

Towards Finding Relational Redescriptions

Esther Galbrun Angelika Kimmig

Helsinki Institute for Information Technology Department of Computer Science, University of Helsinki

Departement Computerwetenschappen, KU Leuven

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Discovery Science — October 29, 2012

Query Mining

Experiments

Conclusion

Dataset A network with node and egde attributes

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Dataset A network with node and egde attributes

Task Find structurally different patterns covering (almost) the same tuples of nodes.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Find node tuples with similar connection patterns

- Discover sets of related attributes
- View the same objects under different perspectives

- Redescription Mining with propositional features [Ramakrishnan04],
- Inductive Logic Programming,
 - Progol [Muggleton95],
 - Aleph [Srinivasan07],
 - path-finding [Richards92, Ong05],

Describe connections between tuples of nodes

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Describe connections between tuples of nodes

VS

Characterize individual nodes using surrounding relations.

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Alternating Scheme

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

1. Fix a pattern to obtain examples

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- 1. Fix a pattern to obtain examples
- 2. Consider remaining attributes

HELSINGIN VLIOPISTO INGEORS UNIVERSITET UNIVERSITY OF HELSINKI

- 1. Fix a pattern to obtain examples
- 2. Consider remaining attributes
- 3. Find a matching pattern

- 1. Fix a pattern to obtain examples
- 2. Consider remaining attributes
- 3. Find a matching pattern
- 4. Swap roles and iterate

- 1. Fix a pattern to obtain examples
- 2. Consider remaining attributes
- 3. Find a matching pattern
- 4. Swap roles and iterate

Subproblem: Query mining

 Given a set of examples and a subset of attributes
Find a matching pattern

Subproblem: Query mining

 Given a set of examples and a subset of attributes
Find a matching pattern

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- 1. Enumerate connecting paths and mine frequent path patterns
- 2. Build graph patterns from path patterns
- 3. Select a subset of graph patterns

Starting with paths of length k = 1

- 1. Enumerate connecting paths
- 2. Mine frequent path patterns
- 3. Increase k by one and iterate
- Until all examples are connected or k exceeds a chosen threshold

Starting with paths of length k = 1

- 1. Enumerate connecting paths
- 2. Mine frequent path patterns
- 3. Increase k by one and iterate
- Until all examples are connected or k exceeds a chosen threshold

Starting with paths of length k = 1

- 1. Enumerate connecting paths
- 2. Mine frequent path patterns
- 3. Increase k by one and iterate
- Until all examples are connected or *k* exceeds a chosen threshold

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Align all connecting paths for a fixed length k,
 - represented as sequences,
 - one set for each node/edge
- Frequent sequence mining
 - special gap constraints
 - constraint-based mining using FIM_CP

Starting with paths of length k = 1

- 1. Enumerate connecting paths
- 2. Mine frequent path patterns
- 3. Increase k by one and iterate
- Until all examples are connected or k exceeds a chosen threshold

Starting with paths of length k = 1

- 1. Enumerate connecting paths
- 2. Mine frequent path patterns
- 3. Increase k by one and iterate
- Until all examples are connected or k exceeds a chosen threshold

Outcome a set of frequent path patterns

 Given a set of path patterns and of examples
Combine paths to build graph patterns

— #2 d3

How to combine path patterns? #1 a₁2 ←

Infinitely many combinations

c1

But few occuring in the data

INGIN YI IOPISTO GEODS LINIVE FRSITY OF HELSINKI

Combination based on the data

Combination based on the data
For each supporting example
Map pattern path onto data nodes

Combination based on the data
For each supporting example
Map pattern path onto data nodes

- Combination based on the data
- For each supporting example
 - Map pattern path onto data nodes
 - Generate *maximal* combination graph

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Reduce *maximal* patterns to their *singular*, remove duplicate nodes, with identical labels and indentical neighbors

INGIN YI IOPISTO

Reduce *maximal* patterns to their *singular*, remove duplicate nodes, with identical labels and indentical neighbors

Outcome a set of *singular* graph patterns

INGIN YI IOPISTO IGEODS LINIVEDSITET FRSITY OF HELSINKI

 Given a set of graph patterns and of examples
Select a good cover

Determine for each graph pattern

P = Number of covered examples

N = Number of other covered node pairs

Greedy selection of pattern based on ratio P/(P+N)

Determine for each graph pattern

P = Number of covered examples

N = Number of other covered node pairs

Greedy selection of pattern based on ratio P/(P+N)

Determine for each graph pattern P = Number of covered examples N = Number of other covered node pairs Greedy selection of pattern based on ratio P/(P+N)

Outcome a small set of graph patterns best matching the examples

- 1. Enumerate connecting paths and mine frequent path patterns
- 2. Build graph patterns from path patterns
- 3. Select a subset of graph patterns

- 1. Enumerate connecting paths and mine frequent path patterns
- 2. Build graph patterns from path patterns
- 3. Select a subset of graph patterns

 In practice, steps 2. and 3. are interleaved, to avoid costly mappings of unpromizing patterns.

Data Alyawarra Ethnographic Database nodes individuals of an Australian indigenous community relations kinship and genealogical relations Goal Find genealogical patterns to explain kinship terminology

Experiments

Experiments: Alyawarra Kinship

"Son, male speaker" "Brother's child"

	Kinship relation	$\left \mathscr{O}^+ \right $	$ \mathcal{O}_k $	supp+	supp ⁻	Prec.	Rec.	Jacc.	P	Time (s)
	Arengiya									1.60
	Anyainya				4					40.45
	Aidmeniya		113		4				4	
				24		0.774				3.44
	Adardiya				1	0.954				2.64
	Agngiya									
	Aweniya									
	Amaidya				1					1.85
	Awaadya			43	1					4.39
	Anguriya									4.01
	Adiadya				4					
	Angeliya									
	Algyeliya	447			4					
	Adniadya								1	
(16)	Aleriya	943	384	277	26	0.914	0.293	0.285	5	153.23
(17)	Umbaidya									
	Anowadya							0.154		
	Muriya					1			4	
	Agenduriya									
	Amburniya									
	Andungiya					0.714	0.14			
	Aneriya									
										1.03

	Kinship relation	$\left \mathscr{O}^+ \right $	$ \mathcal{O}_k $	$ supp^+ $	supp-	Prec.	Rec.	Jacc.	P	Time (s)
(1)	Arengiya	228	15	0	0	0	0	0	0	1.60
(2)	Anyainya	489	243	123	4	0.968	0.251	0.249	3	40.45
(3)	Aidmeniya	231	113	30	4	0.882	0.129	0.127	4	21.55
(4)	Aburliya	379	59	24	7	0.774	0.063	0.062	3	3.44
(5)	Adardiya	493	91	21	1	0.954	0.042	0.042	2	2.64
(6)	Agngiya	508	199	138	2	0.985	0.271	0.27	3	56.02
(7)	Aweniya	453	231	127	12	0.913	0.28	0.273	5	67.43
(8)	Amaidya	817	92	92	1	0.989	0.112	0.112	2	1.85
(9)	Abmarliya	805	172	79	7	0.918	0.098	0.097	3	19.90
(10)	Awaadya	462	49	43	1	0.977	0.093	0.092	2	4.39
(11)	Anguriya	505	43	37	2	0.948	0.073	0.072	2	4.01
(12)	Adiadya	739	83	72	4	0.947	0.097	0.096	5	19.39
(13)	Angeliya	299	220	40	9	0.816	0.133	0.129	5	260.80
(14)	Algyeliya	447	205	36	4	0.9	0.08	0.079	2	180.09
(15)	Adniadya	43	30	9	3	0.75	0.209	0.195	1	55.51
(16)	Aleriya	943	384	277	26	0.914	0.293	0.285	5	153.23
(17)	Umbaidya	1256	364	276	7	0.975	0.219	0.218	3	163.26
(18)	Anowadya	392	61	61	3	0.953	0.155	0.154	2	0.55
(19)	Muriya	569	181	20	0	1	0.035	0.035	4	30.51
(20)	Agenduriya	13	9	0	0	0	0	0	0	18.68
(21)	Amburniya	272	118	94	19	0.831	0.345	0.323	7	8.19
(22)	Andungiya	142	58	20	8	0.714	0.14	0.133	3	3.88
(23)	Aneriya	193	85	0	0	0	0	0	0	10.56
(26)	Undyaidya	6	3	0	0	0	0	0	0	1.03

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Relational Redescription Mining problem definition
- Query miner as a first step towards a solution
- Experiments on the Alyawarra kinship problem

- Relational Redescription Mining problem definition
- Query miner as a first step towards a solution
- Experiments on the Alyawarra kinship problem

To be continued...

- Complete RRM algorithm
- Experiments with various datasets

- Relational Redescription Mining problem definition
- Query miner as a first step towards a solution
- Experiments on the Alyawarra kinship problem

To be continued...

- Complete RRM algorithm
- Experiments with various datasets

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Esther Galbrun

esther.galbrun@cs.helsinki.fi

Department of Computer Science University of Helsinki Finland

Helsinki Institute for Information Technology Helsinki Finland Angelika Kimmig angelika.kimmig@cs.kuleuven.be

Katholieke Universiteit Leuven Leuven Belgium

University of Maryland College Park USA