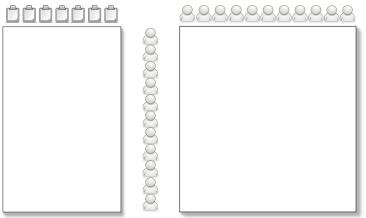


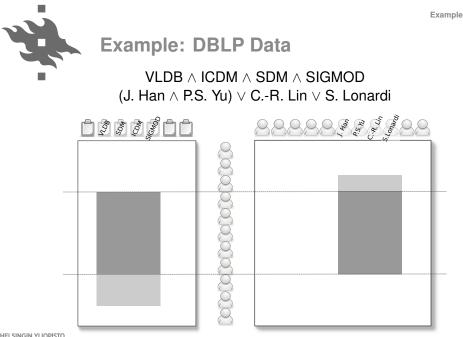
Relational Redescription Mining

Esther Galbrun

joint work with Pauli Miettinen and Angelika Kimmig


Helsinki Institute for Information Technology Department of Computer Science, University of Helsinki

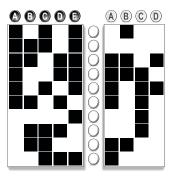
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI


MPI-INF SB — Dec 3, 2012

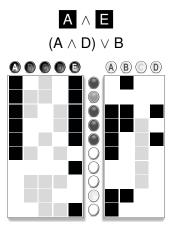
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Redescription Mining

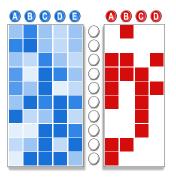

Redescription Given two datasets over the same entities, a **redescription** is a pair of queries (q_L, q_R) over the two dataset respectively, characterizing approximately the same sets of entities.

- Find coherent sets of objects
- Find sets of related attributes
- View the same objects under different perspectives



Dataset Boolean matrices

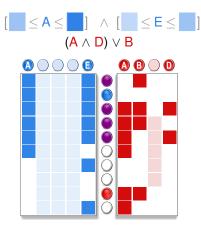
Boolean Redescriptions



Dataset Boolean matrices Queries Boolean formulae Accuracy Jaccard coefficient $J(q_L, q_R) = \frac{|\operatorname{supp}(q_L) \cap \operatorname{supp}(q_R)|}{|\operatorname{supp}(q_L) \cup \operatorname{supp}(q_R)|}$ $= \frac{|E_{1,1}|}{|E_{1,0}| + |E_{1,1}| + |E_{0,1}|}$

Redescription Mining

Real-Valued Redescriptions



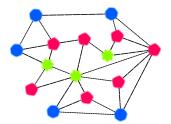
Dataset Real-valued matrices

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

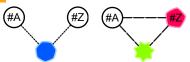
Real-Valued Redescriptions

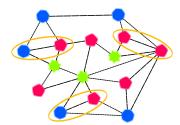
Dataset Real-valued matrices Queries Intervals Accuracy Jaccard coefficient $J(q_L, q_R) = \frac{|\sup p(q_L) \cap \sup p(q_R)|}{|\sup p(q_L) \cup \sup p(q_R)|}$ $= \frac{|E_{1,1}|}{|E_{1,0}| + |E_{1,1}| + |E_{0,1}|}$

Geospatial Redescriptions

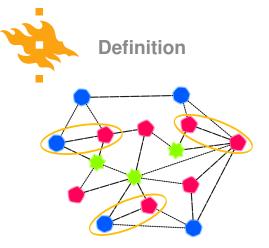

le <u>R</u> ede	escrip	tions <u>W</u> indow	<u>H</u> elp							
IS Varial	bles	RHS Variables	Redescriptions	Expanding						
	Query LHS			LHS	Que	ry RHS	Acc †	p-Value	Support	
1		Polar bear			[1.0 ≤ to ⁺ ≤ 3.5]		0.973	0.0	36	
2		Polar bear			[-9.6 ≤ tu ⁺ ≤ -5.6] 0.973 0.0 36					
3	V	Polar bear			[-7.0727 ≤ ts ⁺ ≤ -3.375]	-	SIREN :: map	s	-	
4		Polar bear			[-4.5 ≤ t10 ⁺ ≤ -1.0]		7	C'M'S		
5		Polar bear			[-16.694 ≤ ts ≤ -11.462]	×.	3	E		
6		Polar bear			[-11.9 ≤ ts ⁺ ≤ -7.3]	1.11				
7	V	Wood mouse	v Azores Noctule		$(([3.0 \le t_{3}^+] \land [9.8 \le t_{10}^+]))$	1	5			
8	V	Wood mouse	v Azores Noctule	v Harp Seal	(([2.9 ≤ ts ⁺] v [9.7 ≤ ts ⁺ ≤ 1	23			1/1/12	
9	1	Bank Vole v M	Northern Red-back	ed Vole v Steppe Mouse v	[-9.2 ≤ t12 ⁺ ≤ 12.8] ∧ [7.15			Jeff	ALC .	
10		Wood mouse v Azores Noctule			$(([2.9 \le t_3^+] \land [8.3 \le t_4^+]))$	4	m	- Allihil	國則有	
11		Wood mouse	v Azores Noctule	v Harp Seal	(([-0.8 ≤ t₂ ⁺] ∧ [-0.14118 ≤	2		. ANNP	ANNE	
12	1	Wood mouse	v Harp Seal		(([-0.8 ≤ ti ⁺ ≤ 17.2] ∧ [-4.9					
13		Wood mouse	v Harp Seal		([-9.4 ≤ ti ⁻ ≤ 8.2] ∧ [-8.3 ≤		54	Carrie	SIL .	
14	1	Wood mouse			$(([3.0 \le t_0^+] \land [4.2 \le t_0^+])))$		sta			
15		Wood mouse			([9.7 ≤ t) ⁺ ≤ 13.2] v [-5.16		9 M			
16		Bank Vole v N	Northern Red-back	ed Vole v Steppe Mouse v	(([11.2 ≤ t) ⁺ ≤ 13.4] v [13.1		E C	5.52	<u> </u>	
17	1	Arctic Fox v S	Stoat		(([2.6 ≤ t ₆ ⁺ ≤ 8.5] v [7.2 ≤		7	2 AA	(• ¥	
18	1	Stoat v Walru	IS		(([7.2 ≤ to ⁺ ≤ 22.2] v [21.1]		5-3	SIS.		
19		Stoat v Walru	IS		([11.6 ≤ ts ⁺ ≤ 25.3] v [21.1		41 5	0 768	22	
20		Arctic Fox v S	Stoat		(([ts ⁺ ≤ 25.5] ∧ [0.68824 ≤		~~~	73 4	~ ~	
21	1	Arctic Fox v S	Stoat		(([0.8 \leq tr $^ \leq$ 13.9] \wedge [ts $^+$ $<$	Moose				
	- 20	Cana Hara y I	European Hara u	Algorian Mouro	/ f 10 0 2 4 2 0 01 + 115 5	[-10.0 ≤ t₂ ⁺ ≤ 0.0] ∧ []	12.0 < t/ ⁺ < 25.0]			
						J= 0.74513			LHS \ R	
						pVal= 0.00000	D LHS U RHS	= 718	RHS \ LI	HS = 5

Redescription Mining


Relational Redescriptions

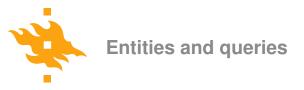

Dataset A network with node and egde attributes

Redescription Mining


Relational Redescriptions

Dataset A network with node and egde attributes Queries Connection patterns Accuracy Jaccard coefficient $J(q_L, q_R) = \frac{|\operatorname{supp}(q_L) \cap \operatorname{supp}(q_R)|}{|\operatorname{supp}(q_L) \cup \operatorname{supp}(q_R)|}$

Relational Redescriptions

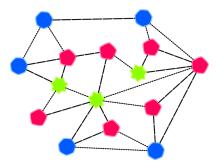


Dataset A network with node and egde attributes

Task Find structurally different patterns covering (almost) the same pairs of nodes.

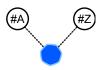
#A #2

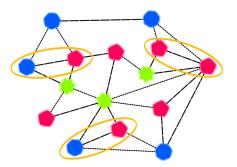
HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

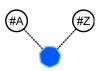

pairs of nodes and their connections. *individual nodes* and surrounding relations.

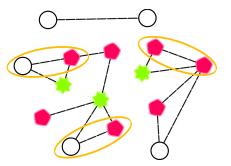
× a transactional graph and occuring subgraphs.

Relational Redescriptions

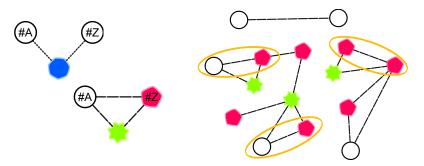



Alternating Scheme

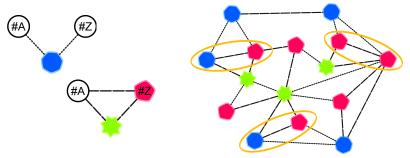

1. Fix a pattern to obtain examples



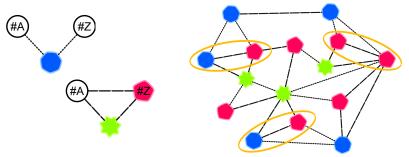
- 1. Fix a pattern to obtain examples
- 2. Consider remaining attributes



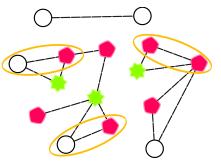
HELSINGIN YLIOPISTO INGEORS UNIVERSITET UNIVERSITY OF HELSINKI



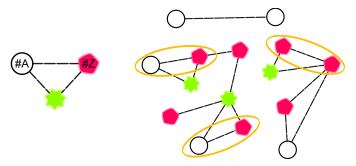
- 1. Fix a pattern to obtain examples
- 2. Consider remaining attributes
- 3. Find a matching pattern



- 1. Fix a pattern to obtain examples
- 2. Consider remaining attributes
- 3. Find a matching pattern
- 4. Swap roles and iterate


- 1. Fix a pattern to obtain examples
- 2. Consider remaining attributes
- 3. Find a matching pattern
- 4. Swap roles and iterate

Subproblem: Query mining


 Given a set of examples and a subset of attributes
 Find a matching pattern

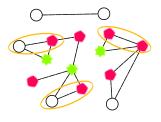
Subproblem: Query mining

 Given a set of examples and a subset of attributes
 Find a matching pattern

FpQm: Stepwise Approach

1. Enumerate connecting paths and mine frequent path patterns

- 2. Build graph patterns from path patterns
- 3. Select a subset of graph patterns



1. Find path patterns

Starting with paths of length k = 1

- 1. Enumerate connecting paths
- 2. Mine frequent path patterns
- 3. Increase k by one and iterate
- Until all examples are connected or *k* exceeds a chosen threshold

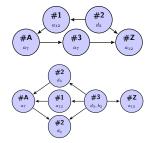
Outcome a set of frequent path patterns

2. Build graph patterns

- Given a set of path patterns and of examples
- Combine paths to build graph patterns

2. Build graph patterns

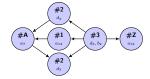
Given a set of path patterns and of examples
 Combine paths to build graph patterns
 Combination based on the instances



2. Build graph patterns

Given a set of path patterns and of examples
Combine paths to build graph patterns

Outcome a set of graph patterns



3. Select graph patterns

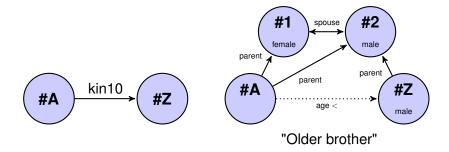
Given a set of graph patterns and of examples

Select a good cover

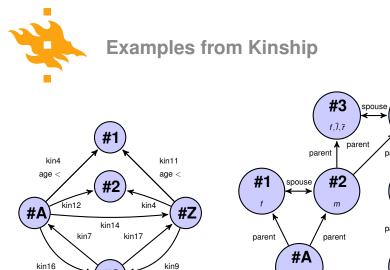
Outcome a small set of graph patterns best matching the examples

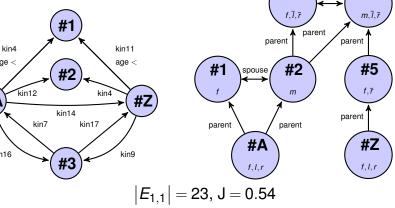
1. Enumerate connecting paths and mine frequent path patterns

- 2. Build graph patterns from path patterns
- 3. Select a subset of graph patterns

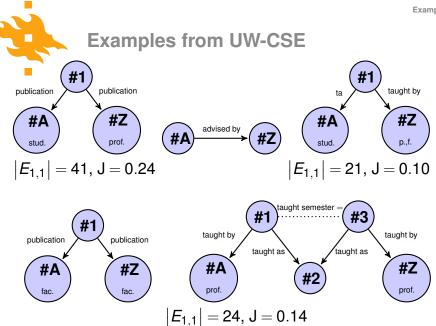


- 1: initialize candidates
- 2: for each candidate do
- 3: for each matching clause found with FpQm do
- 4: if turns limit not reached and no equivalent clause then
- 5: add to candidates
- 6: extract good pairs of adjacent clauses from the exploration tree

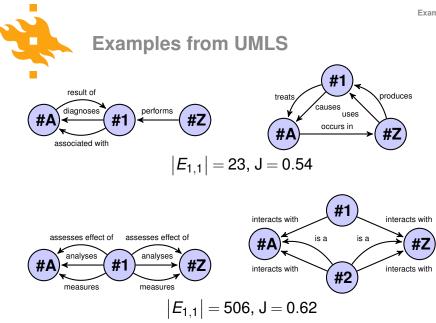

Examples



Examples from Kinship



#4



Examples

HELSINGIN YLIOPISTO SINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

But this is just ILP ?...

ILP tools (from my uninitiated point of view)

- general approach, encompassing various strategies
- progressive generalization / refinement of clauses
- heavy use of background knowledge, bias, types and co.
 FpQM
- adapted to finding linked patterns
- purely data based, no additional knowledge
- relies on frequent paths

Experimental comparison: our approach out-performed c-armr on this task

HELSINGFORS UNIVERSITET Relational Redescription Mining — Esther Galbrun UNIVERSITY OF HELSINKI

Discussion

How does it scale?

Dataset	N	E	#np.	#ep.	#cp.	R	M	Tot. T	T/cla	ause
									max	avg
Kinship	381	24053	3	31	1	96	340	3h 36min	254s	38s
Umls	135	4181	_	46	_	15	81	13min 29s	79s	10s
Uwcse	1042	1674	6	7	5	8	25	39s	4s	2s

Strong impact on the running times:

- Network density
- Presence of symmetries

Relational Redescription Mining

- Find structurally different patterns covering (almost) the same pairs of nodes.
- An expressive tool for finding corresponding connections patterns in a network.

Relational Redescription Mining

- Find structurally different patterns covering (almost) the same pairs of nodes.
- An expressive tool for finding corresponding connections patterns in a network.

Thank you ...