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Abstract
Motivated by applications that arise in online social media
and collaboration networks, there has been a lot of work
on community-search. In this class of problems, the goal
is to find a subgraph that satisfies a certain connectivity
requirement and contains a given collection of seed nodes.

In this paper, we extend the community-search problem
by associating each individual with a profile. The profile is
a numeric score that quantifies the position of an individual
with respect to a topic. We adopt a model where each
individual starts with a latent profile and arrives to a
conformed profile through a dynamic conformation process,
which takes into account the individual’s social interaction
and the tendency to conform with one’s social environment.
In this framework, social tension arises from the differences
between the conformed profiles of neighboring individuals as
well as from the differences between individuals’ conformed
and latent profiles.

Given a network of individuals, their latent profiles
and this conformation process, we extend the community-
search problem by requiring the output subgraphs to have
low social tension. From the technical point of view, we
study the complexity of this problem and propose algorithms
for solving it effectively. Our experimental evaluation in a
number of social networks reveals the efficacy and efficiency
of our methods.

1 Introduction

A large body of work in social and collaboration net-
works focuses on solving variants of the community-
search problem [4, 9, 10, 11], where the high-level goal is
to find a subgraph that connects a set of seed nodes and
satisfies certain connectivity properties. This problem
has applications primarily in online social media and
collaboration networks. For example, solutions can be
used to identify a set of individuals who are the most
appropriate group to organize a social gathering.

Different variants of the problem impose different
requirements on the structure of the solution subgraph.
For example, in some settings one asks to find high-
density communities [10], while in others the objective
is to find small-diameter communities [9].

In contrast to the static requirements imposed by
existing work, in this paper we incorporate the dynamics
of social interactions in the community-search problem.
We do so by associating profiles to the individuals in
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the network. The profiles of individuals model their
interests, skills, preferences, opinions, and so on, with
respect to different aspects or topics. For example, the
profile may represent the interest of an individual in
discussing about politics, or the working style of an
individual — e.g. whether he is a morning person or a
night owl. Since profiles may cover a number of different
aspects or topics, we assume that they are represented
as multi-dimensional vectors.

We further assume that the profiles of individuals
change due to the social influence they receive from
other individuals in the network. We model this change
through what we call conformation process, which is
a dynamic process. Motivated by existing work on
models of opinion formation and social influence [2, 3,
5, 8, 6] we assume that the conformation process is a
repeated-averaging process. In our work, we generalize
this process from one-dimensional opinions to multi-
dimensional profiles. The effect of this process is that
the initial profiles of individuals, which we call latent
profiles, get re-enforced or altered through synthesis
and aggregation of different viewpoints of the network
participants. Hence, the conformed profiles are formed
through a process of repeated averaging.

Given this process, the latent profiles of individuals
and a social network that represents their social interac-
tion, social tension arises because of the differences be-
tween the conformed profiles of neighboring nodes and
between the conformed and latent profiles of the nodes
themselves. In this context, our goal is to identify com-
munities that are not only connected, but also exhibit
low social tension. We refer to this problems as the T -
Comm problem. To the best of our knowledge we are
the first to define and study this problem in the light of
profile-conformation processes in a social network.

In terms of technical results, we show that the
T -Comm problem is NP-hard and we design graph-
theoretic algorithms for solving it. A key difficulty that
we overcome while designing these algorithms is that
we do not run the conformation process for every step
of these algorithms; indeed, this would be computation-
ally very demanding. Rather, we create effective proxies
of this process that allow our algorithm to scale. Our
experiments with real-world data demonstrate the effi-
ciency and the efficacy of our algorithms.



While we focus here primarily on a community-
search problem, we also considered a team-formation
variant, where the goal is to find individuals who
collectively have the skills required for a task and form
a connected subgraph with some required properties.1

1.1 Applications. The T -Comm problem has nu-
merous potential applications. For example, when ana-
lyzing social networks or social media, it is often useful
to identify connected groups of users who have similar
profiles with respect to a topic or an idea (i.e. they are in
agreement). Note, however, that minimizing the social
tension does not necessarily imply looking for highly ho-
mogeneous communities but, rather, favoring communi-
ties that are able to bridge opinion gaps at low social and
communication costs. Groups with low social tension
can be recommended as ideal in order to form a group
to organize or to invite at a social event. Such problems
also arise in human-resource management, when search-
ing for groups of workers who can collaborate together
in a conflict-free manner in order to successfully com-
plete a project. Being able to identify a group of people
who are not going to experience high social tension is
particularly useful when considering cluster hires in uni-
versities or start-up companies, where the investment is
high and the human factor risk needs to be minimized.

2 Related Work

To the best of our knowledge, we are the first to combine
the problem of identifying a group of nodes from an
input graph with an underlying dynamic conformation
process. However, while the T -Comm problem as we
define it is novel, our work is related to existing work
on graph mining and opinion dynamics. We summarize
the related literature below.

2.1 Community search. Given a graph and a sub-
set of its nodes as a seed, community-search problems
ask for a set of nodes which is a superset of the seed
nodes and induces a connected subgraph in the orig-
inal graph. Since this class of problems was initially
introduced [4, 11], different instances of the community-
search problem appeared. Each one imposes a different
requirement on the graph-theoretic properties of the re-
ported subgraph, e.g. maximizing the density [10] or
minimizing the average pairwise distance [9]. Although
these problems are related to the T -Comm problem we
study here, the novelty of our problem comes from the
fact that we associate nodes with profiles and that we

1An extended version of this paper including the team-

formation variant as well as additional experimental results is
available at https://arxiv.org/abs/1701.05352.

assume a profile-conformation process that takes place
over the network. Our objective function is directly re-
lated to this process as it aims to minimize the social
tension in the reported community. As a result, the
technical results we obtain for T -Comm are different
from the other community-search problems.

2.2 Opinion dynamics. Starting in the 1970s, mod-
els have been built that try to capture the opinion-
formation processes in groups and networks [2, 3, 5, 8,
13, 6]. For example, voter models, pioneered by Clif-
ford and Sudbury [2] and Holley and Liggett [8] are
stochastic models of opinion formation where at each
step a node is selected at random and adopts the opin-
ion of one of its neighbors, also selected at random. In
DeGroot’s averaging model [3], each node updates its
opinion, by the weighted average of its own opinion and
its neighbors’ opinion at the previous time step. Fried-
kin and Johnsen [5, 6] introduced a model where every
node has an immutable inner opinion and a changeable
expressed opinion. Each node forms its expressed opin-
ion in a repeated-averaging process involving its own in-
ner opinion and the expressed opinions of its neighbors.
Given the popularity of this model we also adopt it for
modeling our profile-conformation process, and extend
it to multiple dimensions.

The Friedkin and Johnsen model has been used
in recent works by Bindel et al. [1] and by Gionis et
al. [7]. Bindel et al. focus on the price of anarchy in
terms of the tension achieved through local repeated
averaging and global opinion coordination. Gionis et
al. aim at identifying the set of nodes whose opinions
need to be changed so that the overall positive opinion
in the network is maximized. Although our work builds
upon Friedkin and Johnsen’s ideas to model the profiles
and their conformation process, none of the above-
mentioned works addresses the question of identifying
a subgraph with low social tension as we do.

3 Preliminaries

Throughout the paper we consider a social network G =
(V,E) where the nodes in V correspond to individuals
and the edges in E represent the interactions between
these individuals. For simplicity of exposition, we
present the case of an unweighted and undirected graph,
but the problem and algorithms we discuss can naturally
be extended to weighted and directed graphs.

The set of neighbors of node i in G is denoted
by NG(i). Given a subset of vertices U ⊆ V , we let
E(U) denote the set of edges of G induced by U , i.e.
E(U) = {(i, j) ∈ E, i, j ∈ U}, and G(U) denote the
corresponding induced subgraph G(U) = (U,E(U)).



3.1 Profiles. Evidently, each individual has their
own set of preferences (e.g. style, habits, biases, and
opinions). We refer to this personal set of preferences
as a profile. For now, let us assume that profiles
only reflect preferences regarding a single aspect (e.g.
working style), that is, profiles consist of a single
attribute. We assume that profile attribute values are
represented by a real number in the interval [0, 1] (e.g.
a value between 0 and 1 may represent an individual’s
preference towards a certain software tool).

The key characteristic of our model is that it
captures the interaction between the user profiles and
their social connections. This is done by assuming that
each individual i has a latent profile and a conformed
profile, denoted by xi and fi respectively. The latent
profile of an individual represents the individual’s own
true preference. However, individuals may choose not to
act in accordance with their latent profiles as they try to
minimize peer pressure by conforming their preferences
to those of their peers. The conformed profile represents
these adjusted preferences.

For simplicity, we first describe the model for single-
attribute profiles, but later on we discuss how to extend
it to multi-attribute profiles. We summarize the latent
and conformed profiles of all n individuals with respect
to a single attribute using vectors x and f respectively.

3.2 Measuring tension. Due to the underlying so-
cial structures and mechanisms, the conformed profile
fi of a node can differ from its latent profile xi. In such
case, the node will bear an inner tension caused by the
difference between its own latent and conformed pro-
files. On the other hand, the difference between the
node’s conformed profile and between the conformed
profiles of its neighbors will cause cross tension. Hence,
the total tension on node i is:

Ti(G,x, f) = (xi − fi)2 +
∑

j∈NG(i)

(fi − fj)2.

Then, the social tension of the network is simply the
sum of the individual tensions, defined as

T (G,x, f) =
∑
i∈V

Ti(G,x, f)

=
∑
i∈V

(
(xi − fi)2 +

∑
j∈NG(i)

(fi − fj)2
)
,(3.1)

which can alternatively be written as the sum of the
overall inner and cross tensions

T (G,x, f) =
∑
i∈V

(xi − fi)2 +
∑

(i,j)∈E

2 (fi − fj)2.

3.3 Conformation process. But how do nodes ar-
rive at their conformed profiles? Consider a repeated
averaging process where at each step each node adjusts
its conformed profile by setting it to the average of its
latent profile and the conformed profile of its neighbors.
Formally, denoting as fi(t) the conformed profile of node
i at step t, we have:

(3.2) fi(t+ 1) =
xi +

∑
j∈NG(i) fj(t)

1 + |NG(i)|
.

Computing the conformed profiles according to
the repeated averaging model is equivalent to choosing
fi to minimize Ti(G,x, f). That is, if each node
aims to minimize its tension, the repeated averaging
model provides an optimal choice for the conformed
profiles. In that sense, using the repeated averaging
model yields a Nash equilibrium for the tension, not
a social optimum [1].

A practical consideration is that in this model the
latent profiles are assumed to be known, while the
conformed profiles are the output of the conformation
process. But, in practice, we have access to the
conformed profiles while the latent profiles cannot be
observed. This, however, does not constitute a problem
for our model. One can swap the known and unknown
variables of the system and solve for the latent profiles,
given the conformed profiles and the original network.

The model adopted here for how conformed profiles
emerge is a well-studied opinion-formation and social-
influence model that has been introduced by sociolo-
gists [3, 5, 6]. In particular, the work of Friedkin et
al. [6] validates this model by conducting a set of con-
trolled experiments in which they observe how interac-
tions between individuals in small groups influence their
expressed opinions. The study demonstrates that the
repeated-averaging model can both predict the opin-
ions that individuals converge to, as well as the rate
of convergence. Others have studied the mathemati-
cal properties of this model. For instance, it has been
shown [1, 7] that the process converges in polynomial
time to a fixed-point solution. In fact, the final con-
formed profiles can be computed by a matrix inver-
sion [7], but actually repeating the averaging process
leads to much faster computation.

3.4 Multi-attribute profiles. Our assumption so
far has been that profiles reflect the preferences of
individuals with respect to a single attribute. But our
notion of latent and conformed profiles can be easily
extended to the case of multiple attributes, leading to
multi-attributes — i.e. multi-dimensional — profiles.
Assume there are m aspects or topics of interest, each
associated to an attribute. The latent and conformed



profiles can be simply extended from a single real
number to real-valued vectors of dimensionality m,
where each entry corresponds to one of the attributes.
We summarize the latent and conformed profiles of n
individuals on m attributes using n × m matrices X
and F respectively. Note that each column of these
matrices, denoted by xa and fa for a = 1, . . . ,m,
corresponds to a single attribute. In the multi-attribute
case, the conformed profiles can be computed as before
by applying Equation (3.2) in a column-wise fashion.
Similarly, the social tension T (G,X,F) is defined as the
sum of the social tensions across all m attributes.

4 The T -Comm problem

In this section, we introduce the T -Comm problem and
study its complexity.

At a high level, the T -Comm problem aims to find a
connected, low-tension community that involves a cho-
sen subset of members. Formally, this intuitive state-
ment is captured by the following problem definition:

Problem 1. (T -Comm) Given a network G = (V,E),
latent profiles X and a set of seed nodes Q ⊆ V , find
V ′ ⊆ V such that Q ⊆ V ′, the graph G′ induced by V ′

on G is connected and T (G′,X,F) is minimized, where
F is computed by the repeated averaging model on G′.

Note that when defining the T -Comm problem,
we assume that the social tension is computed as in
Equation (3.1), X is the matrix containing the latent
profiles of the nodes in V ′ and F contains the conformed
profiles of individuals, computed using the repeated
averaging model described in the previous section (see
Equation (3.2)) over the subgraph induced by V ′.

Given these assumptions, we can make the follow-
ing observations with respect to the requirements im-
posed on the solution of T -Comm: as the number of
edges in the resulting subgraph and the differences in
the conformed profiles across these edges decrease, so
does the social tension. In particular, the complete ab-
sence of edges results in no tension at all. However, the
requirement that the output subgraph should be con-
nected forbids such solutions.

From the application point of view, connectivity is
important as it guarantees communication among the
community members. One can see that minimizing ten-
sion and guaranteeing connectivity leads to an interest-
ing trade-off between the density of edges and the homo-
geneity of the profiles of nodes in the reported subgraph.
Communities should consist of individuals who share
similar profiles or individuals who have divergent pro-
files but are needed to guarantee connectivity, these lat-
ter ones being preferably very sparsely connected with
the rest of the community members.
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Figure 1: Schema of the constructed graph for the
reduction from X3C. The black and white nodes have
latent profiles with values 1 and 0 respectively.

With respect to the computational complexity of
the T -Comm problem, we obtain the following result.

Proposition 4.1. The T -Comm problem cannot be
solved optimally in polynomial time even with a single
attribute (i.e. m = 1) unless P = NP.

Proof. (Sketch) We prove the hardness of T -Comm with
a reduction from the problem of exact cover by 3-sets.

The exact cover by 3-sets problem, X3C for short,
asks the following question. Given a universe of ele-
ments B = {b1, . . . , bp}, where the number of elements
p is a multiple of 3, and a collection S = {s1, . . . , sq} of
3-elements subsets of B, is there a collection S′ ⊆ S such
that every element in B occurs in exactly one member
of S′?

Given an instance of the X3C problem, we con-
struct an instance of the T -Comm problem with one-
attribute profiles (i.e. m = 1) as follows. To each ele-
ment bi in B we associate a node, called an “element-
node”, with latent profile 0, and to each set sj in S we
associate a node, called a “set-node”, with latent pro-
file 1. Each set-node is connected to the three nodes
that represent the elements it contains. In addition, we
make all the q set-nodes part of a larger clique D of
o + q nodes with latent profiles equal to 1. Also, we
make each element-node bi part of a larger clique Ai
containing o nodes with latent profiles 0. Finally, we
assume that all the nodes in our construction are seed
nodes except for the q set-nodes. This construction is
illustrated in Figure 1.

We prove that if the given instance of X3C has an
exact 3-set cover, then the minimum tension subgraph
solution of T -Comm will contain the set-nodes of this
exact cover.

The main idea of the proof is based on the following
observation. Selecting a large (yet polynomial in p)
value for o, increases the size of all cliques in our
construction (i.e. clique D and all Ai cliques). As a



result, the conformed profile of all the nodes (including
the set-nodes) in D will be very close to 1, and the
conformed profiles of all nodes in the Ai cliques will be
very close to 0. Thus, the only non-negligible source
of tension will be the tension across the edges that
connect element-nodes to set-nodes. Each such edge
would increase the tension by almost a unit.

Note that since each bi is a seed node, it has to
be connected to the o seed nodes in D. This can be
achieved only by going through a set-node. Thus, the
solution to X3C has to pick a subset of set-nodes that
cover all the element-nodes to ensure connectivity. Now,
if x set-nodes are included in the subgraph then the
tension would be roughly 3x. Obviously, the solution
that minimizes the tension is the solution that picks
the smallest number of set-nodes. This is achieved by
selecting an exact cover, if such cover exists.

5 Algorithms for T -Comm
While the objective of the T -Comm problem is to
minimize the social tension in the solution graph,
T (G′,X,F), obtaining the conformed profiles through
the repeated-averaging process is costly; thus, it is not
feasible to compute the social tension on a large num-
ber of candidate subgraphs. A possible alternative
is to compute the conformed profiles by applying the
repeated-averaging process on the whole graph once and
use these profiles when evaluating the tension in the
candidates later on. However, while designing our al-
gorithms, we observed that this is a poor choice. Intu-
itively, the presence of a node with a latent profile that
departs greatly from its neighbors’ might significantly
sway their conformed profiles. During the search, this
node will likely be removed from the candidate set early
on, but its effect would remain.

In order to avoid such effects, but also avoid the
repeated computations of social tension we use the
following trick in all our algorithms: for a pair of
neighboring nodes i and j we assign to edge (i, j) ∈ E
weight wij = |xi − xj |. We then use this weight as a
way of quantifying the contribution of this edge in the
overall social tension. Although wij is just a proxy of the
edge’s contribution, the trick appears to perform well
in practice and leads to significant speedups. Once our
algorithms obtain the set of nodes to report, we apply
the repeated-averaging process on the induced subgraph
in order to evaluate the social tension of the solution.

We propose two approaches for finding good candi-
date solutions for this problem.

5.1 Spanning-tree approach. This approach con-
nects the seed nodes by building a spanning tree be-
tween them and is based on the 2-approximation algo-

Input: Network G = (V,E), latent profiles X, seed
nodes Q ⊆ V , path length function len()
Output: Community nodes V ′

1: H ← complete weighted graph over nodesetQ, such that
the weight of edge (i, j) is λ(i, j) = minp∈Pij len(p)

with Pij the set of paths in G between i and j
2: K ← minimum spanning tree of H
3: V ′ ← expand K by replacing edges by

their corresponding shortest path in G
4: return V ′

Figure 2: The CTree algorithm for solving T -Comm.

rithm for the Steiner tree problem [12]. It works as
follows: first, it computes the shortest path between ev-
ery pair of seed nodes. Next, it constructs a complete
graph over the seed nodes such that the weight of the
edge between two nodes corresponds to their shortest
path distance in the original graph. Then, it considers
the minimum-spanning tree from this complete graph,
e.g. obtained with Prim’s algorithm, and replaces each
edge of the spanning tree with the associated original
shortest path. The resulting subgraph constitutes the
output of our tree-based algorithm. A sketch of this al-
gorithm, called CTree, is shown in Figure 2. Note that
this approach, searching for the best spanning tree, lacks
any control over the induced edges that will be included
in the solution. In this sense, it is an optimistic strategy.

We obtain different variants of this algorithm de-
pending on the measure used to evaluate the length of
a path. Having experimented with various options, we
focus on two variants, where the length of the path is
either

(i) the number of edges involved, or

(ii) the sum of weights of the edges along the path.

In other words, if pij = (i, v1, v2, . . . , vk, j) is a path
between i and j, we have len(pij) = k + 1 in the first
variant, and len(pij) = wiv1 + wv1v2 + · · · + wvkj in
the other. We denote these variants as CTree(e) and
CTree(s) respectively.

The main step in our algorithm is the computation
of the shortest path between all pairs of seed nodes by
running the Dijkstra algorithm from each seed node
in turn. The running time of our algorithm is thus
O(|Q| (|V |+ |E| log |E|)).

5.2 Top-down approach. The second algorithm is
a top-down approach which starts with the full graph
and iteratively removes nodes until it is no longer
possible to continue without disconnecting the seed
nodes. The pseudo-code for this algorithm, which we
call CPeel, is given in Figure 3.

Again, we obtain different variants, this time by



Input: Network G = (V,E), latent profiles X, seed
nodes Q ⊆ V , node scoring function score()
Output: Community nodes V ′

1: V ′ ← ∅; K ← V
2: while K 6= ∅ do
3: v ← arg maxi∈K score(i, V ′ ∪K)
4: K ← K \ {v}
5: if Q is not disconnected in G(V ′ ∪K) then
6: K ← {i ∈ K, NG(V ′∪K)(i) 6= ∅}
7: else
8: V ′ ← V ′ ∪ {v}
9: return V ′

Figure 3: The CPeel algorithm for solving T -Comm.

varying the score() function for choosing the next node
to remove. We selected the following three scores:

(i) The score is a number assigned randomly to each
node when initializing the algorithm, which deter-
mines the order in which the nodes are peeled. This
random variant is denoted as CPeel(r).

(ii) The score is the sum of the weights of the remaining
edges adjacent to the node, i.e.

score(i, U) =
∑

j∈NG(U)(i)

wij .

(iii) The score is the largest weight among the remaining
edges adjacent to the node, i.e.

score(i, U) = max
j∈NG(U)(i)

wij .

The second and third scores are similar but the
former uses sum where the latter takes the maximum,
resulting in variants CPeel(s) and CPeel(m), respec-
tively. Nodes with larger scores are considered first
(line 3 in Figure 3). Meanwhile, in all three variants,
nodes that get isolated are pruned away (line 6). Rather
than favoring good connections, this second approach
removes nodes that might generate large costs, and thus
follows a pessimistic strategy.

In practice, we can find a minimum connecting tree
using the strategy described previously. Then, when we
are about to remove a node, we check whether it belongs
to the current tree, in which case we need to look for an
alternative tree that does not involve this node. Only
if such a tree can be found can we safely remove the
node. In the worst case, we would have to recompute
the spanning tree for each node, resulting in a running
time O(|V | (|V |+ |E| log |E|)).

6 Experiments

We now turn to the evaluation of the different variants
of our proposed algorithms, CTree and CPeel.
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Figure 4: Distribution of latent profile values, xi, over
nodes (top) and of squared weights, w2

ij , over edges
(bottom) for the ICDM network (eigenv. conferences).

We start by presenting the datasets used in this
evaluation. In our setting, each dataset consists of a net-
work together with latent profiles for the nodes. Hence,
we first introduce the networks, before explaining our
approach for obtaining latent profiles.

6.1 Networks. Of our collections of networks, two
consist of subgraphs extracted from the DBLP co-
authorship database,2 where vertices represent re-
searchers, and edges represent co-authorship relations.
Specifically, we extracted the ego-nets of radius 2 for
some selected high-profile computer scientists. The re-
sulting ego-nets form the collection denoted as DBLP.E2.
We also consider the subgraphs induced by researchers
who have published in the ICDM and KDD conferences,
respectively, constituting the DBLP.C collection.

Our third collection of networks consists of sub-
graphs extracted from the Internet Movie Data Base3

where vertices represent actors and edges connect actors
who played together in at least one movie. Specifically,
we constructed actor networks from this database by
considering some well-known directors and production
companies, such as Francis F. Coppola or the Warner
Bros. Entertainment Inc., and extracting the network
induced by their movies. The resulting networks form
the collection denoted as IMDB.

In our problem, we are looking for connected sub-
graphs. If the seed nodes in T -Comm belong to different
components, there is obviously no solution. Hence, in
our experiments we consider only the largest component
of each of the networks.

The statistics of a sample of the networks from these
three collections can be found in Table 1.

6.2 Profiles. Besides links, the co-authorship and
the co-acting networks contain additional information
which we exploit to derive structured profiles, as follows.

In the co-authorship networks, we associate nodes,
i.e. researchers, to the conferences in which they pub-
lished. We then turn this information into profiles by

2http://dblp.uni-trier.de/xml/
3http://www.imdb.com



considering the eigenvectors associated to the largest
eigenvalues of the incidence matrix of conferences to
nodes, scaled to the unit interval. Neighboring re-
searchers in these networks are collaborators who have
published papers together. Hence, they published in
some of the same conferences, and more generally share
similar research interest. Intuitively, they will therefore
be assigned similar profile values.

In the co-acting networks, we consider the genres
of the movies each actor played in and turn this in-
formation into profiles, once again by computing the
eigenvectors associated to the largest eigenvalues of the
obtained incidence matrices.

The distributions of latent profiles values (xi) over
nodes and of squared weights (w2

ij) over edges in the
ICDM network are shown in Figure 4.

6.3 Evaluation measures For a solution nodeset
V ′, our main evaluation measure is T (G(V ′),X,F) —
T (V ′) for short — the social tension in the subgraph in-
duced by V ′ with conformed profiles obtained by apply-
ing the repeated averaging process over that subgraph.

Two main properties contribute to a solution sub-
graph having a low social tension (see Equation (3.1)).
On one hand, finding a subgraph with few edges re-
sults in fewer terms in the sum. On the other hand,
finding a subgraph with low tension edges results in
small values in the sum. Thus, we compute two aux-
iliary values that provide insight into the nature of the
solutions obtained. Namely, for a solution V ′ we com-
pute the number of edges in the solution, |E(V ′)|, and
the average of the squared edge weights in the solution,
w2(V ′) = 1

|E(V ′)|
∑

(i,j)∈E(V ′) w
2
ij .

Solutions obtained for different seed sets are hardly
comparable. Thus, to make the evaluation possible,
we standardize the measured values before aggregating
them. Specifically, we use the number of edges in the
minimum spanning tree connecting the seed nodes, eb,
as a comparison basis (and lower bound) for the number
of edges in the solution subgraphs, and divide w2(V ′)
by the corresponding average over the whole graph.

Given a solution V ′, we take the following evalua-
tion measures, for which lower values are more desirable:

(i) the standardized social tension (main measure)

τ(V ′) = T (V ′)/(2eb · w2(V )),

(ii) the standardized solution size (auxiliary measure)

ε(V ′) = |E(V ′)| /eb, and

(iii) the standardized average edge weight (auxiliary
measure)

σ(V ′) = w2(V ′)/w2(V ).

6.4 Generating sets of seed nodes. For each
dataset, i.e. each pair of network and latent profiles,
we run each algorithm with a number of different sets
of seed nodes Q. Here we restrict ourselves to sets of
seven and four seed nodesfor the co-authorship networks
and the co-acting networks respectively, as representa-
tive scenarios for the community-search problem.

As we expect the distance between the nodes in
the seed set to have an impact on the behavior of the
algorithms, we want to sample seed sets across the range
of possible distances and to group them based on this
criterion. Thus, we generate a thousand seed sets and
look at the maximum pairwise distance within each
set. We then select at most 30 seed sets from the 10-
33%, 33-66%, and 66-90% percentiles of the distance
distribution. The resulting three groups of seed sets
are denoted as D1, D2 and D3, from tight seed sets to
more dispersed ones. Results in Figure 5 are presented
aggregated according to these distance groups.

6.5 Single-attribute and multi-attribute pro-
files. For each latent profile construction scheme, i.e.
whether derived from conferences or movie genres (see
Section 6.2), we can either consider the column vectors
separately, thereby obtaining several single-attribute
profiles, where each node is associated to a single pro-
file value, or consider the entire matrix at once thereby
obtaining one multi-attribute profile, where each node
is associated to a multi-attribute profile vector.

In our experiments, we take the first four columns
of the matrix as four separate single-attribute profiles
and the entire matrix as one multi-attribute profile (6
and 21 attributes for the DBLP and IMDB datasets, re-
spectively). Results for the C.Papadimitriou network,
for single-attribute (left) and multi-attribute (right) la-
tent profiles, are shown in Figure 5. We observe that
the algorithms that exploit the profiles of individuals
outperform the other two variants in (almost) all cases.

Recall that neither CTree(e) nor CPeel(r) con-
sider the profiles of individuals. All they can do is min-
imize the social tension by finding a small subgraph to
connect the seed nodes. Our results show that they are
indeed quite effective at minimizing the number of edges
in the reported solutions, typically achieving the lowest
values of ε(V ′) (middle column in each block of Fig-
ure 5). However, CTree(s), CPeel(m), and CPeel(s),
the profile-aware variants, find solutions with lower edge
weights, i.e. achieving lower values for σ(V ′) (right hand
side column), at the cost of including extra edges. This
gives them an advantage for minimizing social tension,
obtaining lower values for τ(V ′) (left hand side column).

This pattern clearly holds whether we consider
single-attribute or multi-attribute profiles.
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Figure 5: Results for the T -Comm problem on the C.Papadimitriou with single-attribute (left) and ten-attribute
(right) latent profiles derived from conferences.

Table 1: Average running times (in seconds) of the algorithms (± std. dev.) solving the T -Comm problem on
networks of varying number of vertices (|V |), edges (|E|) and average degree densities (δ).

Network |V | |E| δ CTree(e) CTree(s) CPeel(s) CPeel(m) CPeel(r)

IMDB WarnerBros 1970s 225 1 599 7.11 0.0 (±0.0) 0.1 (±0.0) 0.9 (±0.1) 0.7 (±0.1) 0.1 (±0.1)
IMDB F.F.Coppola 678 6 306 9.30 0.0 (±0.0) 0.7 (±0.1) 8.8 (±1.6) 6.4 (±1.2) 1.4 (±0.6)

DBLP.E2 E.Demaine 2 234 7 701 3.45 0.1 (±0.0) 2.8 (±0.3) 75.7 (±12.3) 60.9 (±13.0) 19.2 (±6.2)

DBLP.E2 C.Papadimitriou 2 613 9 472 3.62 0.1 (±0.0) 3.2 (±0.3) 114.6 (±20.0) 91.6 (±22.0) 31.6 (±9.6)
DBLP.C ICDM 2 795 10 280 3.68 0.2 (±0.0) 3.3 (±0.3) 163.9 (±28.1) 133.9 (±29.7) 38.9 (±11.2)

DBLP.C KDD 2 737 11 072 4.05 0.2 (±0.0) 3.5 (±0.2) 166.8 (±27.8) 136.7 (±28.1) 36.0 (±13.0)
DBLP.E2 P.Yu 4 596 13 250 2.88 0.2 (±0.0) 4.4 (±0.3) 291.3 (±56.3) 242.3 (±43.1) 68.6 (±20.5)

IMDB WarnerBros 2 111 32 166 15.24 0.3 (±0.1) 3.0 (±0.2) 139.1 (±19.7) 57.2 (±13.0) 22.8 (±9.1)

IMDB WB+Paramount+Fox 5 758 178 741 31.04 1.4 (±0.2) 15.4 (±1.0) 2192.3 (±346.6) 670.5 (±168.1) 281.6 (±101.6)

6.6 Comparison to finding dense communities.
In addition to our proposed algorithms, we also obtain
communities by applying the GreedyFast algorithm of
Sozio and Gionis [10], denoted here as Cocktail, on the
networks with the same sets of seed individuals. The
aim of this algorithm is to find a subgraph that con-
nects the seeds while maximizing the minimum degree
among selected nodes. This algorithm considers neither
profiles nor social tension; Nevertheless, we can com-
pute the tension of the community that consists of the
nodes returned as a solution and compare it to the com-
munities obtained with our algorithms. Furthermore,
Cocktail requires the user to set a value for the upper
bound on the size of the solution. We set this value to
k = 200, as it seems to result in reasonable runtimes
while allowing the algorithm to construct a solution in
most cases. The cases where the algorithm fails to re-
turn a solution are left out from our statistics.

On the C.Papadimitriou network the solutions
returned by Cocktail are comparable in size to those of
our CTree(s) algorithm (middle column in each block of

Figure 5). The quality of edges selected in its solutions
is on par with CTree(e) and CPeel(r) (right hand
side column), which are also oblivious to the profiles
of individuals. Expectedly, Cocktail appears poorly
suited for the task of finding low-tension communities.

6.7 Impact of other factors. Further investiga-
tions (details omitted) show variations in the perfor-
mance of the algorithms depending on the network
structure. Indeed, in a high density network, favoring
low tension paths as done by CTree(s) can result in
many more edges in the induced subgraph, yielding a
significantly higher social tension and actually hurting
the performance.

We also looked at the impact of the distribution
of profile values on the behavior of the algorithms. In
order to do so, we constructed random latent profiles
under different sampling distributions (e.g. uniform and
exponential). We could observe variations between the
different random distributions, but these differences
appeared to be limited when contrasted with the gap



that exists between random and eigenvector profiles.
Furthermore, while the profile-aware variants generally
tend to pick edges with lower tension at the cost of
involving more edges, as discussed earlier, this tendency
is more pronounced when handling eigenvector profiles
as compared to randomly distributed profiles.

We conclude from these observations that the distri-
bution of profile values has a limited impact compared
to the presence of structure in eigenvector profiles and
that the profile-aware variants are clearly suited to ex-
ploit this structure.

6.8 Running times. Indicative running times of the
algorithms on networks of varying sizes and densities,
with multi-attribute profiles are listed in Table 1. As
expected, the tree-based algorithms are significantly
faster than the top-down algorithms, up to two orders
of magnitude, and scale much better.

For a comparison between multi-attribute profiles
and single-attribute profiles, we look at the running
times on the ICDM network with single-attribute profiles:

CTree(e) CTree(s) CPeel(s) CPeel(m) CPeel(r)
0.2 (±0.0) 3.5 (±0.5) 147 (±26.6) 107 (±24.9) 37.0 (±12.1)

We observe that, also as expected, going from
single-attribute to multi-attribute profiles hardly has
any impact on the running times of our algorithms.

7 Conclusions

Problems related to community search have multiple
applications in online social media and collaboration
networks. In this paper, we add a new modeling angle
to this class of problems. The key characteristic of
our model is that each node of the social network is
not only characterized by its connections and its skills,
but also by its profile. These profiles, which change
dynamically through a conformation process, give rise
to social tension in the network. Given this model,
we define the T -Comm problem, where the goal is
to identify a set of connected individuals that define
a low-tension subgraph. Such a problem arises both
in social network and social media mining as well as
in human-resource management, where the goal is to
find a set of workers who are not only connected,
but also will have a potentially fluid collaboration.
The contributions of our paper include the formal
definition of this problem and the design of algorithms
for solving it effectively in practice. Our experimental
results with real data from social and collaboration
networks highlight the characteristic behavior of the
different algorithms variants and illustrate the effect
of network structure and profile distribution on the

algorithms’ relative performance. Finally, our work
enables future research combining subgraph mining
with dynamic processes occurring among the nodes.
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