lines 3–10).

Rule Construction. COSSU starts by extracting closed fre-
quent subsequences by applying an off-the-shelf sequence
miner [17] to the input sequence S with a minimum support
threshold of 2. Sequential rules are then generated from the
sequences by considering all possible partitionings into an an-
tecedent and a non-empty consequent. We use the compression
gain as a rough estimate of the individual ability of a rule to
compress the sequence:

gain(R) = confS(R)·suppS(R)·L(CR)−(L(AR)+L(CR)) . (4)

This score puts in balance the potential benefit and cost
of adding the rule to the rule set. The benefit depends on
how often the consequent is correctly predicted (first term),
whereas the cost is the code length of the rule’s antecedent
and consequent (second term). The latter term constitutes a
lower bound on the cost, with a weight yet undetermined. At



Algorithm 1 COSSU: finding a compact set of sequential rules
Require: A long sequence S of elements over an alphabet Σ
Ensure: A compact set of sequential rules R

1: S ← MineClosedSequences(S)
2: C ← {R ∈ PrepareRules(S), R 6∈ ΨΣ and gain(R) > 0}
3: R← R∅, with adjusted weights ~̂w = arg min~w L(S|R∅)
4: for R ∈ C, ordered by decreasing gain(R) do
5: R′ ←R∪ {R},

with re-adjusted weights ~̂w = arg min~w L(S|R′)
6: if L(R′, S) < L(R, S) then
7: R← R′

8: for R′ ∈ R \R∅ do
9: if L(R \ {R′}, S) ≤ L(R, S) then

10: R← R \ {R′}
11: return R

the end of this first phase, the set of candidates consists of
those rules that have a strictly positive compression gain.

Rule Selection. COSSU resorts to a greedy strategy to build the
rule set R. Initially, R consists of the singleton rules (line 3).
The algorithm then processes the candidate rules in C by order
of decreasing compression gain, i.e. from most promising to
least promising (line 4). The candidate rule is tentatively added
to the rule set and the weights are re-adjusted (line 5). If the
resulting rule set yields better compression than the current
one, the current set is replaced (line 7) and the algorithm goes
into a pruning loop. Otherwise, the rule is discarded and the
algorithm moves on to the next candidate. The pruning loop
(lines 8–10) checks whether the newly added rule makes any
of the previously incorporated non-singleton rules obsolete.
To do so, it tentatively removes each of the rules in turn and
checks whether the compression improves as a result, in which
case the rule is permanently removed from R.

Adjusting Rule Weights. Given a set of selected rules, COSSU
must determine a suitable vector of weights ~w associated to
the rules, so as to optimize the code length of both the model
L(R) (complexity) and the sequence L(S|R) (fit). Because
optimizing both aspects concurrently is very challenging, we
assume that the code length of the weights is fixed, by fixing
the floating point precision of the weights, and focus on the
problem of minimizing L(S|R), i.e. solving

arg min
~w

∑
m∈[1,n]

− log2

(
PR,S[1,m−1](S[m])

)
.

We do so greedily, by adjusting the weight of each rule in turn,
while keeping the value of the other weights fixed. The min-
imization resorts to the golden section search algorithm [18],
initializing the weights to 1. In the end, we scale all weights
to ensure that their values lie in the interval (0, 1). Designing
an algorithm that is able to optimize both L(R) and L(S|R)
is a major direction for future work.

VI. EVALUATION

We evaluate our proposed algorithm on both synthetic and
real-world datasets. For real data, we evaluate the rules learned
by COSSU by using them as features in two classical machine

learning tasks on long sequences: next event prediction and
classification. While COSSU is not designed specifically for
these tasks, it still yields acceptable performance and reports
rules that capture useful patterns in the data. A full account
of our experiments is available in an extended version [19] of
this paper.

A. Evaluation on synthetic data

To study the behaviour of our algorithm in controlled
settings, we generate synthetic random sequences of symbols
and inject patterns that match a set of hand-crafted sequential
rules. Then, we verify whether COSSU is able to recover the
planted rules. We show in [19] that COSSU can distinguish
between regularities and background noise in long sequences.

B. Evaluation on a prediction task

Next, we used the rules mined by COSSU to predict the
next event in the sequence and showed that the achieved
performance competes with interpretable methods for next-
element prediction such as bigrams and Hidden Markov Mod-
els (HMM).

C. Evaluation on a classification task

In this experiment, we use the following datasets:
Quantified Awesome is a life log1 that records the daily ac-

tivities of its owner, an enthusiast of the “Quantified Self”
movement, since 2011; we predict whether a sequence of
events happened on a weekday or during the weekend;

Presidential debates consists of 555 sentences uttered by
Donald Trump and Hillary Clinton in the context of the
2016 US election; the goal is to predict the speaker given
a sentence2;

Newsgroups is a dataset of 180 posts about the topics elec-
tronic and religion3;

Film critics is a dataset of 1800 movie reviews used for
sentiment analysis4;

Stylometry is a database of 2000 writings from H.P. Lovecraft
or E.A. Poe, where the goal is to predict the author based
on its writing style5;

Stylometry (PoS) is the sequence of part-of-speech tags from
the previous dataset.

For all datasets (except Quantified Awesome), our alphabet Σ
consists of all the words present in the corpus after removing
special characters and stop words, and stemming of the re-
maining words. All datasets were split into training, validation,
and test subsets.
Experimental setup. In line with the MDL-based classifier
proposed in [7], we can use COSSU to classify sequences as
follows: For each class c, we build a training sequence by
concatenating all the sequences labeled with c. We then extract
sets of rules with COSSU on the resulting long sequence.

1http://quantifiedawesome.com/records
2https://www.kaggle.com/mrisdal/2016-us-presidential-debates
3https://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
4https://is.gd/rdx39u
5https://bit.ly/3wBqITA



This set of rules defines a model Hc that characterizes the
generation process for sequences in class c. To predict the class
of an input sequence S, we compute the description length
L(S|Hc) for each class c and return the class that compresses
S best, i.e., the class that minimizes L(S|Hc).

We compare the COSSU classifier to (i) an SVM classifier
trained on a bag-of-words representation of the text instances,
(ii) an HMM-based classifier, and (iii) logistic regression
trained on top of the BERT language model [20].
Results. Despite not being a native classifier, COSSU achieves
the best performance on three of the experimental datasets, and
exhibits comparable performance to HMM and state-of-the-
art text classifiers. Furthermore, and unlike its competitors,
COSSU is inherently interpretable because its rules serve as
an explicit explanation for the outcome of classification. As
anecdotal examples, we show a few rules characterizing the
classes of the Stylometry dataset:
E.A. Poe: rue → morge

ourang → outang
little old → gentleman

H.P. Lovecraft: pnakotic → manuscript
catch eight → clock coach arkham
necronomicon mad → arab abdul alhazred

VII. CONCLUSION

We have presented COSSU, an algorithm to mine sequential
rules from a long sequence of symbolic events. Our approach
is inspired by the MDL principle and retrieves a compact and
relevant set of rules. Experiments on real-world data show that,
in addition to providing an interpretable model for sequential
data, the retrieved rules achieve competitive accuracy on the
tasks of next event prediction and classification, as compared
to other symbolic methods.

As future work, we would like to design a procedure to
optimize the weights of the rules while dynamically adjusting
their precision. We would also like to allow our method to
handle gaps, perhaps by taking inspiration from [8].
Acknowledgements. The authors would like to thank Nikolaj
Tatti for providing a fast implementation of a closed gapless
sequential pattern miner.
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