Safe Navigation in Urban Environments

Esther Galbrun, Konstantinos Pelechrinis and Evimaria Terzi

Boston University College of Arts & Sciences

August 24, 2014

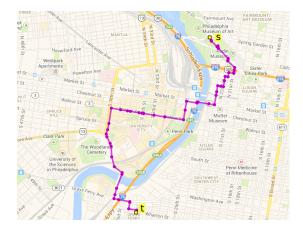
BU

After a visit to the Philadelphia Museum of Art

Rocky wants to walk home, on Warthon street.

the shortest path

the safest path



the shortest path or the safest path ?

trade-offs

Path	Length ℓ (m)	Risk <i>r</i> (10 ⁻³)
1	3955	2.32
2	4027	2.02
3	4060	2.01
4	4922	1.71
5	5988	1.70

BU

Exported from OpenStreetMap Nodes Intersections Edges Street segments Weight *l*(e) Physical length

Risk model

. . .

Built from publicly available civic datasets

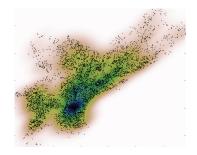
DISPATCH_DATE_TIME,TEXT_GENERAL_CODE,POINT_X,POINT_Y 2010-05-05 11:34:00,Robbery No Firearm,-75.17699712,40.0528852 2010-03-31 12:47:00,Thefts,-75.22697891,39.99847574 2007-08-13 07:40:00,Theft from Vehicle,-75.24469105,39.96263542

> Aggravated Assault No Firearm Robberg No Firea

Risk model

Built from publicly available civic datasets

1. Obtain a spatial density with Kernel Density Estimation



Built from publicly available civic datasets

- 1. Obtain a spatial density with Kernel Density Estimation
- 2. Evaluate along street segments and normalize

Weight r(e) relative crime probability

Given a graph G = (V, E), a path P from s to t. Length of P $\ell(P) = \sum_{e \in P} \ell(e)$

Given a graph G = (V, E), a path P from s to t. Length of P $\ell(P) = \sum_{e \in P} \ell(e)$ Risk of P $r_t(P) = 1 - \prod_{e \in P} (1 - r(e))$

Given a graph G = (V, E), a path P from s to t. Length of P $\ell(P) = \sum_{e \in P} \ell(e)$ Risk of P $r_t(P) = 1 - \prod_{e \in P} (1 - r(e))$, or (total risk) $r_m(P) = \max_{e \in P} r(e)$. (max risk)

$\begin{array}{l} \textbf{\textit{P} dominates } \textbf{\textit{P}'} \ \text{if}} \\ \ell(\textbf{\textit{P}}) \leq \ell(\textbf{\textit{P}'}) \ \text{and} \ r(\textbf{\textit{P}}) < r(\textbf{\textit{P}'}), \ \text{or}} \\ \ell(\textbf{\textit{P}}) < \ell(\textbf{\textit{P}'}) \ \text{and} \ r(\textbf{\textit{P}}) \leq r(\textbf{\textit{P}'}). \end{array}$

SafePaths

Problem (SafePaths)

If \mathscr{P} is the set of all possible paths from s to t, our goal is to select a **small** subset of these paths $\mathscr{S} \subseteq \mathscr{P}$ such that for every path $P \in \mathscr{S}$, P is neither dominated by nor equivalent to any other path $P' \in \mathscr{S}$.

Solving SafePaths with length and total risk:

$$\ell(P) = \sum_{e \in P} \ell(e)$$

$$r_t(P) = 1 - \prod_{e \in P} (1 - r(e))$$

Solving SafePaths with length and total risk:

$$\begin{split} \ell(P) &= \sum_{e \in P} \ell(e) \\ r_t(P) &= 1 - \prod_{e \in P} (1 - r(e)) \end{split}$$
 Turn product of probabilities into sum of logs.

Solving SafePaths with length and total risk:

$$\ell(P) = \sum_{e \in P} \ell(e)$$

$$r_t(P) = 1 - \prod_{e \in P} (1 - r(e))$$

Turn product of probabilities into sum of logs.

sum-sum biobjective minimization problem

Solving SafePaths with length and total risk:

$$\frac{\ell(P)}{r_t(P)} = \sum_{e \in P} \ell(e)$$

$$r_t(P) = 1 - \prod_{e \in P} (1 - r(e))$$

Turn product of probabilities into sum of logs.

sum-sum biobjective minimization problem

Solving SafePaths with length and max risk:

$$\ell(P) = \sum_{e \in P} \ell(e)$$

$$r_m(P) = \max_{e \in P} r(e)$$

Solving SafePaths with length and max risk:

$$\ell(P) = \sum_{e \in P} \ell(e)$$

$$r_m(P) = \max_{e \in P} r(e)$$

sum-max biobjective minimization problem

Solving SafePaths with length and max risk:

$$\ell(P) = \sum_{e \in P} \ell(e)$$

$$r_m(P) = \max_{e \in P} r(e)$$

sum-max biobjective minimization problem

Solving SafePaths with length and max risk:

$$\ell(P) = \sum_{e \in P} \ell(e)$$

$$r_m(P) = \max_{e \in P} r(e)$$

sum-max biobjective minimization problem

Algorithms

Approximation via early stopping

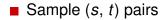
Approximation via early stoppingEllipse pruning

Algorithms

Approximation via early stopping (subset of paths) Ellipse pruning (same set of paths)

Experiments

Setting



Setting

- Sample (*s*, *t*) pairs
- Focus on short distances

Experiments

Setting

Sample (*s*, *t*) pairs

Focus on short distances

Setting

- Sample (*s*, *t*) pairs
- Focus on short distances
- Run algorithms with/without approximation and pruning

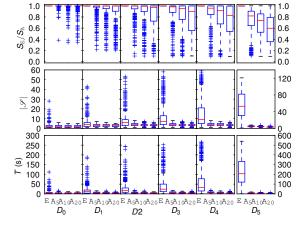
Setting

- Sample (*s*, *t*) pairs
- Focus on short distances
- Run algorithms with/without approximation and pruning
- Compare solution quality and speed

Experiments

Results

BU

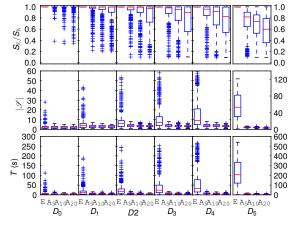


Fairly accurate approximations

Experiments

Results

BU



Fairly accurate approximationsSignificant speed-ups

Conclusions

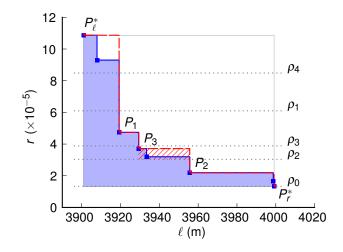
- Built a risk model from civic datasets
- Formalized a problem of safe urban navigation *Two variants:* total-risk and max-risk
- Proposed practical algorithmic solutions

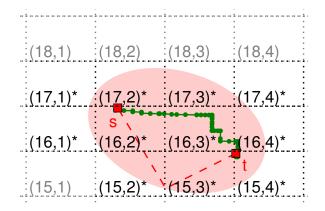
Conclusions

- Built a risk model from civic datasets
- Formalized a problem of safe urban navigation *Two variants:* total-risk and max-risk

Proposed practical algorithmic solutions

Thanks!





BU

Sum-Recursive(
$$G, \ell(), r()$$
)
1: $P_{\ell}^* \leftarrow \text{Dijkstra}(G, \ell())$
2: $P_r^* \leftarrow \text{Dijkstra}(G, r())$
3: $\mathscr{S} \leftarrow \{P_{\ell}^*, P_r^*\}$
4: sum-rec($P_{\ell}^*, P_r^*, \mathscr{S}$)
5: return \mathscr{S}

Routine sum-rec(
$$P_u, P_l, \mathscr{S}$$
)
1: $\lambda \leftarrow (r(P_u) - r(P_l))/(\ell(P_u) - \ell(P_l))$
2: $\forall e \in E : f(e) = r(e) - \lambda \ell(e)$
3: $P_i \leftarrow \text{Dijkstra}(G, f())$
4: if $P_i \neq P_u$ and $P_i \neq P_l$ then
5: $\mathscr{S} \leftarrow \mathscr{S} \cup \{P_i\}$
6: sum-rec(P_u, P_i, \mathscr{S})
7: sum-rec(P_l, \mathscr{S})

Routine max-rec(
$$P_u, P_l, \mathscr{S}$$
)1: $\rho \leftarrow (r(P_u) + t(P_l))/2$ 2: if $\exists e \in E, t(P_l) < r(e) < \rho$ then3: $P_i \leftarrow \text{Dijkstra}(G_{r(e) < \rho}, \ell())$ 4: if $P_i \neq P_l$ then5: $\mathscr{S} \leftarrow \mathscr{S} \cup \{P_i\}$ 6: max-rec(P_i, P_l, \mathscr{S})7: max-rec(P_u, P_i, \mathscr{S})

	Total-Paths		Max-Paths	
	Chicago	Philadelphia	Chicago	Philadelphia
Total	2400	2400	2400	2400
$ \mathscr{S} = 1$ $ \mathscr{S} = 2$	111 182	407 148	263 317	562 253
Ident. A_5 Ident. A_{10} Ident. A_{20}	520 420 337	476 407 327	398 340 14	424 351 49

BU