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Abstract. The quantity of event logs available is increasing rapidly, be
they produced by industrial processes, computing systems, or life track-
ing, for instance. It is thus important to design effective ways to uncover
the information they contain. Because event logs often record repetitive
phenomena, mining periodic patterns is especially relevant when consid-
ering such data. Indeed, capturing such regularities is instrumental in
providing condensed representations of the event sequences.
We present an approach for mining periodic patterns from event logs
while relying on a Minimum Description Length (MDL) criterion to
evaluate candidate patterns. Our goal is to extract a set of patterns
that suitably characterises the periodic structure present in the data.
We evaluate the interest of our approach on several real-world event log
datasets.
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1 Introduction

Event logs are one of the most ubiquitous types of data nowadays. They can be
machine generated (server logs, database transactions, sensor data) or human
generated (ranging from hospital records to life tracking, a.k.a. quantified self),
and are bound to become ever more voluminous and diverse with the increasing
digitisation of our lives and the advent of the Internet of Things (IoT). Such logs
are often the most readily available source of information on a system or process
of interest. It is thus critical to have effective and efficient means to analyse them
and extract the information they contain.

Many such logs monitor repetitive processes, and some of this repetitiveness
is recorded in the log. A careful analysis of the log can thus help understand the
characteristics of the underlying recurrent phenomena. However, this is not an
easy task: a log usually captures many different types of events. Events related
to occurrences of different repetitive phenomena are often mixed together as well
as with noise, and the different signals need to be disentangled to allow analysis.
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This can be done by a human expert having a good understanding of the domain
and of the logging system, but is tedious and time consuming.

Periodic pattern mining algorithms [15] have been proposed to tackle this
problem. These algorithms can discover periodic repetitions of sets or sequences
of events amidst unrelated events. They exhibit some resistance to noise, when
it takes the form of slight variations in the inter-occurrence delay [2] or of the
recurrence being limited to only a portion of the data [14]. However, such al-
gorithms suffer from the traditional plague of pattern mining algorithms: they
output too many patterns (up to several millions), even when relying on con-
densed representations [13].

Recent approaches have therefore focused on optimising the quality of the
extracted pattern set as a whole [5], rather than finding individual high-quality
patterns. In this context, the adaptation of the Minimal Description Length
(MDL) principle [16, 7] to pattern set mining has given rise to a fruitful line
of work [19, 4, 18, 3]. The MDL principle is a concept from information theory
based on the insight that any structure in the data can be exploited to compress
the data, and aiming to strike a balance between the complexity of the model
and its ability to describe the data.

The most important structure of the data on which we focus here, i.e. of event
logs, are the periodic recurrences of some events. For a given event sequence, we
therefore want to identify a set of patterns that captures the periodic structure
present in the data, and we devise a MDL criterion to evaluate candidate pattern
sets for this purpose. First, we consider a simple type of model, representing
event sequences with cycles over single events. Then, we extend this model so
that cycles over distinct events can be combined together. By simply letting our
patterns combine not only events but also patterns recursively, we obtain an
expressive language of periodic patterns. For instance, it allows us to express
the following daily routine:

Starting Monday at 7:30 AM, wake up, then, 10 minutes later, prepare
coffee, repeat every 24 hours for 5 days, repeat this every 7 days for 3
months

as a pattern consisting of two nested cycles, respectively with 24 h and 7 days
periods, over the events “waking up” and “preparing coffee”.

In short, we propose a novel approach for mining periodic patterns us-
ing a MDL criterion. The main component of this approach—and our main
contribution—is the definition of an expressive pattern language and the associ-
ated encoding scheme which allows to compute a MDL-based score for a given
pattern collection and sequence. We design an algorithm for putting this ap-
proach into practise and perform an empirical evaluation on several event log
datasets. We show that we are able to extract sets of patterns that compress the
input sequences and to identify meaningful patterns.

We start by reviewing the main related work, in Section 2. In Section 3,
we introduce our problem setting and a simple model consisting of cycles over
single events, which we extend in Section 4. We present an algorithm for mining
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periodic patterns that compress in Section 5 and evaluate our proposed approach
over several event log datasets in Section 6. We reach conclusions in Section 7.

In the supplementary material we provide an extended report including tech-
nical details, numerous examples and additional experiments.

2 Related Work

The first approaches for mining periodic patterns used extremely constrained
definitions of the periodicity. In [15], all occurrences must be regularly spaced;
In [9, 8], some missing occurrences are permitted but all occurrences must follow
the same regular spacing. As a result, these approaches are extremely sensitive
to even small amounts of noise in the data. Ma et al. [14] later proposed a more
robust approach, which can extract periodic patterns in the presence of gaps
of arbitrary size in the data. While the above approaches require time to be
discretized as a preprocessing (time steps of hour or day length, for example),
several solutions have been proposed to directly discover candidate periods from
raw timestamp data, using the Fast Fourier Transform [2] or statistical mod-
els [12, 20]. All of the above approaches are susceptible to producing a huge
number of patterns, making the exploitation of their results difficult. The use of
a condensed representation for periodic patterns [13] allows to significantly re-
duce the number of patterns output, without loss of information, but falls short
of satisfactorily addressing the problem.

Considering pattern mining more in general, to tackle this pervasive issue
of the overwhelming number of patterns extracted, research has focused on ex-
tracting pattern sets [5]: finding a (small) set of patterns that together optimise
some interest criterion. One such criterion is based on the Minimum Descrip-
tion Length (MDL) principle [6]. Simply put, it states that the best model is the
one that compresses the data most. Following this principle, the Krimp algo-
rithm [19] was proposed, to select a subset of frequent itemsets that yields the
best lossless compression of a transactional database. This algorithm was later
improved [17] and the approach extended to analyse event sequences [18, 11, 3].

To the best of our knowledge, the only existing method that combines peri-
odic pattern mining and a MDL criterion was proposed by Heierman et al. [10].
This approach considers a single regular episode at a time and aims to select the
best occurrences for this pattern, independently of other patterns. Instead, we
use a MDL criterion in order to select a good collection of periodic patterns.

3 Preliminary Notation and Problem Definition

Next, we formally define the necessary concepts and formulate our problem,
focusing on simple cycles.

Event sequences and cycles. Our input data is a collection of timestamped
occurrences of some events, which we call an event sequence. The events come
from an alphabet Ω and will be represented with lower case letters. We assume
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that the same event cannot occur several times simultaneously, so the data can
be represented as a list of timestamp–event pairs, such as

S1 = 〈(2, c), (3, c), (6, a), (7, a), (7, b), (19, a), (30, a), (31, c), (32, a), (37, b)〉 .

Whether timestamps represent days, hours, seconds, or something else depends
on the application, the only requirement is that they be expressed as positive
integers. We denote as S(α) the event sequence S restricted to event α, that
is, the subset obtained by keeping only occurrences of event α. We denote as
|S| the number of timestamp–event pairs contained in event sequence S, i.e.
its length, and ∆(S) the time spanned by it, i.e. its duration. That is, ∆(S) =
tend(S)− tstart(S), where tend(S) and tstart(S) represent the largest and smallest
timestamps in S, respectively.

Given such an event sequence, our goal is to extract a representative collection
of cycles. A cycle is a periodic pattern that takes the form of an ordered list
of occurrences of an event, where successive occurrences appear at the same
distance from one another. We will not only consider perfect cycles, where the
inter-occurrence distance is constant, but will allow some variation.

A cycle is specified by indicating:
– the repeating event, called cycle event and denoted as α,
– the number of repetitions of the event, called cycle length, r,
– the inter-occurrence distance, called cycle period, p, and
– the timestamp of the first occurrence, called cycle starting point, τ .

Cycle lengths, cycle periods and cycle starting points take positive integer values.
The former two are required to be strictly positive while the latter can take value
0 (we choose to restrict periods to be integers for simplicity and interpretability).

In addition, since we allow some variation in the actual inter-occurrence
distances, we need to indicate an offset for each occurrence in order to be able
to reconstruct the original subset of occurrences, that is, to recover the original
timestamps. For a cycle of length r, this is represented as an ordered list of r−1
signed integer offsets, called the cycle shift corrections and denoted as E. Hence,
a cycle is a 5-tuple C = (α, r, p, τ, E).

For a given cycle C = (α, r, p, τ, E), with E = 〈e1, . . . , er−1〉 we can recover
the corresponding occurrences timestamps by reconstructing them recursively,
starting from τ : o1 = τ , ok = ok−1 + p + ek−1. Note that this is different
from first reconstructing the occurrences while assuming perfect periodicity as
τ, τ + p, τ + 2p, . . . , τ + (r − 1)p, then applying the corrections, because in the
former case the corrections actually accumulate.

Then, we overload the notation and denote the time spanned by the cycle as
∆(C). Denoting as σ(E) the sum of the shift corrections in E, σ(E) =

∑
e∈E e,

we have ∆(C) = (r − 1)p + σ(E). Note that this assumes that the correction
maintains the order of the occurrences. This assumption is reasonable since an
alternative cycle that maintains the order can be constructed for any cycle that
does not.

We denote as cover(C) the corresponding set of reconstructed timestamp–
event pairs cover(C) = {(t0, α), (t1, α), . . . , (tk, α)}. We say that a cycle covers
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an occurrence if the corresponding timestamp–event pair belongs to the recon-
structed subset cover(C).

Since we represent time in an absolute rather than relative manner and as-
sume that an event can only occur once at any given timestamp, we do not need
to worry about overlapping cycles nor about an order between cycles. Given a
collection of cycles representing the data, the original list of occurrences can be
reconstructed by reconstructing the subset of occurrences associated with each
cycle, regardless of order, and taking the union. We overload the notation and de-
note as cover(C) the set of reconstructed timestamp–event pairs for a collection
C of cycles C = {C1, . . . , Cm}, that is cover(C) =

⋃
C∈C cover(C).

For a sequence S and cycle collection C we call residual the timestamp–event
pairs not covered by any cycle in the collection: residual(C, S) = S \ cover(C).

We associate a cost to each individual timestamp–event pair o = (t, α) and
each cycle C, respectively denoted as L(o) and L(C), which we will define shortly.
Then, we can reformulate our problem of extracting a representative collection
of cycles as follows:

Problem 1. Given an event sequence S, find the collection of cycles C minimising
the cost

L(C, S) =
∑
C∈C

L(C) +
∑

o∈residual(C,S)

L(o) .

Code lengths as costs. This problem definition can be instantiated with dif-
ferent choices of costs. Here, we propose a choice of costs motivated by the MDL
principle. Following this principle, we devise a scheme for encoding the input
event sequence using cycles and individual timestamp–event pairs. The cost of
an element is then the length of the code word assigned to it under this scheme,
and the overall objective of our problem becomes finding the collection of cycles
that results in the shortest encoding of the input sequence, i.e. finding the cycles
that compress the data most. In the rest of this section, we present our custom
encoding scheme. Note that all logarithms are in base 2.

For each cycle we need to specify its event, length, period, starting point and
shift corrections, that is L(C) = L(α)+L(r)+L(p)+L(τ)+L(E). It is important
to look more closely at the range in which each of these pieces of information
takes value, at what values—if any—should be favoured, and at how the values
of the different pieces depend on one another.

To encode the cycles’ events, we can use codes based on the events’ frequency
in the original sequence, so that events that occur more frequently in the event se-
quence will receive shorter code words: L(α) = − log(fr(α)) = − log(

∣∣S(α)
∣∣ / |S|).

This requires that we transmit the events number of occurrences in the original
event sequence. To optimise the overall code length, the length of the code word
associated to each event should actually depend on the frequency of the event
in the selected collection of cycles. However, this would require keeping track of
these frequencies and updating the code lengths dynamically. Instead, we use
the frequencies of the events in the input sequence as a simple proxy.

Clearly, a cycle with event α cannot have a length greater than
∣∣S(α)

∣∣. Once
the cycle event α and its number of occurrences are known, we can encode the
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cycle length with a code word of length L(r) = log(
∣∣S(α)

∣∣), resulting in the same
code length for large numbers of repetitions as for small ones.

Obviously, a cycle spans at most the time of the whole sequence, i.e. ∆(C) ≤
∆(S) so that knowing the cycle length, the shift corrections, and the sequence
time span, we can encode the cycle period with a code word of length

L(p) = log
(⌊∆(S)− σ(E)

r − 1

⌋)
.

Next, knowing the cycle length and period as well as the sequence time span,
we can specify the value of the starting point with a code word of length

L(τ) = log(∆(S)− σ(E)− (r − 1)p+ 1) .

Finally, we encode the shift corrections as follows: each correction e is repre-
sented by |e| ones, prefixed by a single bit to indicate the direction of the shift,
with each correction separated from the previous one by a zero. For instance,
E = 〈3,−2, 0, 4〉 would be encoded as 01110111000011110 with value digits,
separating digits and sign digits, in italics, bold and normal font, respectively
(the sign bit for zero is arbitrarily set to 0 in this case).

As a result, the code length for a sequence of shift corrections E is

L(E) = 2 |E|+
∑
e∈E
|e| .

Putting everything together, we can write the cost of a cycle C as

L(C) = log(|S|) + log
(⌊∆(S)− σ(E)

r − 1

⌋)
+ log(∆(S)− σ(E)− (r − 1)p+ 1) + 2 |E|+

∑
e∈E
|e| .

On the other hand, the cost of an individual occurrence o = (t, α) is simply
the sum of the cost of the corresponding timestamp and event:

L(o) = L(t) + L(α) = log(∆(S) + 1)− log(
∣∣∣S(α)

∣∣∣ / |S|) .
Note that if our goal was to actually encode the input sequence, we would

need to transmit the smallest and largest timestamps (tstart(S) and tend(S)), the
size of the event alphabet (|Ω|), as well as the number of occurrences of each
event (

∣∣S(α)
∣∣ for each event α) of the event sequence. We should also transmit

the number of cycles in the collection (|C|), which can be done, for instance with
a code word of length log(|S|). However, since our goal is to compare collections
of cycles, we can simply ignore this, as it represents a fixed cost that remains
constant for any chosen collection of cycles.

Finally, consider that we are given an ordered list of occurrences 〈o1, o2, . . . ol〉
of event α, and we want to determine the best cycle with which to cover all
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these occurrences at once. Some of the parameters of the cycle are determined,
namely the repeating event α, the length r, and the timestamp of the first
occurrence τ . All we need to determine is the period p that yields the shortest
code length for the cycle. In particular, we want to find p that minimises L(E).
The shift corrections are such that Ek = (ok+1 − ok)− p. If we consider the list
of inter-occurrence distances d1 = o2− o1, d2 = o3− o2, . . . , dl−1 = ol− ol−1, the
problem of finding p that minimises L(E) boils down to minimising

∑
di
|di − p| .

This is achieved by letting p equal the geometric median of the inter-occurrence
distances, which, in the one-dimensional case, is simply the median. Hence, for
this choice of encoding for the shift corrections, the optimal cycle covering a
list of occurrences can be determined by simply computing the inter-occurrences
distances and taking their median as the cycle period.

4 Defining Tree Patterns

So far, our pattern language is restricted to cycles over single events. In practise,
however, several events might recur regularly together and repetitions might be
nested with several levels of periodicity. To handle such cases, we now introduce
a more expressive pattern language, that consists of a hierarchy of cyclic blocks,
organised as a tree.

Instead of considering simple cycles specified as 5-tuples C = (α, r, p, τ, E) we
consider more general patterns specified as triples P = (T, τ, E), where T denotes
the tree representing the hierarchy of cyclic blocks, while τ and E respectively
denote the starting point and shift corrections of the pattern, as with cycles.

Pattern trees. Each leaf node in a pattern tree represents a simple block con-
taining one event. Each intermediate node represents a cycle in which the chil-
dren nodes repeat at a fixed time interval. In other words, each intermediate
node represents cyclic repetitions of a sequence of blocks. The root of a pattern
tree is denoted as B0. Using list indices, we denote the children of a node BX as
BX1, BX2, etc. We denote the ordered list of the children of node BX as Γ (BX).
All children of an intermediate node except the left-most child are associated
to their distance to the preceding child, called the inter-block distance, denoted
as dX for node BX . Inter-block distances take non-negative integer values. Each
intermediate node BX is associated with the period pX and length rX of the
corresponding cycle. Each leaf node BY is associated with the corresponding
occurring event αY .

An example of an abstract pattern tree is shown in Fig.1. We call height
and width of the pattern tree—and by extension of the associated pattern—
respectively the number of edges along the longest branch from the root to a
leaf node and the number of leaf nodes in the tree.

For a given pattern, we can construct a tree of event occurrences by expanding
the pattern tree recursively, that is, by appending to each intermediate node the
corresponding number of copies of the associated subtree, recursively. We call
this expanded tree the expansion tree of the pattern, as opposed to the contracted
pattern tree that more concisely represents the pattern.
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We can enumerate the event occurrences of a pattern by traversing its expan-
sion tree and recording the encountered leaf nodes. We denote as occs∗(P ) this
list of timestamp–event pairs reconstructed from the tree, prior to correction.

As for the simple cycles, we will not only consider perfect patterns but will
allow some variations. For this purpose, a list of shift corrections E is provided
with the pattern, which contains a correction for each occurrence except the first
one, i.e. |E| = |occs∗(P )| − 1. However, as for simple cycles, corrections accu-
mulate over successive occurrences, and we cannot recover the list of corrected
occurrences occs(P ) by simply adding the individual corrections to the elements
of occs∗(P ). Instead, we first have to compute the accumulated corrections for
each occurrence.

B0

B1

B11 B12

B2

r0, p0

r1, p1

α11 α12

α2

d2

d12

a) GrowHorizontally:

b) GrowVertically:

c e c e

. . .

c e

−→
c e

a b

−→
a b

Fig. 1. Abstract pattern tree and examples of growing patterns through combinations.

Encoding the patterns. To transmit a pattern, we need to encode its pattern
tree, as well as its starting point and shift corrections. Furthermore, to encode
the pattern tree, we consider separately its event sequence, its cycle lengths, its
top-level period, and the other values, as explained below.

First we encode the event in the leaves of the pattern tree, traversing the tree
from left to right, depth-first. We denote as A the string representing its event
sequence. We encode each symbol s in the string A using a code of length L(s),
where L(s) depends on the frequency of s, adjusted to take into account the
additional symbols ‘(’ and ‘)’, used to delimit blocks. In particular, we set the
code lengths for the extended alphabet such that L(‘(’) = L(‘)’) = − log(1/3) for
the block delimiters, and L(α) = − log(

∣∣S(α)
∣∣ /(3 |S|)) for the original events.

Next, we encode the cycle lengths, i.e. the values rX associated to each in-
termediate node BX encountered while traversing the tree depth-first and from
left to right, as a sequence of values, and denote this sequence R. For a block
BX the number of repetitions of the block cannot be larger than the number
of occurrences of the least frequent event participating in the block, denoted as
ρ(BX). We can thus encode the sequence of cycle lengths R with code of length

L(R) =
∑
rX∈R

L(rX) =
∑
rX∈R

log
(
ρ(BX)

)
.
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Knowing the cycle lengths R and the structure of the pattern tree from
its event sequence A, we can deduce the total number of events covered by
the pattern. The shift corrections for the pattern consist of the correction to
each event occurrence except the first one. This ordered list of values can be
transmitted using the same encoding as for the simple cycles.

In simple cycles, we had a unique period characterising the distances between
occurrences. Instead, with these more complex patterns, we have a period pX
for each intermediate node BX , as well as an inter-block distance dX for each
node BX that is not the left-most child of its parent.

First, we transmit the period of the root node of the pattern tree, B0. In a
similar way as with simple cycles, we can deduce the largest possible value for
p0 from r0 and E. Since we do not know when the events within the main cycle
occur, we assume what would lead to the largest possible value for p0, that is,
we assume that all the events within each repetition of the cycle happen at once,
so that each repetition spans no time at all. The details of the computation of
the code length can be found in the supplementary material.

We denote as D the collection of all the periods (except p0) and inter-block
distances in the tree, that need to be transmitted to fully describe the pattern.
To put everything together, the code used to represent a pattern P = (T, τ, E)
has length

L(P ) = L(A) + L(R) + L(p0) + L(D) + L(τ) + L(E) .

5 Algorithm for Mining Periodic Patterns that Compress

For a given input sequence S, our goal is to find a collection of patterns C that
minimises the cost

L(C, S) =
∑
P∈C

L(P ) +
∑

o∈residual(C,S)

L(o) .

It is useful to compare the cost of different patterns, or sets of patterns, on a
subset of the data, i.e. compare L(C′, S′) for different sets of patterns C′ and some
subsequence S′ ⊆ S. In particular, we might compare the cost of a pattern P to
the cost of representing the same occurrences separately. This means comparing

L({P}, cover(P )) = L(P ) and L(∅, cover(P )) =
∑

o∈cover(P )

L(o) .

If L({P}, cover(P )) < L(∅, cover(P )), we say that pattern P is cost-effective. In
addition, we compare patterns in terms of their cost-per-occurrence ratio defined,
for a pattern P , as L(P )/ |cover(P )|. The smaller this ratio, the more efficient
the pattern.

A natural way to build patterns is start with the simplest patterns, i.e. cycles
over single events, and combine them together into more complex, possibly multi-
level multi-event patterns.
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Algorithm 1 Mining periodic patterns that compress.

Require: A multi-event sequence S, a number k of top candidates to keep
Ensure: A collection of patterns P
1: I ← ExtractCycles(S, k)
2: C ← ∅;V ← I;H ← I
3: while H 6= ∅ OR V 6= ∅ do
4: V ′ ← CombineVertically(H,P, S, k)
5: H′ ← CombineHorizontally(V,P, S, k)
6: C ← C ∪H ∪ V;V ← V ′;H ← H′

7: P ← GreedyCover(C, S)
8: return P

Assume that we have a pattern tree TI which occurs multiple times in the
event sequence. In particular, assume that it occurs at starting points τ1, τ2,
. . . , τrJ and that this sequence of starting points itself can be represented as a
cycle of length rJ and period pJ . In such a case, the occurrences of TI might be
combined together and represented as a nested pattern tree. GrowVertically
is the procedure which takes as input a collection CI of patterns over a tree TI
and returns the nested pattern obtained by combining them together as depicted
in Fig.1(b).

On the other hand, given a collection of patterns that occur close to one
another and share similar periods, we might want to combine them together
into a concatenated pattern by merging the roots of their respective trees.
GrowHorizontally is the procedure which takes as input a collection of pat-
terns and returns the pattern obtained by concatenating them together in order
of increasing starting points as depicted in Fig.1(a).

As outlined in Algorithm 1, our proposed algorithm consists of three stages:
(i) extracting cycles (line 1), (ii) building tree patterns from cycles (lines 2–
6) and (iii) selecting the final pattern collection (line 7). We now present each
stage in turn. Due to the space constraints, we only describe the algorithm at a
high-level. For technical details, please see the supplementary material.

Extracting cycles. Considering each event in turn, we use two different rou-
tines to mine cycles from the sequence of timestamps obtained by restricting the
input sequence to the event of interest, combine and filter their outputs to gener-
ate the set of initial candidate patterns. The first routine, ExtractCyclesDP,
uses dynamic programming. Indeed, if we allow neither gaps in the cycles nor
overlappings between them, finding the best set of cycles for a given sequence
corresponds to finding an optimal segmentation of the sequence, and since our
cost is additive over individual cycles, we can use dynamic programming to solve
it optimally [1]. The second routine, ExtractCyclesTri, extracts cycles using
a heuristic which allows for gaps and overlappings. It collects triples (t0, t1, t2)
such that ||t2 − t1| − |t1 − t0|| ≤ `, where ` is selected such that the triple can
be beneficial when used to construct longer cycles (see supplementary material).
Triples are then chained into longer cycles. Finally, the set C of cost-effective
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cycles obtained by merging the output of the two routines is filtered to keep
only the k most efficient patterns for each occurrence for a user-specified k, and
returned.

Building tree patterns from cycles. The second stage of the algorithm builds
tree patterns, starting from the cycles produced in the previous stage. That is,
while there are new candidate patterns, the algorithm performs combination
rounds, trying to generate more complex patterns through vertical and horizon-
tal combinations. If desired, this stage can be skipped, thereby restricting the
pattern language to simple cycles.

In a round of vertical combinations performed by CombineVertically
(line 4), each distinct pattern tree represented among the new candidates in H is
considered in turn. Patterns over that tree are collected and ExtractCyclesTri
is used to mine cycles from the corresponding sequence of starting points. For
each obtained cycle, a nested pattern is produced by combining the correspond-
ing candidates using GrowVertically (see Fig.1(b)).

In a round of horizontal combinations performed by CombineHorizontally
(line 5), a graph G is constructed, with vertices representing candidate patterns
and with edges connecting pairs of candidates K = {PI , PJ} for which the con-
catenated pattern PN = GrowHorizontally(K) satisfies L({PN}, cover(K)) <
L(K, cover(K)). A new pattern is then produced for each clique of G, by applying
GrowHorizontally to the corresponding set of candidate patterns.

Selecting the final pattern collection. Selecting the final set of patterns to
output among the candidates in C is very similar to solving a weighted set cover
problem. Therefore, the selection is done using a simple variant of the greedy
algorithm for this problem, denoted as GreedyCover (line 7).

6 Experiments

In this section, we evaluate the ability of our algorithm to find patterns that
compress the input event sequences. To the best of our knowledge, no existing
algorithm carries out an equivalent task and we are therefore unable to perform a
comparative evaluation against competitors. To better understand the behaviour
of our algorithm, we first performed experiments on synthetic sequences, which
are presented in the supplementary material. We then applied our algorithm to
real-world sequences including process execution traces, smartphone applications
activity, and life-tracking. We evaluate our algorithm’s ability to compress the
input sequences and present some examples of extracted patterns.

For a given event sequence, the main objective of our algorithm is to mine
and select a good collection of periodic patterns, in the sense that the collection
should allow to compress the input sequence as much as possible. Therefore,
the main measure that we consider in our experiments is the compression ra-
tio, defined as the ratio between the length of the code representing the input
sequence with the considered collection of patterns and the length of the code
representing the input sequence with an empty collection of patterns, i.e. using
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Table 1. Statistics of the event log sequences used in the experiments.

|S| ∆(S) |Ω|
∣∣∣S(α)

∣∣∣ L(∅, S) RT (s)

med max cycles overall

3zap 181644 181643 443 22 36697 4154277 2094 35048
bugzilla 16775 16774 91 6 3332 303352 112 522
samba 28751 7461 119 44 2905 520443 214 2787
sacha 65977 221445 141 231 4389 1573140 2963 14377

ubiqLog (31 sequences)

min 413 11391 10 23 194 6599 1 1
median 23859 87591 87 52 2131 486633 232 1020
max 167863 17900307 241 129 6101 3733349 2297 28973

only individual event occurrences, given as a percentage. For a given sequence
S and collection of patterns C the compression ratio is defined as

%L = 100 · L(C, S)/L(∅, S) ,

with smaller values associated to better pattern collections.

Datasets. Our first two datasets come from a collaboration with STMicroelec-
tronics and are execution traces of a set-top box based on the STiH418 SoC5

running STLinux. Both traces are a log of system actions (interruptions, con-
text switches and system calls) taken by the KPTrace instrumentation system
developed at STMicroelectronics. The 3zap sequence corresponds to 3 successive
changes of channel (“zap”), while the bugzilla sequence corresponds to logging
a display blackout bug into the bug tracking system of ST. For our analysis of
these traces, we do not consider timestamps, only the succession of events.

The ubiqLog dataset was obtained from the UCI Machine learning reposi-
tory.6 It contains traces collected from the smartphones of users over the course
of two months. For each of 31 users we obtain a sequence recording what ap-
plications are run on that user’s smartphone. We consider absolute timestamps
with a granularity of one minute.

The samba dataset consists of a single sequence recording the emails iden-
tifying the authors of commits on the git repository of the samba network file
system7 from 1996 to 2016. We consider timestamps with a granularity of one
day. We aggregated together users that appeared fewer than 10 times.

The sacha dataset consists of a single sequence containing records from the
quantified awesome life log8 recording the daily activities of its author between
November 2011 and January 2017. The daily activities are associated to start and

5 STiH418 description: http://www.st.com/resource/en/data_brief/stih314.pdf
6 https://archive.ics.uci.edu/ml/datasets/UbiqLog+(smartphone+

lifelogging)
7 https://git.samba.org/
8 http://quantifiedawesome.com/records
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Table 2. Summary of results for the separate event sequences.

%L L :R s / v / h / m c+

3zap

CS 56.32 0.41 11852/ – / – / – 2325
CV 55.14 0.40 10581/581/ – / – 2325
CH 47.84 0.35 3459 / – /4912/ – 2325
CV+H 47.40 0.34 3499 /419/4302/ – 2325
CF 46.99 0.34 3499 / 91 /4154/268 2325

samba

CS 28.42 0.14 429 / – / – / – 2657
CF 28.37 0.13 409 / 0 / 17 / 0 2657

%L L :R s / v / h /m c+

bugzilla

CS 48.58 0.12 262 / – / – / – 1652
CV 48.56 0.12 259 / 1 / – / – 1652
CH 42.43 0.12 133 / – / 70 / – 1652
CV+H 42.39 0.12 130 / 1 / 72 / – 1652
CF 42.41 0.13 124 / 1 / 70 / 2 1652

sacha

CS 74.34 0.37 9602/ – / – / – 304
CF 68.64 0.35 3957/ 0 /2996/ 0 582

Fig. 2. Compression ratios for the sequences from the ubiqLog dataset.
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end timestamps, and are divided between categories organised into a hierarchy.
Categories with fewer than 200 occurrences were aggregated to their parent cat-
egory. Each resulting category is represented by an event. Adjacent occurrences
of the same event were merged together. We consider absolute timestamps with
a granularity of 15 minutes.

Table 1 presents the statistics of the sequences used in our experiments.
We indicate the length (|S|) and duration (∆(S)) of each sequence, the size
of its alphabet (|Ω|), as well as the median and maximum length of the event
subsequences (

∣∣S(α)
∣∣). We also indicate the code length of the sequence when

encoded with an empty collection of patterns (L(∅, S)), as well as the running
time of the algorithm (RT, in seconds) for mining and selecting the patterns, as
well as for the first stage of mining cycles for each separate event.

Measures. In addition to the code length and compression ratio achieved with
the selected pattern collections, we consider several other characteristics. For a
given pattern collection C, we denote the set of residuals residual(C, S) simply
as R and look at what fraction of the code length is spent on them, denoted
as L :R =

∑
o∈R L(o)/L(C, S). |R| and |C| are the number of individual event

occurrences and the number of patterns in the collection, respectively. We also
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Fig. 3. Running times for mining the different sequences (in hours, left) and zooming
in on shorter sequences (in minutes, right).

look at the number of patterns of different types in C: (s) simple cycles, i.e.
patterns with width = 1 and height = 1, (v) vertical patterns, with width = 1
and height > 1, (h) horizontal patterns, with width > 1 and height = 1, and
(m) proper two-dimensional patterns, with width > 1 and height > 1. Finally,
we look at the maximum cover size of patterns in C, denoted as c+.

Results. In addition to the final collection of patterns returned by the algorithm
after potentially a few rounds of combinations (denoted as CF ), we also consider
intermediate collections of patterns, namely a collection selected among cycles
mined during the first stage of the algorithm (denoted as CS), including patterns
from the first round of horizontal combinations (CH), of vertical combinations
(CV ), and both, i.e. at the end of the first round of combinations (CV+H).

A summary of the results for the separate event sequences 3zap, bugzilla,
samba and sacha, is presented in Table 2. Fig.2 shows the compression ratios
achieved on event sequences from the ubiqLog dataset.

We see that the algorithm is able to find sets of patterns that compress the
input event sequences. The compression ratio varies widely depending on the
considered sequence, from a modest 84% for some sequences from ubiqLog to
a reduction of more than two thirds, for instance for samba. To an extent, the
achieved compression can be interpreted as an indicator of how much periodic
structure is present in the sequence (at least of the type that can be exploited by
our proposed encoding and detected by our algorithm). In some cases, as with
samba, the compression is achieved almost exclusively with simple cycles, but
in many cases the final selection contains a large fraction of horizontal patterns
(sometimes even about two thirds), which bring a noticeable improvement in the
compression ratio (as can be seen in Fig.2, for instance). Vertical patterns, on
the other hand, are much more rare, and proper two-dimensional patterns are
almost completely absent. The bugzilla sequence features such patterns, and
even more so the 3zap sequence. This agrees with the intuition that recursive
periodic structure is more likely to be found in execution logs tracing multiple
recurrent automated processes.
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p = 10 d
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Fig. 4. Example patterns from sacha (a–e) and 3zap (f).

Fig.3 shows the running times for sequences from the different datasets. The
running times vary greatly, from only a few seconds to several hours. Naturally,
mining longer sequences tend to require longer running times.

Example patterns. Finally, we present some examples of patterns obtained
from the sacha and 3zap sequences, in Fig.4. The start and end of an activity A
are denoted as “[A” and “A]” respectively. The patterns from the sacha sequence
are simple and rather obvious, but they make sense when considering everyday
activities. The fact that we are able to find them is a clear sign that the method
is working. The 3zap pattern is a typical system case: the repetition of a context
switch (6:C) followed by several activations of a process (2395:X).

Most of the discovered patterns are fairly simple. We suspect that this is
due to the nature of the data: there are no significantly complex patterns in
these event log sequences. In any case, the expressivity of our proposed pattern
language comes at no detriment to the simpler, more common patterns, but
brings the potential benefit of identifying sequences containing exceptionally
regular structure.

7 Conclusion

In this paper, we propose a novel approach for mining periodic patterns with
a MDL criterion, and an algorithm to put it into practise. Through our exper-
imental evaluation, we show that we are able to extract sets of patterns that
compress the input event sequences and to identify meaningful patterns.

How to take prior knowledge into account is an interesting question to ex-
plore. Making the algorithm more robust to noise and making it more scalable
using e.g. parallelisation, are some pragmatic directions for future work, as is
adding a visualisation tool to support the analysis and interpretation of the
extracted patterns in the context of the event log sequence.
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