
Noname manuscript No.
(will be inserted by the editor)

Overlapping community detection in labeled graphs

Esther Galbrun · Aristides Gionis ·
Nikolaj Tatti

Received: date / Accepted: date

Abstract We present a new approach for the problem of finding overlapping
communities in graphs and social networks. Our approach consists of a novel
problem definition and three accompanying algorithms. We are particularly
interested in graphs that have labels on their vertices, although our methods
are also applicable to graphs with no labels.

Our goal is to find k communities so that the total edge density over all k
communities is maximized. In the case of labeled graphs, we require that each
community is succinctly described by a set of labels. This requirement pro-
vides a better understanding for the discovered communities. The proposed
problem formulation leads to the discovery of vertex-overlapping and dense
communities that cover as many graph edges as possible. We capture these
properties with a simple objective function, which we solve by adapting effi-
cient approximation algorithms for the generalized maximum-coverage prob-
lem and the densest-subgraph problem. Our proposed algorithm is a generic
greedy scheme. We experiment with three variants of the scheme, obtained by
varying the greedy step of finding a dense subgraph.

We validate our algorithms by comparing with other state-of-the-art com-
munity-detection methods on a variety of performance measures. Our experi-
ments confirm that our algorithms achieve results of high quality in terms of
the reported measures, and are practical in terms of performance.

Esther Galbrun
Department of Computer Science, Boston University, MA USA
E-mail: galbrun@cs.bu.edu

Aristides Gionis · Nikolaj Tatti
Helsinki Institute for Information Technology (HIIT) and
Department of Information and Computer Science, Aalto University, Finland
E-mail: aristides.gionis@aalto.fi

Nikolaj Tatti
E-mail: nikolaj.tatti@aalto.fi

2 Esther Galbrun et al.

1 Introduction

As our ability to record and process large amounts of data is growing, datasets
increase not only in volume but also in richness and complexity. Reflecting this
increasing complexity, the simple graph model is often not adequate to cap-
ture many real-world network datasets. For example, for most social networks,
information is available not only about social connections but also about user
demographics, preferences, actions performed, and so on. Using attributes and
labels for the graph vertices and edges is a natural way to enrich the basic
graph data model and capture the additional available information.

Community discovery is one of the most widely-applicable approaches for
understanding the structure of networks and many community-detection meth-
ods are available. Most methods focus primarily on the graph structure, ignor-
ing other available information. They typically provide a partition of a given
graph into disjoint sets of vertices, each set representing a community. The
high-level objective is to partition the graph so that there are many edges
within communities and few edges across communities, and a large number of
different measures has been proposed in attempt to quantify this objective.

On the other hand, many community-detection methods fail to capture
(i) additional information, such as vertex and edge labels, and (ii) overlaps
among the graph vertices — detecting overlapping communities is desirable,
as in real-world situations each vertex may participate in more than one com-
munity. Our goal is to develop community-detection methods that overcome
these shortcomings. As we will discuss in our review of the related work, in
Section 5, these topics have been the study of other recent research.

Our problem formulation is briefly described as follows. We consider graphs
with labels on their vertices. Our model is motivated by social networks, where
vertex labels can be used to represent information about individuals, such
as occupation, hobbies, preferences, etc. The objective is to discover a set
of k communities, so that the total edge density over all k communities is
maximized. It is also required that each community is succinctly described by
a label set S, meaning that the label sets of all the vertices in the community
should satisfy a certain property.

Each vertex may belong to more than one community, yielding overlapping
communities, but each edge may belong to at most one community. Vertices
and edges may belong to no community at all — the motivation being that
we do not try to artificially force a vertex or an edge into a community. In-
stead, our k communities should explain as much of the graph as possible. An
illustration of our setting is shown in Fig. 1.

The constraint that each edge should belong to at most one community is
somewhat technical: if we aimed to maximize the total density of the k best
communities without this constraint, nothing would prevent us from selecting
k almost identical copies of the same (best) community. We would then need a
threshold of maximum allowed overlap. By requiring that each edge belongs to
at most one community, we circumvent the need for such a threshold while still
allowing vertex-overlapping communities. Interestingly, our constraint trans-

Overlapping community detection in labeled graphs 3

a,c,e

a,c,d
a,b,c

a,b

b,c

a,b,d

a,e

c,d,e
a,b,c

a,c,e

a,c,d
a,b,c

a,b

b,c

a,b,d

a,e

c,d,e
a,b,c

Fig. 1 (Left) Input multi-labeled graph. (Right) Two communities discovered, red and
blue, with label sets {a, c} and {b}. Vertices may belong to multiple communities, but each
edge is assigned to a single community. Note that not all vertices and all edges need to be
assigned to a community.

lates the density-maximization objective to an edge-coverage objective: the
problem becomes equivalent to covering the edges of the input graph with as
dense subgraphs as possible.

We also consider the case of non-labeled graphs. In that case, we want
to discover k communities with maximum total density. This special case is
important as it allows to apply our method to many readily available non-
labeled graphs. Furthermore, the solution we develop for the non-labeled case
is technically very interesting, and, in fact, we organize our presentation by
discussing in depth the non-labeled case. The solution we develop for the non-
labeled case directly motivates our algorithms for the labeled graphs.

From the technical side, we show that our problem can be mapped into
the generalized maximum-coverage problem, for which a greedy algorithm
with constant-factor approximation guarantee is available (Cohen and Katzir,
2008). The iterative step of the greedy selects the most cost-effective set, and
in our framework this operation translates to finding the densest subgraph. In
the case of non-labeled graphs, finding the densest subgraph is a polynomial-
time solvable problem, which can also be approximated within a factor of 1/2
by a linear-time algorithm (Charikar, 2000). Our solution is motivated by this
approximation algorithm. In the case of labeled graphs, we propose three al-
gorithms for finding dense subgraphs induced by label sets, which are used in
the inner loop of the greedy algorithm. For a simple case of our problem (pred-
icates over small-size label sets) we are able to obtain the same approximation
guarantee as the generalized maximum coverage problem.

Our contributions are summarized as follows:

– We propose a new approach for the problem of finding communities in
multi-labeled graphs, namely, finding dense overlapping communities that
can be succinctly described by label sets.

– We show how to map our community-discovery problem into the general-
ized maximum-coverage problem (Cohen and Katzir, 2008). Our solution
consists of a greedy scheme with three variants for the case of labeled
graphs.

4 Esther Galbrun et al.

– We present a comprehensive empirical evaluation contrasting our algo-
rithms against a variety of state-of-the-art community-detection methods.
We show that all three proposed variants achieve results of high quality.

The rest of the paper is organized as follows. In Sections 2 and 3 we in-
troduce our notation and define our problem, respectively, while in Section 4
we present our algorithms. We discuss the related work in Section 5, and we
present our empirical evaluation in Section 6. We conclude in Section 7.

2 Notation

We consider a multi-labeled graph G = (V,E, `), where V is a set of vertices
and E is a set of undirected edges. Labels are associated with the vertices
of the graph. We use L to denote the ground set of all possible labels. The
function ` : V → 2L is a mapping from vertices to subsets of L, i.e. `(v) is the
set of labels associated with vertex v. Our goal is to discover tightly-connected
communities in the input graph G. To make our problem definition precise we
now introduce some notation.

First, given a subset of vertices U ⊆ V , we write E(U) for the set of edges
of G induced by U , that is, E(U) = {(x, y) ∈ E | x, y ∈ U} . We will work with
subgraphs involving a subset of the edges of a full induced subgraph. Namely,
we consider subgraphs H = (U,F) with F ⊆ E(U). In other words, while it
contains all the vertices in U , H need not contain all the edges induced by it.
This is because in our problem, each edge is assigned to at most one subgraph.
Thus, for a subgraph H = (U,F), some edges in E(U) might not be in F but
be assigned to some other subgraph H ′ instead. The optimal assignment of
edges to subgraphs is dictated by our objective function.

Given a subgraph H = (U,F) of the input graph G, we define a reward
function r(H) to capture the quality of H as a potential community to be
output. Perfect cliques are ideal communities. However, in real datasets one
cannot expect to find such perfect cliques. Thus, one should be able to cope
with noise and look for dense subgraphs. Consequently, we define the reward
function to be the density of the subgraph H = (U,F), i.e.

r(H) = d(H) =
2|F |
|U |

. (1)

The density function d(H) is equal to the average degree of H. An alternative

density measure is d ′(H) = 2|F |
|U |(|U |−1) , taking values between 0 and 1, where

1 indicates a perfect clique. However, this latter measure does not distinguish
between cliques of different sizes, and we use the d measure instead.

We aim to find communities that are not only dense subgraphs, but that
can also be described compactly by a set of labels from L. Combining require-
ments of density of the subgraph and of compactness of the representation
by labels leads to better understand the graph structure. We now describe in
detail how to use labels in order to define communities.

Overlapping community detection in labeled graphs 5

We first consider 0–1 predicate functions p : V × 2L → {0, 1} that for each
vertex v ∈ V and each set of labels S ⊆ L specify whether a certain property
holds between the label set `(v) and S. Examples of such predicates include:
– Disjunctive: dis(v, S) = 1 if S ∩ `(v) 6= ∅ and 0 otherwise,

– Majority: maj(v, S) = 1 if |S∩`(v)||S| > 1
2 and 0 otherwise,

– Conjunctive: con(v, S) = 1 if S ⊆ `(v) and 0 otherwise.
Then, a predicate p and a label set S together define a subset of satisfying

vertices: p(S) = {v ∈ V | p(v, S) = 1}. The subset of vertices p(S) that satisfy
predicate p is used in the definition of a label-induced-subgraph.

Definition 1 (label-induced-subgraph) LetG = (V,E, `) be a multi-labeled
graph over a label set L, and let S ⊆ L be a set of labels. Let also U ⊆ V and
F ⊆ E. We say that H = (U,F) is a label-induced-subgraph if the following
two properties hold

(i) U = p(S), i.e. U is precisely the subset of vertices that satisfy property p;
(ii) F ⊆ E(p(S)), i.e. the edges of H are a subset of the edges induced by p(S).

Note that our definition does not prohibit a label-induced-subgraph from
being disconnected. We indeed allow disconnected subgraphs, but such graphs
are naturally penalized by the density reward function. In applications where
disconnected subgraphs are not desirable, connectivity constraints can be in-
tegrated very easily with our approach.

3 Problem definition

We are now ready to formally define our problem, which we name CoDeL for
community detection in labeled graphs.

Problem 1 (CoDeL) Let G = (V,E, `) be a multi-labeled graph over a set
of labels L, let p be a 0–1 predicate over graph vertices and label sets, and let
k be a budget parameter. The goal is to find k sets of labels S1, . . . , Sk ⊆ L,
and k disjoint sets of edges F1, . . . , Fk ⊆ E, so that

(i) each Hi = (p(Si) , Fi) is a label-induced-subgraph, and
(ii) the sum of densities over all the subgraphs Hi

d(H1, . . . ,Hk) =

k∑
i=1

d(Hi) (2)

is maximized. �

The objective stated in Problem 1 is to identify k subgraphs H1, . . . ,Hk in
the multi-labeled graph G so that (i) each subgraph Hi is associated with a
set of labels Si, (ii) each edge of the input graph G is assigned to at most one
subgraph Hi, and (iii) the sum of densities of the subgraphs Hi is maximized.
Thus, we aim at finding a set of dense communities, each described by a set
of labels.

6 Esther Galbrun et al.

We point out that Problem 1 can be interpreted as an edge-coverage prob-
lem. Indeed, an edge (u, v) assigned to a subgraph Hi = (p(Si) , Fi) with
|p(Si) | = ni vertices contributes exactly 2

ni
to the objective function (2). Since

each edge contributes to at most one subgraph, maximizing d(H1, . . . ,Hk) can
be seen as a problem of covering the edges of G with subgraphs.

Notice also that by requiring that each edge is assigned to at most one
subgraph, we penalize solutions consisting of nearly identical subgraphs: high-
score solutions should cover different parts (edges) of the input graph. On the
other hand, our approach allows communities with overlapping vertices. This
penalization is needed, otherwise the optimal answer would consists of a single
optimal community repeated multiple times. As an alternative approach, one
can define a similarity function between the communities and require that the
communities should be significantly dissimilar. As a downside, this approach
would require to define a similarity between the communities and also provide
the threshold.

4 Algorithms

To set up the stage we first define a version of Problem 1 for non-labeled
graphs, and present a greedy algorithm for that problem. Considering the case
of non-labeled graphs not only simplifies the exposition of the algorithms for
the labeled case, but it is also instructive and interesting in its own sake.

We then proceed to the case of labeled graphs. We present three algorithms
which follow the same greedy approach and differ only in the inner loop of the
greedy step.

4.1 Interlude: non-labeled graphs

We consider the overlapping community-detection problem for non-labeled
graphs. As before, we want to identify subgraphs H1, . . . ,Hk in the input
graph G = (V,E). Each subgraph Hi is specified by a set of vertices Ui and a
set of edges Fi, which is a subset of the edges induced by Ui, i.e. Fi ⊆ E(Ui).

Problem 2 (CoDe) Consider a graph G = (V,E) and a budget parameter k.
The goal is to find k disjoint sets of edges F1, . . . , Fk ⊆ E, and correspond-
ing subgraphs Hi = (Ui, Fi), so that the sum of densities d(H1, . . . ,Hk) =∑k

i=1 d(Hi) is maximized. �

Our algorithm for Problem 2 relies on an approximation algorithm for the
generalized maximum-coverage problem (GMC) (Cohen and Katzir, 2008),
coupled with an approximation algorithm for the densest-subgraph problem
(DS) (Charikar, 2000). We first present the generalized maximum-coverage
problem (GMC), as defined by Cohen and Katzir.

Overlapping community detection in labeled graphs 7

Problem 3 (GMC) We are given a set of elements E, a collection of bins B,
and a budget k. For each bin b ∈ B, each element e ∈ E has a positive reward
r(b, e) and a non-negative weight w(b, e). In addition, each bin b ∈ B has a
weight w(b) denoting the cost of using that bin. The objective of the GMC
problem is to find a set of bins and an assignment of elements to bins in order
to maximize the total reward. In particular, a solution to the GMC problem
is a triple C = (X,Y, f), where X ⊆ E, Y ⊆ B, and f is an assignment from
X to Y . The total reward r and total weight w of a solution C are

r(C) =
∑
e∈X

r(f (e) , e) and w(C) =
∑
b∈Y

w(b) +
∑
e∈X

w(f (e) , e) . (3)

The goal is to find C in order to maximize r(C) subject to w(C) ≤ k. �

Observation 1 The CoDe problem is an instance of the GMC problem.

Proof Consider an input graph G = (V,E). In order to map CoDe into GMC,
we define the elements of E to be the edges of G, and the set of bins B to be
the set of all possible subgraphs of G. Given a subgraph H = (U,F), we define
the reward of an edge e to be r(H, e) = 2

|U | . Also, we define w(H, e) = 0 if

e ∈ F , and finally we define w(H, e) =∞ for e /∈ F to make sure that in this
case e is never included in the corresponding bin. Finally, we define w(H) = 1.

Under this construction, the weight of C in GMC is equal to the number
of subgraphs. The budget k corresponds to the number of subgraphs allowed
and the total reward is equal to the density d(H1, . . . ,Hk). �

Observation 1 implies that an approximation algorithm for the GMC al-
gorithm gives an approximation algorithm for the CoDe problem.

Cohen and Katzir provide a greedy algorithm for GMC with approxima-
tion guarantee (e−1

2e−1 − ε) for every ε > 0.1 Since Observation 1 establishes
that CoDe is a special case of the GMC problem, one could näıvely claim
that the approximation guarantee for the GMC problem carries over to the
CoDe problem. This is not the case, however, because the transformation
from CoDe to GMC is not polynomial: The set of all possible subgraphs can
be exponential to the input size.

Since the approximation algorithm for the GMC problem is a greedy al-
gorithm, one could potentially overcome the difficulty of having to consider
an exponential number of bins. Indeed, for executing a greedy algorithm, it is
not necessary to have enumerated all candidate bins (in this case, subgraphs)
in advance. It suffices to be able to find the best bin in each iteration of the
greedy algorithm. Unfortunately, as we will see, this is a hard problem. In or-
der to understand the problem better, and in order to motivate our suggested
algorithm, we first describe briefly the greedy algorithm of Cohen and Katzir.

Approximation algorithm for GMC. The algorithm is a variant of the
greedy algorithm for the max k-cover problem: Select k bins one by one. In

1 Cohen and Katzir express their approximation factor as (2e−1
e−1

+ ε), for every ε > 0, but

we follow the convention that maximization problems have approx. factors less than 1.

8 Esther Galbrun et al.

the i-th iteration, select the bin yielding the highest ratio, where the ratio is
defined as the ratio of total reward over total weight.

Compared with the standard greedy max k-cover algorithm, the differ-
ence of the greedy GMC algorithm arises from the requested mapping of edges
to a unique bin. To determine this mapping, the GMC greedy relies on the
concept of residuals.

Residual rewards of elements are defined as follows. Assume that the cur-
rent solution is (X,Y, f). That is, element e ∈ X is assigned to some selected
bin f (e) ∈ Y , contributing reward r(f (e) , e). In a later iteration, we con-
sider another bin b′ 6∈ Y . The residual reward of element e for reassignment
f ′(e) = b′ is the change in reward that would result from reassigning e to b′,
equal to r(f ′(e) , e) − r(f (e) , e). Intuitively, a positive residual reward indi-
cates that such reassignment would increase the overall reward, improving the
solution. The residual reward of an element that has not yet been assigned is
defined in a natural way as its original reward.

Residual weights of elements are defined similarly. The residual weight of
a bin b is equal to 0 if the bin is part of the current solution, i.e. if b ∈ Y , and
equal to its original weight otherwise.

Now, given the current solution, the residual ratio obtained by selecting a
new bin b′ and resetting the edges assignment to f ′ is the ratio of total rewards
to total weights as defined in Equation (3), but considering residual rewards
and weights in place of the originals.

Then, the greedy algorithm for GMC is the standard greedy algorithm for
max k-cover, with the difference that in each iteration the bin yielding the
highest residual ratio is selected.

Connection with the densest-subgraph problem. Assume for a moment
that the greedy GMC algorithm selects the bin yielding the highest ratio
(instead of residual ratio) and let us examine the corresponding sub-problem
in the context of CoDe. According to our mapping from CoDe to GMC in
the proof of Observation 1, we need to pick a subgraph Hi = (Ui, Fi) that

maximizes the ratio d(Hi) = 2|Fi|
|Ui| . In fact, this is a well-studied problem,

known as the densest-subgraph problem (DS).

Problem 4 (DS) Given a graphG = (V,E), find the subset of vertices U ⊆ V
that maximizes the density function d(U,E(U)) = 2|E(U)|

|U | . �

Although many variants of dense-subgraph problems are NP-hard, DS
can be solved exactly in polynomial time. Furthermore, there is a linear-time
factor-1/2 approximation algorithm (Asahiro et al, 2000; Charikar, 2000),
which works as follows. Start with the whole graph and until left with an
empty graph, iteratively remove the vertex with the lowest degree (breaking
ties arbitrarily) and all its incident edges. Among all subgraphs considered
during this vertex-removal process, return the one with the maximum density.

Greedy algorithm for CoDe. A first attempt to adapt the GMC greedy
algorithm to the CoDe problem would be the following algorithm: Select k
subgraphs iteratively, where the i-th subgraph Hi is found by the linear-time

Overlapping community detection in labeled graphs 9

Algorithm 1: The Dense algorithm

Input: Graph G = (V,E); budget k
Output: Subgraphs H1, . . . , Hk, with Hi = (Ui, Fi)

1 W ← E; C ← ∅ // Uncovered and covered edges

2 for i← 1 to k do
// Get densest subgraph with residuals

3 Hi = (Ui, Fi)← ResidualDensest(V,W,C, f)
4 W ←W \ Fi; C ← C ∪ Fi // Update uncovered and covered edges

5 for all e ∈ Fi do
6 f (e)← i // Update assignment of edges to Hi

7 end

8 end
9 Return H1, . . . , Hk

densest-subgraph algorithm. For the densest subgraph found, remove its edges
from the input graph, and proceed to the (i+ 1)-th step.

The problem with the above algorithm is that it does not account for the
opportunity to reassign edges. Assume that an edge e ∈ E is assigned to
some subgraph Hi with ni vertices, contributing 2

ni
to the objective function.

At a later step, e might appear in some other subgraph Hj with nj < ni

vertices. Then, edge e has a positive residual reward, 2
nj
− 2

ni
, meaning that

its contribution would increase if reassigned to Hj . Thus, subgraph densities
should be computed using residuals and reassigning edges when advantageous.

Unfortunately, unlike the densest-subgraph problem, finding the densest
subgraph when considering residuals as defined here is an NP-hard problem.
We give the precise definition and the proof of this claim in the appendix.

Nevertheless, the above discussion motivates our proposed algorithm, which
works as follows. Select iteratively k subgraphs. Let Hi be the subgraph se-
lected in the i-th step, which has ni vertices. All edges assigned to Hi are
tentatively removed. However, during the j-th iteration, previously removed
edges might be considered again when the size of the subgraph constructed
in the execution of Charikar’s algorithm drops below the size of the subgraph
they are currently assigned to. That is, when the number of vertices remaining
in the candidate subgraph becomes nc, we reinsert edges from any previously
selected subgraph Hi such that ni > nc. Edges contributing to the candidate
selected as Hj are assigned to it, including those that have been reinserted dur-
ing its construction. This reinsertion and reassignment process captures the
notion of the residual density, required by the GMC algorithm. Pseudocode
for the algorithm, named Dense, is given in Algorithms 1 and 2.

4.2 Finding dense labeled communities

Equipped with the methodology to solve CoDe, we now study the problem
for labeled graphs (CoDeL).

We start by pointing out that the CoDeL problem can be solved with
the approximation guarantee provided by the GMC greedy algorithm for all

10 Esther Galbrun et al.

Algorithm 2: The ResidualDensest algorithm
Input: Set of vertices V ; uncovered edges W ; covered edges C; edge assignment f
Output: Dense subgraph H

1 X ← V ; R←W // Set of vertices and of uncovered edges

2 for j ← |X| down to 1 do
3 u← minDegree(X,R) // Get the min degree vertex u on the graph(X,R)
4 X ← X \ {u}; R← R \ {(u, z) ∈ R} // Remove u and all its incident edges

// Reinsert edges e from subgraphs with more vertices than the current

candidate and having both endpoints in X

5 R← R ∪
{
{e ∈ C |

∣∣Vf (e)∣∣ > |X|} ∩X ×X}
6 Hj ← (X,R)

7 end
// Among all subgraphs considered in the previous iteration, return the

one with the highest density

8 H ← arg maxHj
d(Hj)

9 Return H

predicates that define a polynomial number of subgraphs, as this allows us to
perform a single greedy step in a polynomial time. In particular, consider the
predicate which holds true if and only if S is a singleton {z} with z ∈ `(v),
that is, the equivalent restriction to singleton label sets of the three predicates
presented in Section 3. Such a predicate generates at most |L| subgraphs.
Hence, we can run the GMC greedy algorithm in polynomial time and obtain
an approximation guarantee of (e−1

2e−1 − ε).

Next, we discuss predicates that may produce an exponential number of
subgraphs. In this work, we focus on conjunctive predicates. We have also ex-
perimented with the majority predicate. The results obtained are very similar
and we omit the discussion in the interest of conciseness.

We propose three algorithms, all based on the greedy approach discussed
above. The underlying idea is that when searching for the densest subgraph in
the iterative greedy step, instead of considering any dense subgraph, we only
consider dense subgraphs that are specified by a label set S. In other words, we
start with Dense and replace the subroutine call ResidualDensest with a routine
that searches dense subgraphs specified by the labels. The three algorithms
differ on how to search for a dense subgraph specified by a label set S. As we
will see, they use entirely different strategies.

Algorithm LDense: Greedy on labels. The first algorithm is inspired by
Charikar’s algorithm for finding densest subgraphs. The difference is that it
uses labels to guide the “peeling off” process. In particular, the algorithm
removes vertices while maintaining the invariant that at each time there is a
label set that specifies the current subgraph.

Specifically, we start with an empty label set S = ∅ and the corresponding
vertex set X0, containing all the vertices. At the ith step we find a label l such
that the corresponding vertex set, con(S ∪ {l}), has the highest density. Once
this is done, we update S and compute the corresponding vertex set, Xi. We

Overlapping community detection in labeled graphs 11

continue until Xi is empty. (Note that adding a new label into S will never
increase the size of Xi.) We then choose the densest subgraph among all Xi.

Algorithm Spectral: Spectral ordering on labels. If we could enumerate
all 2|L| possible label sets, it would be possible to run the greedy with exact
sets. Obviously, not all possible label sets give meaningful subgraphs — for
instance, most label sets give empty subgraphs. In order to reduce the search
space while keeping potentially good label sets we apply the spectral seriation
method of Atkins et al (1998).

This is done by first forming a similarity matrix M between labels: The
similarity score M [l, l′] between labels l and l′ is equal to the Jaccard coefficient
of the sets of vertices that contain label l and that contain label l′. Next, we
form the Laplacian of M and order the labels according to the Fielder vector.

We then consider all label sets that correspond to continuous intervals in
the above ordering. In the worst case we can have |L|2 such label sets. In
practice, however, we obtain much fewer, as only small-sized label sets give
non-empty subgraphs.

Algorithm Pivot: Subgraphs pivoted by graph vertices. The third al-
gorithm is inspired by methods that build communities around pivot nodes.
For instance, in a recent work by Gupta et al (2014), the authors prove that
a social network can be decomposed into dense communities, which are balls
of radius 2, centered on pivot vertices.

The Pivot algorithm is an instantiation of the greedy with |V | subgraphs,
one for each vertex in V as a pivot. In particular, for each v ∈ V , a subgraph
is formed as follows. First all distance-1 neighbors N1(v) of v are included
in the subgraph. Next, each distance-2 neighbor of v is considered and it is
included in the subgraph if at least half of its neighbors are in the set N1(v).
We then find a label set Sv that best describes the resulting set of vertices.
The label set Sv is constructed in a greedy way, starting from the empty set
and adding the best label at each step. Finally, the candidate set of vertices is
refined by adding all vertices that satisfy the predicate with Sv and removing
those vertices that do not satisfy it.

5 Related work

Community detection is one of the most studied problems in social-network
analysis, and a wealth of methods is available. Our review here can by no means
be complete; a thorough survey has been produced by Fortunato (2010).

Graph partitioning and disjoint community detection. The majority
of the works deal with the problem of partitioning a graph into disjoint com-
munities. A number of different methodologies have been applied, such as
hierarchical approaches (Girvan and Newman, 2002), methods based on mod-
ularity maximization (Clauset et al, 2004; Girvan and Newman, 2002; White
and Smyth, 2005), graph-theoretic approaches (Flake et al, 2000), random-
walk methods (Pons and Latapy, 2006; van Dongen, 2000; Zhou and Lipowsky,

12 Esther Galbrun et al.

2004), label-propagation approaches (van Dongen, 2000), and spectral graph
partitioning (Karypis and Kumar, 1998; Ng et al, 2001; von Luxburg, 2007).
The above line of research is very different from our work, since we do not aim
to partition the graph in disjoint communities, and since our technique is able
to handle additional attribute information on the graph vertices.

Overlapping community detection. Researchers in community detection
have realized that in many situations it is meaningful to search for overlapping
communities. Different methods have been proposed to address this problem,
relying on clique percolation (Palla et al, 2005), extensions to the modularity-
based approaches (Gregory, 2007; Pinney and Westhead, 2006), analysis of ego-
networks (Coscia et al, 2012), game-theoretic approaches (Chen et al, 2010),
non-negative matrix factorization (Yang and Leskovec, 2013) or edge cluster-
ing (Ahn et al, 2010). A comprehensive survey on the topic of overlapping
community detection has been compiled by Xie et al (2011). Our problem for-
mulation makes many novel contributions, with respect to existing work. First,
we offer a new combinatorial objective function that aims at partitioning the
graph into vertex-overlapping dense subgraphs, while asking to cover as many
edges as possible. Second, our approach combines graph structure and vertex
labels. As a result, we are able to find communities that not only are dense,
but also can be succinctly expressed by a set of labels.

Graphs with label information. Although most methods tend to iden-
tify communities using only the graph structure, a number of recent works
attempt to combine graph structure with label information. Most of them fol-
low a probabilistic-modeling approach. Balasubramanyan and Cohen (2011)
present a model that combines aspects of mixed membership stochastic block
models and topic models. Their method improves entity-entity link modeling
by jointly modeling links and text about the entities that are linked. In this
paper we address a similar problem, following a combinatorial approach. The
major differences are identified on how the underlying communities are de-
fined, but also on the techniques used to discover them. Comparative results
with the method of Balasubramanyan and Cohen (2011) are included in our
experimental evaluation.

McAuley and Leskovec (2012) formulate the problem of automatically iden-
tifying social circles in user ego-networks. Their model combines network struc-
ture and user profile information, and the approach is based on inferring the
parameters of a generative model. Although the problem defined by McAuley
and Leskovec (2012) has similar goals as the problem we study in this paper,
our experimentation showed that their algorithm performed poorly, both in
terms of quality (on the measures we compute), as well as in terms of efficiency
(as also remarked by its authors). Thus we do not include the results in this
version of our paper.

Descriptive Community Mining was recently introduced by Pool et al
(2014) as the problem of mining dense subgraphs that can be described suc-
cinctly using vertex labels, specifically disjunctions of (possibly negated) con-
junctions. The algorithm proposed by Pool et al. alternates between maximiz-

Overlapping community detection in labeled graphs 13

ing the density of the candidate communities and finding more concise label
queries to describe them. Despite the similar problem description, our work
differs in some important aspects. In particular, Pool et al. rely on a different
measure of density, they adopt a broader description language and use a differ-
ent strategy for constructing the communities. Results and further discussion
of this method are included in our experimental evaluation.

6 Experiments

We evaluate our proposed algorithms, LDense, Pivot and Spectral, by compar-
ing them against a number of baselines on many real-world social networks.

6.1 Datasets

DBLP: The first dataset is the DBLP co-authorship network.2 Vertices repre-
sent researchers, and edges represent the co-authorship relations. Vertex labels
represent keywords, extracted from the paper titles in the following way. For
each researcher we consider the multi-bag of terms in the titles of his papers.
The terms are stemmed and stop-words as well as terms that occur with more
than 60% of the authors are removed. For each researcher, we keep the labels
whose occurrence count is higher than one percent of the total volume of labels
for that researcher.

From the resulting co-authorship network we extract smaller instances.
First, we consider some ego-net graphs. We start with 13 high-profile com-
puter scientists,3 and consider their ego-nets of radius 2. We collectively refer
to this collection of ego-nets as DBLP.E2. Second, we consider the subgraphs in-
duced by researchers who have published in the ICDM and KDD conferences,
respectively, giving rise to two networks that form the DBLP.C dataset.

G+: The next datasets consist of Google+ ego-nets, kindly distributed via the
Stanford network analysis project.4 This dataset is collected from Google+
users who have shared their circles. We consider two subsets of these networks.
The first one, G+.S, contains relatively small ego-nets, that is, graphs with
fewer than 42 000 edges and less 300 distinct labels, while the second, G+.L,
contains ego-nets with larger numbers of edges and of distinct labels.

FB: This dataset consists of a collection of friend lists from Facebook also made
available by the Stanford network analysis project. Vertex labels represent
anonymized user attributes. For instance, an attribute “political=Democratic
Party” may be anonymized to “political=anonymized feature 1.” Overall,
there are 10 ego-nets in FB.

2 http://dblp.uni-trier.de/xml/
3 Namely, S. Abiteboul, E. Demaine, M. Ester, C. Faloutsos, J. Han, G. Karypis, J.

Kleinberg, H. Mannila, K. Mehlhorn, C. Papadimitriou, B. Shneiderman, G. Weikum and
P. Yu.

4 http://snap.stanford.edu

14 Esther Galbrun et al.

Table 1 Datasets statistics. For each dataset, we indicate how many graphs it consists of
(#G), the average number of edges (|E|), vertices (|V |) and labels (|L|), the average density
(d(G)) and average number of labels per vertex (|`(v)|) across all graphs in the collection.

Collection #G |E| |V | |L| d(G) |`(v)|

DBLP 1 3 461 697 929 937 92 165 7.45 16.54
DBLP.E2 13 6 436 2 197 1 524 5.68 23.32
DBLP.C 2 10 949 3 016 1 365 7.28 14.81
G+.S 43 12 954 472 114 47.31 2.38
G+.L 34 142 139 2 302 506 126.84 3.53
FB 10 8 509 409 223 28.62 6.71
Lastfm 1 12 717 1 892 2 910 13.44 7.30

Lastfm: Finally, our last dataset is a single social network of users from the
Last.fm online music system,5 available on the GroupLens web page.6

Statistics on all datasets are provided in Table 1.

6.2 Compared algorithms

The methods proposed here aim to discover communities by exploiting both
the vertex labels and the graph structure. Our comparison includes representa-
tives from either end of the spectrum, that is, algorithms using only the vertex
labels or only the graph structure. It further includes two recently proposed
algorithms that utilize both sources of information.

DBP: This Boolean matrix-factorization algorithm, suggested by Miettinen
et al (2008), decomposes the (vertex× label) matrix and uses the resulting
basis vectors to obtain overlapping communities over the graph vertices. It
uses only vertex labels and not the graph structure.

Links: The algorithm of Ahn et al (2010) discovers overlapping communities
by performing a hierarchical clustering on the edges rather than the vertices
of the input graph. Links uses only the graph structure and not vertex labels.

Dense: The greedy algorithm discussed in Section 4 for the CoDe problem. It
also uses only the graph structure and not vertex labels.

Block-LDA: Balasubramanyan and Cohen (2011) combine Mixed Membership
Stochastic Block models (MMSB) with Latent Dirichelet Allocation (LDA)
into a unified model that can be applied to labeled graphs to infer soft-
membership of vertices in communities. Thresholding this output then yields
hard membership in possibly overlapping communities.

DCM: The algorithm of Pool et al (2014) mines dense subgraphs that can be
described succinctly using vertex labels.

LDense, Pivot, and Spectral: These are the three algorithms proposed in this
paper, presented in Section 4. They use both the graph structure and the
vertex labels to identify overlapping communities, as do Block-LDA and DCM.

5 http://www.lastfm.com
6 http://grouplens.org/datasets/hetrec-2011/

Overlapping community detection in labeled graphs 15

We experimented with a number of additional baselines, but for clarity
we focus on the most similar and best performing algorithms. Specifically,
the Metis algorithm of Karypis and Kumar (1998), and the algorithm of Yan
and Gregory (2009) both return a complete partition of the vertices, i.e., they
do not allow overlaps, making them less comparable, while the algorithms
proposed by Gregory (2007) and by McAuley and Leskovec (2012) completed
only on the smallest datasets. The latter method performed rather poorly
with respect to our objectives, obtaining very large vertex overlaps (11.87 and
11.96 for G+.S and FB, respectively), low densities (2.36 and 1.96, resp.) and
low label specificities (0.19 and 0.42, resp.), indicating that the goal pursued
in this approach is fundamentally different from ours.

Our algorithms are implemented in Python. The code and the datasets are
publicly available online.7 For the other algorithms we experimented with, we
used implementations provided by their authors. All experiments, except the
ones with DCM, were run on a single core of an 8-core Intel Xeon 2.8 GHz pro-
cessor with 32 GB of memory and a Linux OS. The experiments with DCM were
executed on a 2-core Intel P6200 with 4 GB of memory and a Windows OS.

6.3 Measures and evaluation methodology

The algorithms used in our empirical evaluation are all very different: First,
they optimize different criteria. Second, some algorithms take into account
vertex labels, while others ignore them. Thus, comparing all these algorithms
is tricky, and one has to be very careful with conclusions.

Our evaluation philosophy is to be as comprehensive as possible. We opt for
computing a large number of measures that reflect the different characteristics
of all the algorithms, and reveal trade-offs. We follow this approach because
our proposed algorithms optimize a measure that has not been considered
before, and thus we want to contrast this measure with different measures
considered by other state-of-the-art algorithms.

The reason why we decided to experiment with algorithms that use only the
graph structure or only the vertex labels, and thus, are not directly comparable
with our methods, is to explore different angles of the trade-off between the
reported measures. For example, Links and Dense, which use only the graph
structure and not labels, are expected to give subgraphs that are very dense
but not focused in terms of vertex labels. Our algorithms, as well as Block-LDA
and DCM, are not expected to give as dense subgraphs as Links and Dense since
they enforce constraints on the labels of vertices participating in subgraphs.
As we will see, the results we obtain confirm this intuition.

The measures that we compute for all tested algorithms are the following.

1. ls: The label specificity measures the extent to which a discovered commu-
nity can be described by a given set of labels. Given a vertex set U ⊆ V and
a label set S, we compute the Jaccard coefficient J(U, p(S)), where p(S) is

7 http://www.cs.helsinki.fi/u/galbrun/misc/lic/

16 Esther Galbrun et al.

the set of vertices v ∈ V that satisfy p(v, S). The measure ls is the average
Jaccard coefficient over all communities found by an algorithm. This measure
takes value in the unit interval and assigns greater values to the easily describ-
able communities. In particular, ls = 1 for communities that can be perfectly
described by a conjunction of labels.
For the algorithms that do not return a conjunction of labels, namely Dense,
Links, Block-LDA and DCM, we construct a posteriori a good candidate set of
labels S for each discovered community. We find such a label set with a simple
greedy procedure: we first find one single label ` that maximizes J(U, p({`})),
and we keep adding labels greedily as long as this score improves.
On the other hand, each community discovered by DBP and our three pro-
posed algorithms, LDense, Pivot, and Spectral, consists of a vertex set U and a
corresponding label set S; thus we can compute the label specificity directly.

Note that by design, we have ls = 1 for our three proposed algorithms.

2. d : We compute the density d(H) of each discovered community H = (U,F)
as defined by Equation (1). The measure d is then the average density over
all communities discovered by an algorithm. Communities should be tightly
connected, hence larger values of d are desirable.

3. |F |: The community number of edges is the average number of edges over
all communities discovered by an algorithm.

4. |U |: The community size is the average number of vertices over all commu-
nities discovered by an algorithm.

5. cE : The edge coverage is the fraction of edges belonging to some community.

6. cV : The vertex coverage is the fraction of vertices belonging to at least one
community.

7. cut: The edge cut is the fraction of edges that have their two end-points in
different communities.

8. over: The vertex overlap is the average number of communities that each
covered vertex belongs to.

For all measures larger values are favored, except for edge cut where smaller
is better, and for the vertex overlap which is a neutral measure. By neutral we
mean that overlap cannot be an objective to maximize or minimize. Overlap
is a property of the data and it is desirable only when there exist overlapping
communities in the data. The importance of having large vertex cover depends
on the application: if the goal is to explain the whole or almost whole graph
with community structure, then we prefer having large vertex cover. On the
other hand, if the goal is just find a set of good communities, regardless of their
size compared with the whole graph, then the vertex cover plays a smaller role.

6.4 Quantitative results and discussion

We execute each of the algorithms described above with each of our datasets
and compute all the measures listed above for each output. The results are
reported in Tables 2–7.

Overlapping community detection in labeled graphs 17

Table 2 Quantitative results for the DBLP.E2 dataset. We report the number of graphs for
which results were returned as #. For details on the evaluation measures see Section 6.3.
The polar charts visualize the measures for the case k = 20.

Algo. # ls d |F | |U | cE cV cut over

k = 5
Labels only
DBP 13 0.83 2.57 790 602 0.60 0.76 0.14 1.79

Structure only
Dense 13 0.20 5.68 729 237 0.54 0.42 0.57 1.22
Links 13 0.25 4.68 99 43 0.08 0.10 0.00 1.03

Labels+Structure
Block-LDA 13 0.30 3.24 656 411 0.53 0.88 0.34 1.06
DCM 13 0.64 4.04 16 7 0.02 0.02 0.00 1.07

LDense 13 1.00 3.82 549 319 0.39 0.44 0.04 1.51
Pivot 13 1.00 3.64 200 108 0.16 0.20 0.02 1.23
Spectral 13 1.00 3.39 637 388 0.49 0.56 0.06 1.52

k = 20
Labels only
DBP 13 0.91 1.38 264 398 0.82 0.94 0.14 3.85

Structure only
Dense 12 0.16 3.37 252 125 0.87 0.82 0.90 1.55
Links 13 0.26 3.93 55 27 0.18 0.23 0.01 1.13

Labels+Structure
Block-LDA 13 0.16 0.88 58 78 0.16 0.58 0.32 1.27
DCM 13 0.53 3.96 17 8 0.07 0.08 0.00 1.23

LDense 13 1.00 2.84 187 150 0.56 0.64 0.10 2.02
Pivot 13 1.00 2.63 80 59 0.28 0.38 0.07 1.58
Spectral 13 1.00 2.39 214 189 0.66 0.75 0.11 2.23

ls

1−cutcE

d

cV over

Links Dense

DBP LDense

Block-LDA Pivot

DCM Spectral

To facilitate the analysis, we visualize the results for k = 20 with polar
charts. The variables in these plots are scaled and we use 1−cut instead of the
original cut value, so that for all variables (except overlap, which is a neutral
measure) greater values, i.e., further away from the center, indicate better
performance.

As can be seen from the tables for each algorithm–dataset pair we vary
the number of communities k to be returned. DCM produces a ranked list of
all communities found in the network from which we selected the top k as the
output. All other algorithms take k as input.

Except for Lastfm, all other datasets consist of a collection of graphs. The
numbers we report are averages over all graphs in a dataset.

Note that the number of graphs for which results are returned (denoted
by #) can be smaller than the number of graphs in the collection (denoted
by #G in Table 1). This can happen because of two reasons: First, some
algorithms fail to return the required number of clusters, in particular, after
covering all vertices with fewer clusters. Second, some algorithms do not scale
to the given dataset size, and they do not terminate within a predefined time
limit (one day).

18 Esther Galbrun et al.

Table 3 Quantitative results for the DBLP.C dataset. We report the number of graphs for
which results were returned as #. For details on the evaluation measures see Section 6.3.
The polar charts visualize the measures for the case k = 20.

Algo. # ls d |F | |U | cE cV cut over

k = 5
Labels only
DBP 2 1.00 2.25 668 589 0.31 0.53 0.09 1.83

Structure only
Dense 2 0.12 7.65 1099 262 0.50 0.34 0.54 1.26
Links 2 0.13 5.94 98 34 0.05 0.05 0.00 1.17

Labels+Structure
Block-LDA 2 0.21 2.69 829 513 0.38 0.80 0.36 1.06
DCM 2 0.58 4.13 17 8 0.01 0.01 0.00 1.42

LDense 2 1.00 2.96 602 421 0.28 0.46 0.08 1.52
Pivot 2 1.00 2.66 118 100 0.05 0.15 0.01 1.23
Spectral 2 1.00 2.81 609 434 0.28 0.47 0.08 1.55

k = 20
Labels only
DBP 2 0.97 1.23 223 395 0.41 0.62 0.06 4.22

Structure only
Dense 2 0.10 4.36 438 157 0.80 0.69 0.85 1.53
Links 2 0.13 5.38 62 23 0.11 0.14 0.01 1.15

Labels+Structure
Block-LDA 2 0.14 1.07 100 87 0.18 0.47 0.23 1.24
DCM 2 0.52 4.12 17 7 0.03 0.04 0.00 1.25

LDense 2 1.00 2.09 178 186 0.33 0.53 0.09 2.31
Pivot 2 1.00 1.74 58 64 0.11 0.29 0.07 1.48
Spectral 2 1.00 1.73 194 238 0.35 0.58 0.09 2.74

ls

1−cutcE

d

cV over

Links Dense

DBP LDense

Block-LDA Pivot

DCM Spectral

DBP gives the best results in terms of label specificity among the baseline
algorithms, but ranks low in terms of graph measures. This is expected, as it
is the only baseline algorithm that takes into account only vertex labels and
not the graph structure.

On the other hand, the two algorithms that exploit only the graph struc-
ture, Dense and Links, give very dense subgraphs at the cost of low label
specificity. Note that none of the other algorithms that combines graph struc-
ture and content manages to achieve as high densities as these two algorithms.
Dense achieves the highest vertex and edge coverage, while in some cases Links
gives low values for the coverage measures. In terms of cut score, the perfor-
mance of Links is excellent, which is quite remarkable given that it does not
optimize cut directly. Overall, summarizing the comparison between Dense
and Links, we have that Dense gives slightly denser subgraphs and has better
vertex and edge coverage, while Links is superior in terms of cut scores.

Block-LDA and DCM, the two baseline algorithms that use both the struc-
ture and the label information, rank between these two extremes, with rather
strong discrepancies between the different datasets. In particular, DCM achieves
some of the top densities on the DBLP datasets but rather poor ones on the
G+ datasets while this is reversed for Block-LDA. The communities returned

Overlapping community detection in labeled graphs 19

Table 4 Quantitative results for the G+.S dataset. We report the number of graphs for
which results were returned as #. For details on the evaluation measures see Section 6.3.
The polar charts visualize the measures for the case k = 20.

Algo. # ls d |F | |U | cE cV cut over

k = 5
Labels only
DBP 41 0.90 9.36 438 51 0.17 0.42 0.12 1.31

Structure only
Dense 43 0.17 31.04 1992 94 0.79 0.64 0.83 1.76
Links 43 0.18 25.95 1521 90 0.61 0.51 0.01 2.04

Labels+Structure
Block-LDA 42 0.15 14.33 835 91 0.31 0.82 0.54 1.12
DCM 13 0.33 8.40 177 19 0.07 0.14 0.01 1.27

LDense 28 1.00 13.38 619 62 0.19 0.43 0.12 1.29
Pivot 28 1.00 13.17 616 63 0.19 0.43 0.12 1.32
Spectral 28 1.00 13.37 621 62 0.19 0.43 0.13 1.28

k = 20
Labels only
DBP 35 0.84 4.78 145 25 0.20 0.56 0.25 1.81

Structure only
Dense 36 0.14 13.91 555 48 0.91 0.82 0.96 2.98
Links 43 0.17 12.29 429 53 0.71 0.61 0.03 4.06

Labels+Structure
Block-LDA 28 0.17 6.89 260 25 0.30 0.67 0.44 1.36
DCM 3 0.24 2.64 16 5 0.06 0.14 0.02 1.70

LDense 17 1.00 6.56 204 36 0.21 0.58 0.27 1.81
Pivot 12 1.00 6.07 177 38 0.14 0.52 0.25 1.74
Spectral 16 1.00 6.56 208 36 0.20 0.58 0.28 1.75

ls

1−cutcE

d

cV over

Links Dense

DBP LDense

Block-LDA Pivot

DCM Spectral

by DCM are notably smaller than those returned by other methods, across
all datasets. In particular, in the cases where DCM gives significantly higher
densities than the other methods, it returns really small communities.

We now turn to our proposed algorithms, LDense, Spectral and Pivot. Re-
call that for all three methods the label specificity equals 1 by design. They
have similar performances, and can hardly be distinguished on G+. However,
LDense returns somewhat denser communities. On the DBLP datasets, the com-
munities returned by Pivot are notably smaller than the ones obtained with
the other two methods. While this allows Pivot to achieve higher densities, it
also results in poorer coverage measures. Still, the small cuts obtained by the
three methods are not an artifact of focusing on small communities.

Overall, compared to Block-LDA and DCM, our algorithms give very good
results. First Block-LDA and DCM achieve rather low label specificity. Second,
our algorithms consistently give communities that are dense and have low cuts.
DCM gives very low cuts and sometimes high densities, however, it returns
very small communities. On the other hand, Block-LDA gives sometimes high
densities and good coverage scores, but it has poor performance in cut score.
The density of the subgraphs returned by our algorithms is of course smaller

20 Esther Galbrun et al.

Table 5 Quantitative results for the G+.L dataset. We report the number of graphs for
which results were returned as #. For details on the evaluation measures see Section 6.3.
The polar charts visualize the measures for the case k = 20.

Algo. # ls d |F | |U | cE cV cut over

k = 5
Labels only
DBP 34 0.88 27.74 5706 256 0.18 0.43 0.12 1.27

Structure only
Dense 17 0.13 73.32 10977 261 0.69 0.49 0.74 1.64
Links 26 0.17 63.49 10047 287 0.45 0.38 0.01 2.13

Labels+Structure
Block-LDA 34 0.14 41.29 9959 490 0.34 0.92 0.62 1.18
DCM 20 0.34 18.31 1116 57 0.04 0.07 0.01 1.75

LDense 34 1.00 30.25 5626 232 0.17 0.40 0.11 1.25
Pivot 34 1.00 29.99 5585 233 0.17 0.40 0.11 1.27
Spectral 34 1.00 30.15 5652 235 0.17 0.41 0.11 1.25

k = 20
Labels only
DBP 33 0.83 12.43 1594 108 0.20 0.56 0.26 1.74

Structure only
Dense 11 0.10 28.49 3359 154 0.85 0.72 0.93 2.63
Links 26 0.15 26.89 2756 187 0.49 0.43 0.01 5.00

Labels+Structure
Block-LDA 33 0.11 18.05 1747 99 0.24 0.66 0.52 1.42
DCM 5 0.26 7.00 381 25 0.04 0.07 0.01 1.93

LDense 34 1.00 13.44 1558 100 0.20 0.53 0.23 1.69
Pivot 34 1.00 13.10 1537 102 0.19 0.52 0.22 1.75
Spectral 34 1.00 13.37 1565 102 0.20 0.53 0.24 1.69

ls

1−cutcE

d

cV over

Links Dense

DBP LDense

Block-LDA Pivot

DCM Spectral

than the densities discovered by Dense and Links, but, as already mentioned,
this is because our algorithms are constrained in terms of label specificity.

Running times. The running times of all algorithms with k = 20 for the G+

graphs, as a function of the number of edges of the input graph, are shown in
Fig. 2. Note the logarithmic scale on both axes. We observe that Dense and
Links scale poorly, while LDense and Spectral show the best performance.

To further investigate the scalability of the proposed algorithms, we exper-
iment with the whole DBLP dataset, which has more than 3.4 million edges (see
Table 1). The running times are reported in Table 8. Pivot did not complete
within 3 days: with that size of a dataset, enumerating individual nodes as
candidate pivots is simply infeasible. While LDense was faster than Spectral
for 5 communities, Spectral scales much better as a function of the number
of communities. The reason is that the label ordering for Spectral needs to be
computed only once in the beginning, while the inner loop of LDense for com-
puting densest subgraph candidates is more expensive than the corresponding
inner loop of Spectral.

Overlapping community detection in labeled graphs 21

Table 6 Quantitative results for the FB dataset. We report the number of graphs for which
results were returned as #. For details on the evaluation measures see Section 6.3. The polar
charts visualize the measures for the case k = 20.

Algo. # ls d |F | |U | cE cV cut over

k = 5
Labels only
DBP 10 0.73 11.65 1120 127 0.61 0.88 0.20 1.81

Structure only
Dense 10 0.32 24.41 1332 63 0.82 0.70 0.87 1.34
Links 10 0.32 23.42 1138 55 0.66 0.48 0.01 1.63

Labels+Structure
Block-LDA 10 0.32 14.63 1008 91 0.51 0.91 0.40 1.16
DCM 8 0.46 14.18 676 43 0.25 0.26 0.01 1.67

LDense 10 1.00 14.42 809 77 0.51 0.66 0.10 1.74
Pivot 8 1.00 15.87 890 78 0.42 0.50 0.05 1.89
Spectral 10 1.00 14.04 844 83 0.52 0.67 0.10 1.88

k = 20
Labels only
DBP 10 0.84 5.56 309 67 0.66 0.93 0.22 3.50

Structure only
Dense 8 0.23 12.98 462 40 0.90 0.83 0.95 2.21
Links 10 0.29 12.05 324 31 0.79 0.67 0.03 2.54

Labels+Structure
Block-LDA 8 0.22 6.18 268 31 0.48 0.85 0.40 1.53
DCM 3 0.44 8.75 260 32 0.33 0.43 0.04 1.93

LDense 8 1.00 8.74 353 54 0.66 0.89 0.19 2.82
Pivot 6 1.00 9.09 405 66 0.59 0.78 0.13 3.10
Spectral 8 1.00 8.04 373 66 0.69 0.92 0.19 3.20

ls

1−cutcE

d

cV over

Links Dense

DBP LDense

Block-LDA Pivot

DCM Spectral

6.5 Case study

We provide a qualitative sample of results generated by the LDense algorithm.
For better demonstration of qualitative results, we want to use a more compact
dataset, and we extract ego-nets of radius 1 from DBLP. We run the algorithm
on two of these ego-nets, the ones of Christos Papadimitriou and Serge Abite-
boul. In Tables 9 and 10 we give the top-5 communities extracted for the two
authors, respectively. For each community we give the top-10 authors, sorted
by their degree in the input graph. We see that: (i) the labels used to describe
the communities give a very good summary of the research interests of the
two authors; (ii) for each community, the labels express accurately the com-
mon interests of the authors in the community; (iii) the overlaps capture the
multiple interests of the authors.

7 Conclusions and future work

We presented a new approach for discovering overlapping communities in la-
beled graphs. We defined the community-detection problem by asking to find
k communities whose total edge density is maximized. To provide better un-

22 Esther Galbrun et al.

Table 7 Quantitative results for the Lastfm dataset. We report the number of graphs for
which results were returned as #. For details on the evaluation measures see Section 6.3.
The polar charts visualize the measures for the case k = 20.

Algo. # ls d |F | |U | cE cV cut over

k = 5
Labels only
DBP 1 0.21 7.29 1227 310 0.48 0.57 0.08 1.45

Structure only
Dense 1 0.25 16.78 1185 128 0.47 0.25 0.52 1.38
Links 1 0.31 11.21 345 60 0.14 0.14 0.02 1.09

Labels+Structure
Block-LDA 1 0.39 8.39 2040 445 0.80 1.00 0.20 1.18
DCM 1 0.51 9.05 109 18 0.04 0.04 0.00 1.26

LDense 1 1.00 8.02 1017 296 0.40 0.27 0.01 2.92
Pivot 1 1.00 7.19 895 253 0.35 0.24 0.02 2.78
Spectral 1 1.00 6.78 1204 393 0.47 0.34 0.02 3.08

k = 20
Labels only
DBP 1 0.68 3.45 429 263 0.68 0.83 0.16 3.35

Structure only
Dense 1 0.18 4.97 557 128 0.88 0.68 0.91 2.00
Links 1 0.23 7.31 131 34 0.21 0.24 0.04 1.53

Labels+Structure
Block-LDA 1 0.28 3.95 361 116 0.57 0.92 0.34 1.35
DCM 1 0.36 5.18 46 19 0.07 0.08 0.03 2.58

LDense 1 1.00 4.98 280 130 0.44 0.33 0.04 4.17
Pivot 1 1.00 3.90 247 148 0.39 0.28 0.04 5.52
Spectral 1 1.00 4.31 323 194 0.51 0.39 0.03 5.31

ls

1−cutcE

d

cV over

Links Dense

DBP LDense

Block-LDA Pivot

DCM Spectral

Table 8 Running times of LDense and Spectral on the whole DBLP dataset.

Algo. k = 5 k = 20 k = 100 k = 1 000

LDense 5h 9min 7h 55min 8h 44min 68h 56min
Spectral 6h 35min 6h 44min 7h 24min 12h 57min

derstanding of the discovered communities, we require that each community
is succinctly described by a set of labels.

We mapped our density-maximization problem into the generalized max-
imum-coverage problem, and by adapting the approximation algorithm for the
latter problem we obtain three different algorithms, variants of a basic greedy
scheme. For a simple case of our problem — predicates over small-size label
sets — where we can enumerate all possible label sets, we are able to obtain the
same approximation guarantee as the generalized maximum coverage problem.

By conducting thorough experiments on a number of real datasets, where
we measured many different performance indicators and compared our algo-
rithms with other state-of-the-art methods, we showed that our algorithms
provide consistently some of the best results for most of the measures. In par-
ticular, our algorithms are able to discover clusters that, in general, are denser,

Overlapping community detection in labeled graphs 23

103 104 105

10−1

100

101

102

103

104

Dense

Block-LDA

Links

Pivot

LDense

Spectral

DBP

DCM

|E|

T
(s

)

Fig. 2 Running times on G+ networks as a function of the number of edges.

Table 9 Communities for Christos Papadimitriou.

Labels Authors

logic, query M. Vardi, G. Kuper, S. Abiteboul, Y. Sagiv, F. Afrati, J. Ullman,
P. Kolaitis, R. Fagin, P. Kanellakis, S. Cosmadakis

price M. Babaioff, R. Kleinberg, N. Immorlica, T. Roughgarden, E. Tardos,
A. Mehta, J. Chuang, M. Feldman, V. Vazirani, Y. Singer

mechan, auction S. Dobzinski, K. Talwar, M. Schapira, R. Sami, A. Archer,
M. Babaioff, N. Immorlica, V. Mirrokni, A. Mehta, R. Kleinberg

random R. Karp, U. Vazirani, V. Vazirani, A. Saberi, M. Blum, A. Wigderson,
M. Mihail, O. Goldreich, P. Raghavan, A. Mehta

approxim M. Yannakakis, K. Jain, X. Deng, C. Daskalakis, A. Kalai,
E. Koutsoupias, J. Feigenbaum, M. Sudan, N. Immorlica, P. Goldberg

have smaller cuts, and cover more edges than the communities discovered by
the other methods, despite having a more limited search space — they are con-
strained to communities with label specificity equal to 1. Our experiments also
showed that the three proposed algorithms find solutions of similar quality.

Although the emphasis of our approach is on the quality of the communities
discovered, we report experiments on a labeled graph with almost a million
vertices and more than three million edges, where the Spectral algorithm is
shown to be the most efficient. Improving further the scalability of our methods
is left for future work.

We restricted ourselves to discovering communities that can be described
exactly with a label set. This restriction has the virtue that we obtain a de-
scription of the whole community. An interesting direction for future work is

24 Esther Galbrun et al.

Table 10 Communities for Serge Abiteboul.

Labels Authors

semistructur J. Wiener, J. McHugh, J. Widom, D. Quass, M. Rys, R. Goldman,
S. Chawathe, V. Vassalos, S. Nestorov, T. Lahiri

program M. Vardi, H. Mairson, P. Kanellakis, C. Beeri, G. Kuper,
G. Hillebrand, Y. Sagiv, A. Van Gelder, G. Gottlob, M. Manna

complex C. Papadimitriou, V. Vianu, E. Waller, S. Grumbach, L. Segoufin,
B. Cautis, E. Kharlamov, G. Kuper, G. Gottlob, M. Vardi

xml, web T. Milo, I. Manolescu, P. Senellart, B. Nguyen, B. Amann, G. Cobena,
O. Benjelloun, L. Mignet, A. Marian, N. Preda

xml I. Manolescu, M. Scholl, S. Cluet, C. Beeri, N. Polyzotis, P. Senellart,
T. Milo, V. Vassalos, B. Amann, Y. Papakonstantinou

to relax this constraint and allow communities to have label specificity lower
than 1.

From a theoretical perspective, the main open challenge is to devise ap-
proximation algorithms that are strongly polynomial in the number of labels
in the graph. It will also be interesting to provide approximation guarantees
for other cases of our problem definition, such as for non-labeled graphs and
other predicate functions.

References

Ahn YY, Bagrow JP, Lehmann S (2010) Link communities reveal multiscale
complexity in networks. Nature 466:761–764

Asahiro Y, Iwama K, Tamaki H, Tokuyama T (2000) Greedily finding a dense
subgraph. Journal of Algorithms 34(2):203–221

Atkins JE, Boman EG, Hendrickson B (1998) A spectral algorithm for se-
riation and the consecutive ones problem. SIAM Journal on Computing
28:297–310

Balasubramanyan R, Cohen WW (2011) Block-LDA: Jointly modeling entity-
annotated text and entity-entity links. In: SIAM International Conference
on Data Mining (SDM’11), SIAM / Omnipress, pp 450–461

Charikar M (2000) Greedy approximation algorithms for finding dense com-
ponents in a graph. International Workshop on Approximation, Random-
ization, and Combinatorial Optimization (APPROX’00) pp 84–95

Chen W, Liu Z, Sun X, Wang Y (2010) A game-theoretic framework to identify
overlapping communities in social networks. Data Mining and Knowledge
Discovery 21(2):224–240

Clauset A, Newman MEJ, Moore C (2004) Finding community structure in
very large networks. Physical Review E p 066111

Cohen R, Katzir L (2008) The generalized maximum coverage problem. Infor-
mation Processing Letters 108:15–22

Coscia M, Rossetti G, Giannotti F, Pedreschi D (2012) DEMON: a local-first
discovery method for overlapping communities. In: Yang Q, Agarwal D, Pei

Overlapping community detection in labeled graphs 25

J (eds) ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD’12), pp 615–623

van Dongen S (2000) Graph clustering by flow simulation. PhD thesis, Uni-
versity of Utrecht

Flake GW, Lawrence S, Giles CL (2000) Efficient identification of web com-
munities. In: Ramakrishnan R, Stolfo SJ, Bayardo RJ, Parsa I (eds) ACM
SIGKDD international conference on Knowledge discovery and data mining
(KDD’00), ACM, pp 150–160

Fortunato S (2010) Community detection in graphs. Physics Reports 486
Girvan M, Newman MEJ (2002) Community structure in social and biological

networks. Proceedings of the National Academy of Sciences 99:7821–7826
Gregory S (2007) An algorithm to find overlapping community structure in

networks. In: Kok JN, Koronacki J, de Mántaras RL, Matwin S, Mladenic
D, Skowron A (eds) European Conference on Principles and Practice of
Knowledge Discovery in Databases, Springer, Lecture Notes in Computer
Science, vol 4702, pp 91–102

Gupta R, Roughgarden T, Seshadhri C (2014) Decompositions of triangle-
dense graphs. In: Naor M (ed) Innovations in Theoretical Computer Science.
(ITCS’14), ACM, pp 471–482

Karypis G, Kumar V (1998) Multilevel algorithms for multi-constraint graph
partitioning. In: ACM/IEEE Conference on Supercomputing (SC ’98), IEEE
Computer Society, pp 1–13

von Luxburg U (2007) A tutorial on spectral clustering. Statistics and Com-
puting 17(4):395–416

McAuley J, Leskovec J (2012) Learning to discover social circles in ego net-
works. In: Bartlett PL, Pereira FCN, Burges CJC, Bottou L, Weinberger
KQ (eds) Advances in Neural Information Processing Systems (NIPS’12),
pp 548–556

Miettinen P, Mielikäinen T, Gionis A, Das G, Mannila H (2008) The discrete
basis problem. IEEE Transactions on Knowledge and Data Engineering,
TKDE 20(10):1348–1362

Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: Analysis and
an algorithm. In: Shawe-Taylor J, Zemel RS, Bartlett PL, Pereira FCN,
Weinberger KQ (eds) Advances in Neural Information Processing Systems
(NIPS’01), pp 849–856

Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping
community structure of complex networks in nature and society. Nature
435:814–818

Pinney J, Westhead D (2006) Betweenness-based decomposition methods for
social and biological networks. In: Interdisciplinary Statistics and Bioinfor-
matics, pp 87–90

Pons P, Latapy M (2006) Computing communities in large networks using
random walks. Journal of Graph Algorithms Applications 10(2):284–293

Pool S, Bonchi F, van Leeuwen M (2014) Description-Driven Community De-
tection. ACM Transactions on Intelligent Systems and Technology (ACM
TIST) 5(2):1–28

26 Esther Galbrun et al.

White S, Smyth P (2005) A spectral clustering approach to finding communi-
ties in graph. In: SIAM International Conference on Data Mining (SDM’05),
SIAM / Omnipress, pp 76–84

Xie J, Kelley S, Szymanski BK (2011) Overlapping community detection in
networks: the state of the art and comparative study. arxivorg/abs/11105813

Yan B, Gregory S (2009) Detecting communities in networks by merging
cliques. In: IEEE International Conference on Intelligent Computing and
Intelligent Systems (ICIS’09), pp 832–836

Yang J, Leskovec J (2013) Overlapping community detection at scale: a non-
negative matrix factorization approach. In: Leonardi S, Panconesi A, Fer-
ragina P, Gionis A (eds) ACM International Conference on Web Search and
Data Mining (WSDM’13), ACM, pp 587–596

Zhou H, Lipowsky R (2004) Network Brownian motion: A new method to
measure vertex-vertex proximity and to identify communities and subcom-
munities. In: Bubak M, Albada G, Sloot P, Dongarra J (eds) Computational
Science (ICCS’04), Lecture Notes in Computer Science, vol 3038, pp 1062–
1069

Overlapping community detection in labeled graphs 27

Residual dense subgraph is NP-hard

Let us first define the problem of discovering a graph with high residual density.

Problem 5 (ResDenseGraph) Let G = (V,E,w) be a graph with weighted edges. Find
a subgraph H = (X,R) such that

d(H)−
∑
e∈R

w(e)

is maximized.

Proposition 1 ResDenseGraph is NP-hard.

Proof We will prove hardness by reducing the clique problem. Assume that we are given
a graph G = (V,E) and a size of a clique K. Define the weights to be w(e) = 2/(2K − 1).

Let us assume that G contains a clique of size K, say H = (X,R). We will first show
that H has the highest density. To see this let H′ = (X′, R′). Let N = |X′|. If N < K, then
the profit of H′ is genuinely smaller than the profit of H. If N = K, then the profit of H
is larger or equal to the profit of H′. If the profits are equal, then H′ has to be a clique as
well. Assume that N > K. Then we can upper-bound the profit by

(N − 1)−N(N − 1)/(2K + 1) = −
(N − 1)(N − 2K + 1)

2K − 1
.

This bound is a parabola, obtaining its apex at K. This shows that the profit of H′ is
genuinely lower than the profit of H.

We have shown that G = (V,E) has a K-clique if and only if the optimal answer for
ResDenseGraph is a clique of size K.

