

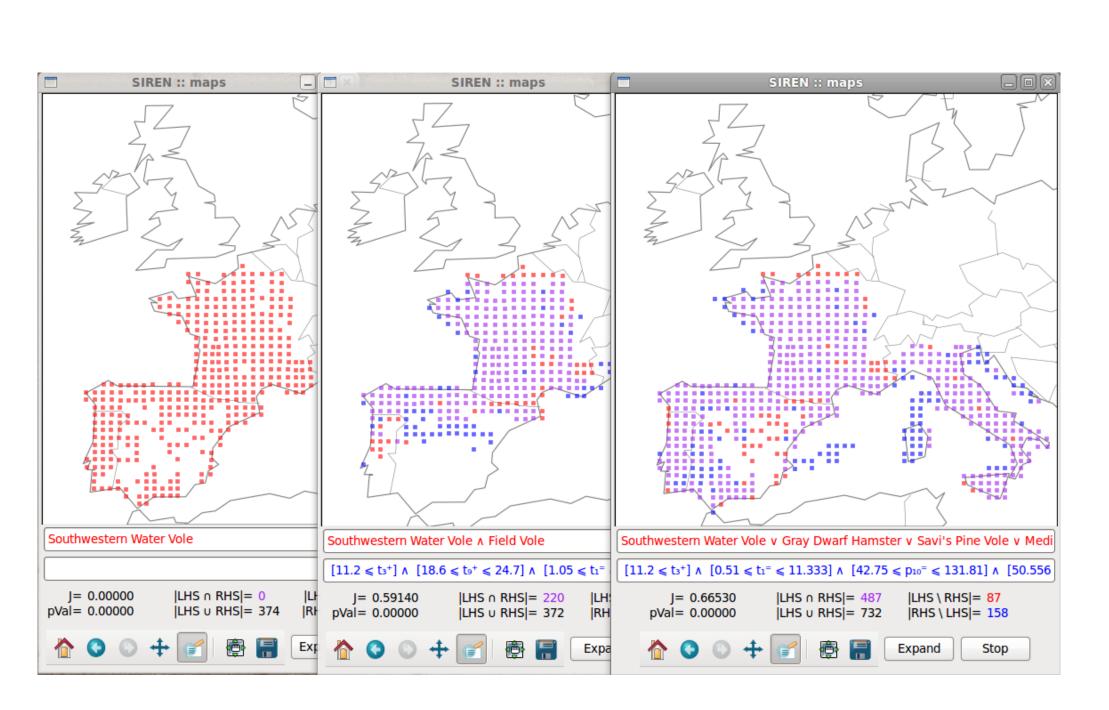
AN INTERACTIVE TOOL FOR MINING AND VISUALIZING GEOSPATIAL REDESCRIPTIONS

Esther Galbrun & Pauli Miettinen

galbrun@cs.helsinki.fi, Helsinki Institute for Information Technology Department of Computer Science, University of Helsinki, Finland pmiettin@mpi-inf.mpg.de, Max Planck Institute for Informatics Saarbrücken, Germany

REDESCRIPTION MINING

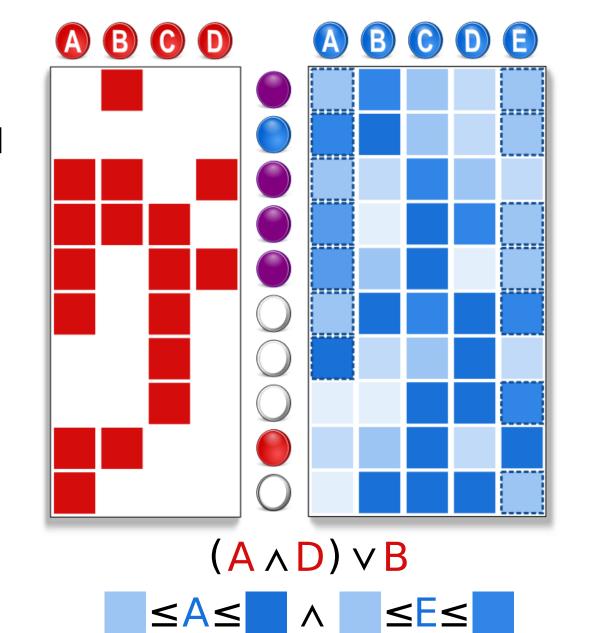
Given a set of entities with two sets of characterizing variables find a pair of queries that describe approximately the same entities.


Finding alternative descriptions of the same entities is a problem that appears in many areas of science, for example biology (see below).

Redescription mining is a powerful data analysis tool.

Two points of view:

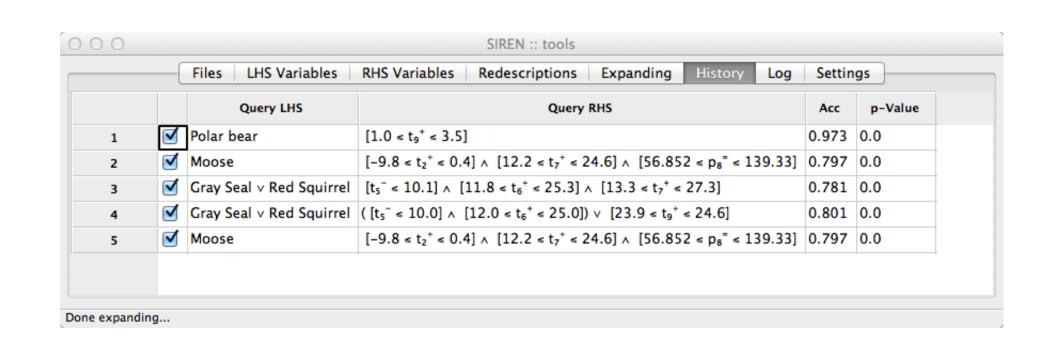
- Coherent subsets of entities, which can be described in two ways.
- Variables and conditions appearing together in the queries.

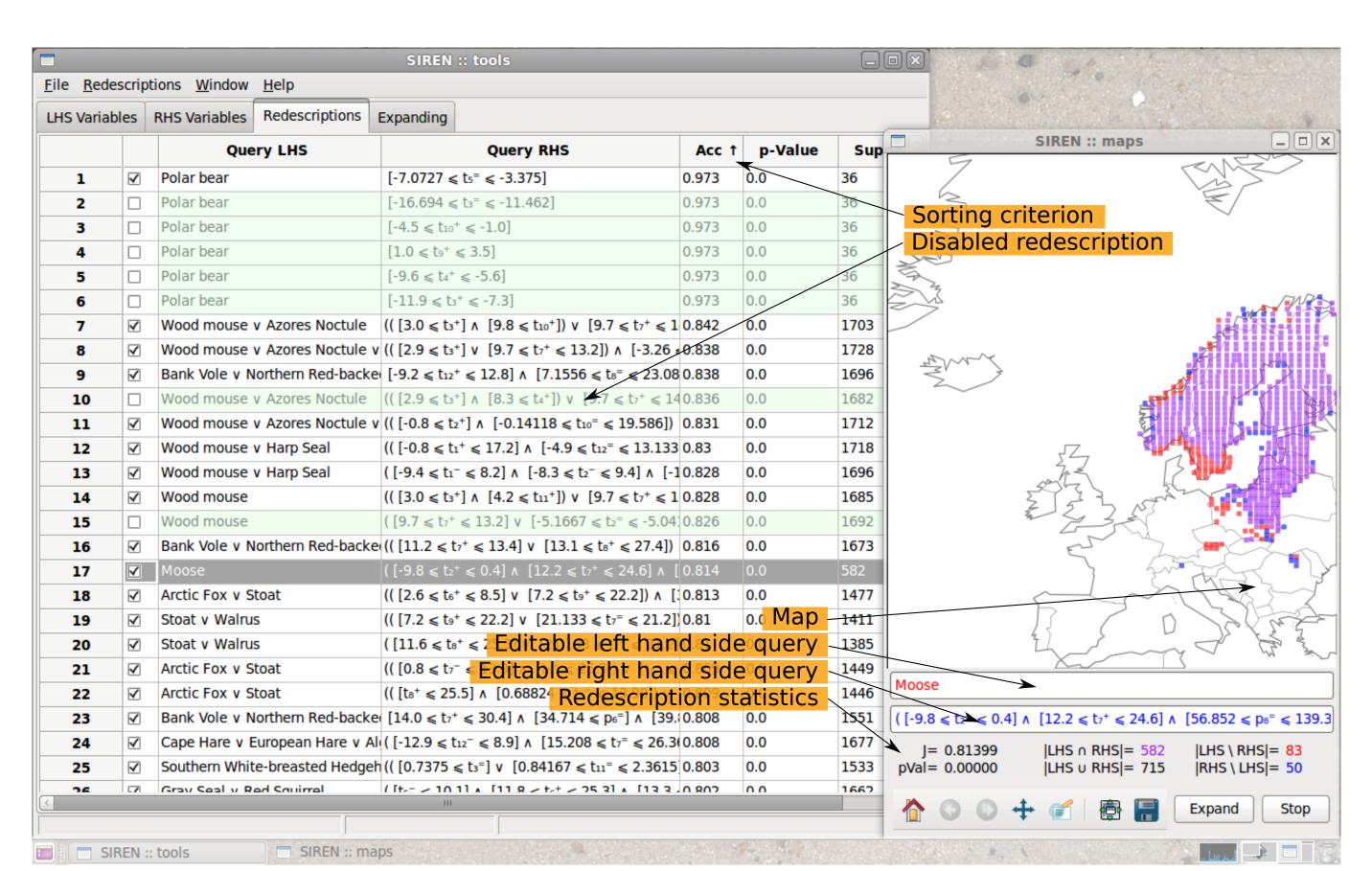

Our *ReReMi* algorithm [1] extends this problem to real-valued data.

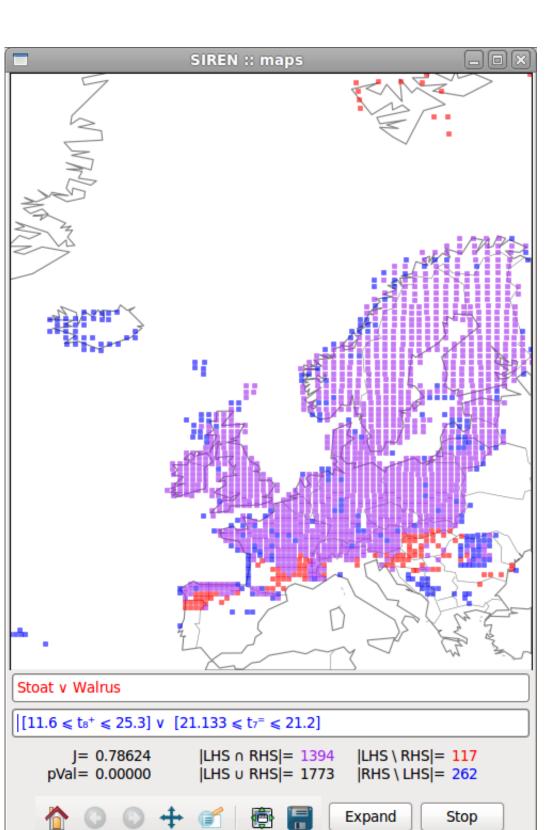
▲ GEOSPATIAL REDESCRIPTIONS

Visualizing the redescriptions on a map is a key toward interpreting the results when the entities are connected to geographical locations.

A meaningful geospatial redescription should define coherent areas using **expressive queries**.




▼ INTERACTIVE DATA MINING


Mining data is generally an **iterative process**.

Results obtained at one step give rise to hypotheses which will be tested at a further step.

Siren improves the analysis by providing means to easily interact with the redescription mining process.

BIOCLIMATIC NICHE-FINDING

An intance of **geospatial redescription mining** – and an important task in biology – is to **identify the bioclimatic** constraints that allow some species to survive.

FUNCTIONALITIES

The functionalities of **Siren** include:

- Mining initial redescriptions
- Extending redescriptions
- Editing redescriptions
 - Selecting variables
 - Filtering results

HS Variable	S	RHS Va	riables	Re	descriptions	Expa	nding	
		Id	Nan	ne	Туре		Min ↓	Max
1		1	t ₂ -		numerical	-2	3.6	11.3
2		0	tı-		numerical	-2	3.2	11.9
3 [2	t ₃ -		numerical	-2	2.5	11.8
4		11	t ₁₂ -		numerical	-2	1.1	12.9
5		3	t ₄ -		numerical	-19	9.6	13.3
6	✓	25	t ₂ =		numerical	-1	7.61	14.225
7		10	t11-		numerical	-1	7.2	15.5
8	✓	24	tı=		numerical	-1	7.113	14.725
9	✓	26	t ₃ =		numerical	-10	6.85	14.9

riie <u>n</u> eue	scrip	tions <u>W</u> indow	<u>п</u> еір					
LHS Varia	bles	RHS Variables	Redescriptions	Expanding				
			Query LH	S	Query RHS	Acc 1	p-Value	Support
1		Polar bear			[1.0 ≤ t ₉ ⁺ ≤ 3.5]	0.973	0.0	36
2		Polar bear			$[-9.6 \leqslant t_4^+ \leqslant -5.6]$	0.973	0.0	36
3	✓	Polar bear			[-7.0727 ≤ t₅= ≤ -3.375]	0.973	0.0	36
4		Polar bear			$[-4.5 \le t_{10}^+ \le -1.0]$	0.973	0.0	36
5		Polar bear			[-16.694 ≤ t₃= ≤ -11.462]	0.973	0.0	36
6		Polar bear			[-11.9 ≤ t ₃ + ≤ -7.3]	0.973	0.0	36
7	✓	Wood mouse	v Azores Noctule		(($[3.0 \le t_3^+]$ \land $[9.8 \le t_{10}^+]$) v $[9.7 \le$	0.842	0.0	1703
8	✓	Wood mouse	v Azores Noctule	v Harp Seal	(($[2.9 \leqslant t_3^+]$ v $[9.7 \leqslant t_7^+ \leqslant 13.2]$) Λ	0.838	0.0	1728
9	✓	Bank Vole v N	Iorthern Red-back	ked Vole v Steppe	e Moi $[-9.2 \le t_{12}^+ \le 12.8] \ \Lambda \ [7.1556 \le t_8^-]$	≤ 0.838	0.0	1696
10		Wood mouse	v Azores Noctule		$(([2.9 \leqslant t_3^+] \land [8.3 \leqslant t_4^+]) \lor [9.7 \leqslant t_4^+])$	t 0.836	0.0	1682
11	✓	Wood mouse	v Azores Noctule	v Harp Seal	(($[-0.8 \le t_2^+]$ \land $[-0.14118 \le t_{10}^- \le 19]$	0.831	0.0	1712
12	✓	Wood mouse	v Harp Seal		$(([-0.8 \le t_1^+ \le 17.2] \land [-4.9 \le t_{12}^- \le$	0.83	0.0	1718

REFERENCES

