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HT, IŽ and EG prepared the data. EG performed the analysis with the different methods. All authors analyzed
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Highlights1

• We present a methodology for biogeographical analysis2

• Redescription mining emphasizes local association patterns and limiting conditions3

• Redescription mining combines different perspectives over the studied system4

• We showcase the potential of this method for ecological and biogeographical studies5

• We consider an example biogeographic study focused on China and southern Asia6

Abstract7

Identifying and understanding limiting conditions is at the centre of ecology and biogeography. Traditionally,8

associations between climate and occurrences of organisms are inferred from observational data using regression9

analysis, correlation analysis or clustering. Those methods extract patterns and relationships that hold throughout10

a dataset. We present a computational methodology called redescription mining, that emphasizes local patterns11

and associations that hold strongly on subsets of the dataset, instead. We aim to showcase the potential of this12

methodology for ecological and biogeographical studies, and encourage researchers to try it.13

Redescription mining can be used to identify associations between different descriptive views of the same14

system. It produces an ensemble of local models, that provide different perspectives over the system. Each model15

(redescription) consists of two sets of limiting conditions, over two different views, that hold locally. Limiting16

conditions, as well as the corresponding subregions, are identified automatically using data analysis algorithms.17

We explain how this methodology applies to a biogeographic case study focused on China and southern Asia.18

We consider dental traits of the large herbivorous mammals that occur there and climatic conditions as two aspects19

of this ecological system, and look for associations between them.20

Redescription mining can offer more refined inferences on the potential relation between variables describing21

different aspects of a system than classical methods. Thus, it permits different questions to be posed of the22

data, and can usefully complement classical methods in ecology and biogeography to uncover novel biogeographic23

patterns.24

A python package for carrying out redescription mining analysis is publicly available.25

Keywords: limiting conditions, climate, large mammals, machine learning, redescription mining, teeth26
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1 Introduction27

Among the central perspectives in ecology and biogeography is uncovering patterns in the organization of ecological28

systems and assemblages, and the processes that underlie them (Dansereau, 1957; MacArthur and Wilson, 1967;29

Cox, Ladle, and Moore, 2020; Ovaskainen and Abrego, 2020). Contemporary biogeographical studies are data30

intensive, span increasingly large spatial and temporal scales and require rigorous computational approaches31

(Pearse and Peres-Neto, 2017). Such analyses typically aim at extracting generic patterns and relations from32

large observational datasets and highlighting contrasts between different subsets of the data. Most common33

computational approaches in biogeography (Jongman, Braak, and Tongeren, 1995; P. Legendre and L. Legendre,34

2012) include correlation analyses, regression analyses, ordination and clustering.35

Partitioning techniques, known as clustering, have been part of the toolbox in ecological studies for nearly a36

century (Kulczynski, 1928). More recently, Kreft and Jetz (2010) and Vavrek (2016) compared clustering methods37

to identify biogeographic patterns from species distribution data and fossil datasets, respectively. Kreft and Jetz38

(2010) found that the clusters identified this way were overall similar to the classic primary geographical divisions39

of the world’s biota, but also exhibit notable differences in the assignment of some subregions, such as, in particular,40

Madagascar, the Sahara, northern Africa and the Arabian Peninsula.41

Ordination techniques aim to reduce the dimensionality of the data while retaining as much information as42

possible from the original dimensions. Ordination techniques differ in internal distance measures and complexity43

of the projection. Examples include general purpose approaches such as Principal Component Analysis (PCA;44

Pearson, 1901; Hotelling, 1933) or Non-metric Multidimensional Scaling (NMDS; Kruskal, 1964) as well as ap-45

proaches that are more specifically designed for ecology, such as Outlying Mean Index (OMI; Dolédec, Chessel,46

and Gimaret-Carpentier, 2000) and Ecological Niche Factor Analysis (ENFA; Hirzel et al., 2002).47

Regression analysis is broadly used in ecology and biogeography for modelling relationships between vari-48

ables (see e.g. Ordoñez et al., 2009). Many species distribution models are built on regression (Elith and Leath-49

wick, 2009). New methodological developments aim to take into account spatial (Mellin et al., 2014), multi-scale50

(Beever, Swihart, and Bestelmeyer, 2006) structure of the data or interactions between species (Krapu and Borsuk,51

2020).52

Combinations of techniques are commonly used as well. For example, Thomas et al. (2019), combine ordination53

and clustering to investigate how well functional groups explain variance in species traits, while He, Kreft, et al.54

(2017) identify zoogeographical regions of China through a combination of clustering, ordination and regression55

analysis. Advanced machine learning techniques are also making their way into biogeographic analysis, Brown,56

Holland, and Jordan (2020), for instance, recently proposed to use support vector machines (SVM) to learn a57

multi-dimensional boundary between two entities such as populations or species, and examine possible biological58

overlaps.59

Redescription mining, on which we focus here, combines partitioning techniques, such as clustering, and mod-60

elling techniques, such as regression. It identifies multiple local models on subsets of data, and automatically61

generates sets of limiting conditions and the corresponding split of the data. This is where redescription mining62

departs from most classical analysis methods that identify global models and do not yield explicit and interpretable63

limiting conditions.64

The main idea is to identify two sets of limiting conditions such that, ideally, at any locality they either both65

hold true or both do not. Thus, redescription mining requires two perspectives of an ecosystem. In this case study,66

we search for relationships between dental traits of mammals that occur at localities and the climatic conditions67

of these localities. For example, limiting conditions could require that more than 80% of large herbivores in68

the region have high crowned teeth and, on the other hand, that the mean annual precipitation and the mean69

temperature of the warmest quarter in the region be lower than 500 mm and 18 °C, respectively. We would then70

expect few or no regions satisfying one set of conditions but not the other, that is, having the specified percentage71

of high-crowned teeth but with rainfall or temperature above the specified thresholds, or vice-versa, satisfying the72

climatic constraints but having a small percentage of high-crowned teeth.73

Here, we tailor redescription mining for analyses in ecology and biogeography. We showcase the potential of74

this method on a case study looking for associations between the distribution of mammalian dental traits and the75

climatic conditions of their habitats. Our study focuses on China and southern Asia, which is a pivotal region for76

biogeographic analyses, due to the complex Asian monsoon climate system and biogeography, affecting the living77

conditions of approximately one-third of the global human population.78

Redescription mining was first introduced as a computational data analysis method in computer science (Ra-79

makrishnan, Kumar, et al., 2004). In addition to algorithmic studies (see references in Galbrun and Mietti-80

nen, 2017), this method has been applied, among others, in bio-informatics (Ramakrishnan and Zaki, 2009) and81

medicine (Mihelčič et al., 2017).82
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We show how redescription mining can identify biologically meaningful limiting conditions. We also show83

how those sets of conditions, in the form of redescriptions, can be used to computationally identify or refine84

zoogeographic units, such as ecoregions.85

2 Materials for the case study86

China and southern Asia constitute one of the most zoogeographically complex regions in the world due to its di-87

verse environmental gradients, its climatic position, as well as its geological history and spatial inter-connectedness88

(He, Kreft, et al., 2017; Ficetola, Mazel, and Thuiller, 2017). The climate system of China and southern Asia are89

distinct from any other region in the world.90

Variations brought by the Asian monsoon strongly affect the conditions for life in the region (Yamada et al.,91

2019; Zhao et al., 2010). The plant and animal biomes are diverse and often constitute unique biodiversity hotspots92

(Z. Tang et al., 2006; Huang et al., 2015). Despite the fact that modern flora and fauna in China and Southern93

Asia have been strongly fragmented by human activities (He, Yan, et al., 2018)—which is true for most of the94

temperate latitudes today—associations between fauna and climate appear to be robust and are subject to active95

ongoing research (He, Kreft, et al., 2017; Ficetola, Mazel, and Thuiller, 2017).96

The goal of this case study is to analyze regional patterns of association between dental traits of large her-97

bivorous placental mammals and the climatic context of their habitats. Dental proxies used in our analysis are98

known as dental ecometrics (Eronen et al., 2010; Žliobaitė, Rinne, et al., 2016; Vermillion et al., 2018). Teeth99

of mammalian herbivores closely reflect the types of plant food their owners can effectively process and convert100

into energy. Even though each area typically hosts a range of structural types of plant food, different climates101

will determine which vegetation dominates. Therefore, the distribution of dental traits within faunal communities102

can provide more robust information about local environmental conditions at the global scale, compared to the103

presence or absence of specific species, especially of the past ecosystems (Liu et al., 2012).104

Previously, we found that global zoogeographic patterns do not directly apply to China and southern Asia (Gal-105

brun, H. Tang, et al., 2018). The results suggested complex climate–dental-trait associations prevailing within106

those spatially compact and climatically unique areas. We hypothesized that the monsoonal climate in these107

regions may make the conditions attractive for seasonal immigrants from the temperate zones.108

2.1 Study region and datasets109

The units of our analysis are cells identified by placing a 50 km× 50 km grid over the world map, which we call110

localities. Each locality is characterized by climatic variables as well as variables representing the distribution of111

dental traits among species occurring at the locality. Functional dental traits are macroscopic, they are defined112

in such a way that little variation is expected within species, and trait scores can be assigned at the species113

level (Oksanen et al., 2019). For each locality and each dental trait, we compute the average value over occurring114

species. We discard localities with fewer than three species, considering that the data in such cells are too115

sparse for the distribution of dental traits to be informative. In short, our dataset consists of a pair of matrices,116

Localities ×Dental traits and Localities ×Climate and contains 4416 localities. Dental traits and Climate comprise117

respectively 11 and 21 numerical variables. All variables are listed in Table 1.118

2.2 Climatic variables119

The climate data come from the WorldClim dataset,1 which builds on extrapolated observations from weather120

stations. The climatic variables are listed in the right panel of Table 1. We reuse the dataset processed by M.121

Lawing as reported in (Oksanen et al., 2019). In addition, we considered the net primary productivity (NPP),122

computed from the mean annual temperature (T∼Y) and total annual precipitation (PTotY) as follows:123

NPP = min(3000/(1 + exp(1.315− 0.119 · T∼Y)), 3000 · (1− exp(−0.000664 · PTotY))) .

We apply a logarithmic transformation to all precipitation variables prior to the analysis with the classical124

methods. Indeed, these methods rely on identifying linear correlations between variables and are therefore sensitive125

to the measurement scale. Redescription mining does not require such transformation as it selects thresholds for126

the limiting conditions independently of the measurement scale.127

1http://www.worldclim.org/
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Table 1: List of the dental traits and bioclimatic variables. Temperature and precipitation are measured respec-
tively in degrees Celsius (°C) and in millimeters (mm).

Dental variables

HYP Average ordinated hypsodonty
LOP Average longitudinal loph count
HOD Average ordinated horizodonty
AL Fraction of taxa with acute lophs
OL Fraction of taxa with obtuse lophs
SF Frac. of taxa with structural fortification of cups
OT Frac. of taxa with flat occlusal topography
CM Frac. of taxa with coronal cementum
OO Frac. of taxa with exclusively obtuse lophs
ETH Frac. of taxa with thickened enamel
LOPT Average transverse loph count

Climatic variables

T∼Y Mean Annual Temperature
T∼RngD Mean Diurnal Range
TIso Isothermality
TSeason Temperature Seasonality
T+WarmM Max Temperature of Warmest Month
T−ColdM Min Temperature of Coldest Month
TRngY Annual Temperature Range
T∼WetQ Mean Temperature of Wettest Quarter
T∼DryQ Mean Temperature of Driest Quarter
T∼WarmQ Mean Temperature of Warmest Quarter
T∼ColdQ Mean Temperature of Coldest Quarter
PTotY Annual Precipitation
PWetM Precipitation of Wettest Month
PDryM Precipitation of Driest Month
PSeason Precipitation Seasonality
PWetQ Precipitation of Wettest Quarter
PDryQ Precipitation of Driest Quarter
PWarmQ Precipitation of Warmest Quarter
PColdQ Precipitation of Coldest Quarter
NPP Net Primary Productivity

2.3 Dental trait variables128

Species occurrence data come from the list of the International Union for Conservation of Nature.2 Fig. 1 depicts129

the number of species occurring at each locality in the study region. We reused the dataset that has been processed130

by M. Lawing with an extra interpretation of acute lophs as reported in (Oksanen et al., 2019). Dental data have131

been compiled using the dental trait scoring scheme reported in (Žliobaitė, Rinne, et al., 2016). Teeth are scored132

by visual inspection, typically of the second upper molar, identifying the presence or absence of specific structural133

elements and counting specific components, such as cutting edges. The dental variables are listed in the left panel134

of Table 1. We reuse the scores for species from the study of (Galbrun, H. Tang, et al., 2018) with several updates135

and modifications as follows.136

First, we use the average ordinated hypsodonty score instead of binarizing hypsodonty categories, to better137

align with previous dental ecometric studies. Rather than describing a locality using three variables (fraction of138

brachydont, mesodont and hypsodont species respectively), we now represent this information with a single variable139

(averaged hypsodonty). For example, a locality having 30% brachydont, 20% mesodont and 50% hypsodont species,140

corresponds to mean ordinated hypsodonty of 0.3 · 1 + 0.2 · 2 + 0.5 · 3 = 2.2. This treatment has been used before141

in ecometric studies (Fortelius et al., 2002; Eronen et al., 2010; Liu et al., 2012; Žliobaitė, Rinne, et al., 2016).142

The study of (Galbrun, H. Tang, et al., 2018) used binary treatment hoping for higher resolution patterns, but143

this appeared to be unnecessary.144

Second, we add three dental traits variables, namely exclusively obtuse lophs (OO), thickened enamel (ETH) and145

transverse loph count (LOPT). The exclusively obtuse lophs variable is intended to capture the dental morphology146

of a generalist, such as a goat. Its value can be derived from the rest of dental traits. For a species, exclusively147

obtuse lophs takes value one if no specialized types of loph-related structures are present (no acute lophs, no148

structural fortification, no flatness of the occlusal surface). Thickened enamel is an experimental trait scored149

approximately by visual inspection and takes value one if the dental enamel appears to be thicker than regularly150

seen in molars of other species of a similar size. In this study, the average presence of thickened enamel has a151

strong taxonomic association with suids. Finally, the transverse lophs count is computed in the same way as152

the longitudinal lophs count (LOP) used in our previous study (Galbrun, H. Tang, et al., 2018), except that the153

direction of cutting structures has to span across the tooth row instead of along the tooth row. Both longitudinal154

loph count and transverse loph count variables have strong taxonomic associations. The longitudinal loph count155

is high when selenodonts (particularly bovids and cervids) dominate the faunal community. The transverse loph156

count is never dominantly high in faunal communities and increases in the presence of tropical non-Artyodactyls,157

such as elephants, tapirs or browsing rhinos.158

2https://www.iucn.org/
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Fig. 1: Map of the species richness. Number of different species of large herbivorous mammals occurring at each
locality.

For this analysis, we only use freely available software and libraries. The datasets used in this study along with159

the scripts for performing the analysis with classical methods as well as with redescription mining, are publicly160

available at https://github.com/zliobaite/redescription-China.161

3 Preamble: classical analysis methods162

In order to highlight the perspectives of redescription mining, we first outline patterns and relations that can be163

produced with the most common classical analysis methods, namely correlation analysis, principal component anal-164

ysis, regression analysis and clustering. We use implementations provided by the Python SciPy3, scikit-learn4165

and Statsmodels5 libraries.166

3.1 Pairwise correlation and scatter plots167

Many methods exist for assessing pairwise-relation of numeric variables, the simplest and most popular of which is168

linear correlation (Pearson correlation coefficient). A correlation coefficient (r) indicates the strength of pairwise169

association, for example, PWetM and PWetQ (r = 0.995) vary together, and TSeason and TIso (r = −0.843)170

vary in opposite directions. A visual inspection of scatter plots further allows to detect pairs of variables that are171

strongly related but not in a purely linear way, like PTotY and NPP, or more weakly related in a clearly non-172

linear way, like T∼DryQ and PWarmQ, for instance. Non-linear methods (such as Spearman rank correlation)173

or methods for categorical variables are available for quantifying pairwise relationships further, if necessary, but174

stand-alone correlation analysis does not give a multivariate perspective on data.175

3.2 Multivariate projections176

Several linear and non-linear methods exist for projecting data into a lower-dimensional space, the most common177

of which is Principal Component Analysis (PCA) (Pearson, 1901; Hotelling, 1933). The dataset is projected into178

new dimensions, called the principal components, which are positioned orthogonally to each other. For visual179

analysis, the projection is typically restricted to the first two principal components, i.e. along the two uncorrelated180

dimensions that preserve the largest amount of variance.181

The PCA projection plot in Fig. 2 (a) gives an overview of relations between variables. We can identify groups182

of strongly related variables. For instance, expectedly, monthly and quarterly temperature variables (T+WarmM,183

T−ColdM, T∼WarmQ, etc.) behave in a strongly coordinated manner. We also see that SF and TIso are strongly184

correlated, and negatively correlated with PSeason.185

3https://www.scipy.org/, see scipy.cluster.hierarchy
4https://scikit-learn.org/stable/, see sklearn.decomposition.PCA, sklearn.cluster.KMeans and sklearn.metrics
5https://www.scipy.org/, see statsmodels.api.GLS
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---:10
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Fig. 2: PCA projection of the variables and maps of clusterings. The variables are projected on the first two
components identified by the principal component analysis, considering all variables together (a). The maps show
clusterings from k-means (b) and HCA with median linkage function (c), both for k = 5 clusters. To the left of
each map, we list the different clusters, with the number of localities they contain.

3.3 Regression models186

Regression models are commonly used for making predictions of unobserved variables, as well as summarizing187

relationships between variables. Various techniques are available for building regression models, starting from188

single-variable to multi-variable models, from least squares to robust regularized regressions (Hastie, Tibshirani,189

and Friedman, 2001), one can also add interaction components, making regression models non-linear.190

While PCA belongs to unsupervised methods, meaning that no particular perspective or variable is preferred191

or targeted and the analysis aims at characterizing the structure of the data, regression belongs to supervised192

methods, meaning that particular relationships are assumed and the model detects whether such relationships193

are present. For instance, the value of PTotY can be estimated accurately from OO (comparatively low Akaike’s194

information criterion (AIC) and high F-statistic values) but models for predicting TIso from the same trait variable195

do not show a good linear fit. Crucially, the relationships extracted in regression analysis are expected to be valid196

across most of the dataset, that is, global models are obtained.197

3.4 Clustering198

Among the many computational techniques available for clustering (Jain and Dubes, 1988), k-means and different199

variants of hierarchical cluster analysis (HCA) are commonly used in ecology.200

The k-means algorithm (Lloyd, 1982) is an iterative procedure that alternates between assigning data points201

to the closest cluster center and recomputing the cluster centers. Agglomerative HCA (Ward, 1963) starts with202

each data point as a distinct cluster. An algorithm then iteratively combines the most similar clusters pairwise,203

constructing a hierachy of clusters, until a single cluster remains. Practically, the process is often stopped early,204

when a desired number of clusters is reached. Different criteria for measuring the distance between two clusters205

lead to variants of the algorithm. Let d(x, y) denote the distance between two data points x and y, and cX denote206

the centroid of cluster X. The distance D(U, V ) between two clusters U and V is defined as follows in different207

HCA methods, also referred to as linkage functions, including:208

average a.k.a. Unweighted Pair-Group Method using arithmetic Averages (UPGMA), the average distance be-209

tween cluster members, D(U, V ) =
∑

(u,v)∈U×V d(u, v)/(|U | · |V |)210

centroid a.k.a. Unweighted Pair-Group Method using Centroids (UPGMC), the distance between cluster cen-211

troids, D(U, V ) = d(cU , cV )212

median a.k.a. Weighted Pair-Group Method using Centroids (WPGMC), a variant of UPGMC weighted by the213

size of the clusters214

For illustration of clustering we use all Dental traits and Climate variables except HOD and LOPT, which we215

found to be mostly constant within the focus area. We standardized each variable, i.e. we separately centered and216

rescaled each variable by subtracting the mean and dividing by the standard deviation. Distances between data217

points were measured with the ordinary Euclidean distance metric (L2 norm).218

Example clusterings from k-means and HCA with median linkage function, both for k = 5 clusters are shown219

in Fig. 2 (b) and (c), respectively. Here we do not enforce spatial connectivity of the localities within clusters,220
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Dental traits query: qD =

[HYP ≤ 1.889] and [LOP ≤ 1.75] and [OO ≤ 0.4]

Climate query: qC =

[19.6 ≤ T+WarmM ≤ 38.5] and [116 ≤ PWarmQ]

Redescription: R = (qD, qD)

Support: supp(R) = supp(qD) ∩ supp(qC)

Fig. 3: Schema of classical methods we consider (top) and redescription mining, including a summary of important
notations (bottom). Classical methods can be separated into variable-centered approaches (including correlation
analysis and regression analysis) and locality-centered approaches (including clustering). Redescription mining
aims to combine these two types of approaches.

however connectivity tends to emerge automatically due to the connectivity of species occurrences and the spatial221

coherence of climatic trends. Different methods group the localities differently, but some areas emerge across most222

of the clusterings, regardless of minor variations in the specific localities involved. In particular, localities from the223

Tibetan plateau and expanding towards the east are often grouped into a cluster (drawn in shades of light blue)224

and similarly for areas from the Indian subcontinent and the Indochinese peninsula (shades of red and purple), as225

well as for areas of eastern China (shades of green and brown).226

Fig. 3 (top) schematically illustrates how these classical methods operate on a tabular dataset. Clustering227

identifies different subsets in the data but does not directly offer explanations for why entities are grouped in a228

particular way and which variables are primarily responsible for the structure. In other words, clustering does not229

provide models or descriptors of the subsets. Regression or correlation analyses, on the other hand, provide models230

or descriptors, but they must hold across the whole dataset, without distinctions between subsets. In contrast,231

redescriptions constitute local models.232

4 Redescription mining methodology233

The result of redescription mining can be viewed as an ensemble of local models providing multiple perspectives234

over an ecosystem. The data subsets on which these local models are built can overlap. The local models are not235

functions, in the sense of a standard regression, but paired collections of limiting conditions, in this case, limits236

on the climate coupled with limits on the proportion of dental traits among the population of herbivores.237

Redescription mining is the process of automatically identifying and statistically evaluating limiting conditions238

and corresponding data subsets. Different algorithms exist for mining redescriptions. Here we introduce the239

underlying concepts and one algorithmic approach, which we tailored for biogeographic analyses. See (Galbrun240

and Miettinen, 2017) for more details about the method. Fig. 3 (bottom) schematically illustrates and summarizes241

the main concepts of redescription mining.242
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4.1 Concepts and definitions243

With this method, associations are captured as pairs of logical formulas—also known as queries—expressing244

constraints on the values that the variables might take. Each such query defines a subset of localities where the245

corresponding constraints are satisfied, called the support of the query. The algorithmic process constructs pairs246

of queries, over climate and dental traits variables respectively, such that the two corresponding sets of localities247

overlap as much as possible. In this way, the method generates alternative descriptions of a subset of localities, in248

terms of their climatic conditions, on one hand, and of prevailing dental traits, on the other hand, hence the name249

redescription. Queries can be seen as hypotheses about associations between variables, and redescription mining250

as a process to automatically generate and evaluate those hypotheses.251

As a practical example, consider the following query over climatic variables:252

qC = [19.6 ≤ T+WarmM ≤ 38.5] and [116 ≤ PWarmQ] .

We use the Iverson bracket to specify satisfiability conditions, that is, in our case, the ranges in which the253

numerical variables must take value. The query above selects localities where the maximum temperature of the254

warmest month (T+WarmM) is between 19.6 and 38.5 °C and the precipitation of the warmest quarter (PWarmQ)255

is greater than 116 mm. The support of this query, denoted as supp(qC), is the set of localities where the specified256

temperature and precipitation conditions are satisfied.257

Then, a redescription is a pair of queries, one over climate variables and one over dental trait variables respec-258

tively denoted as qD and qC, having similar supports, that is, such that their respective sets of satisfying localities259

overlap as much as possible. The support of a redescription is the subset of localities at which both queries are260

satisfied, i.e. the set of localities that meet both the climate as well as the dental conditions. Overloading the261

notation, we denote the support of a redescription R = (qD, qC) as supp(R), which is such that262

supp(R) = supp(qD) ∩ supp(qC) .

The accuracy of a redescription is a measure of the validity of the relationship across the dataset. The263

accuracy could be assessed using any similarity measure between sets. The Jaccard coefficient (Jaccard, 1901) is264

generally used for this purpose because it is intuitive and symmetric, in the sense that the two compared sets are265

exchangeable. Formally, the Jaccard coefficient is defined as266

J(R) =
|supp(qD) ∩ supp(qC)|
|supp(qD) ∪ supp(qC)|

.

Informally, we are trying to maximize the number of localities where both queries are satisfied while minimizing267

the number of localities where only one of them is. To assess the statistical significance, we compute a p-value268

that indicates how likely it is that the support of the redescription is as large or larger than observed, given the269

size of the support of the two queries it consists of, assuming the queries are independent.270

4.2 Analysis procedure and parameter settings271

Multiple algorithms have been proposed for finding accurate and statistically significant redescriptions. In this272

study, we use the ReReMi algorithm (Galbrun and Miettinen, 2012), which is a greedy algorithm in the sense273

that it makes a locally optimal choice at each iteration. In the initialization phase, the algorithm tests all variable274

pairs, in our case each dental variable with each climatic variable, aiming to form simple redescriptions. In the275

extension phase, the algorithm then iterates over these basic redescriptions and extends them, aiming to improve276

the accuracy of the redescription. Specifically, ReReMi generates redescriptions by appending new variables to277

the current queries, at each step keeping the best candidates for further extension.278

We performed the analysis using Siren,6 an interface that allows to automatically generate redescriptions with279

various algorithms, including ReReMi, and to visualize, cluster and interactively edit the redescriptions (Galbrun280

and Miettinen, 2018).281

The method requires manually setting several parameters, described in more details in the user guide.7 In par-282

ticular, about half a dozen parameters allow to set thresholds on the size of the support of the output redescriptions283

and to control the length and complexity of their queries.284

6http://cs.uef.fi/siren/main/
7http://cs.uef.fi/siren/help/
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We required that at least 1% of localities satisfy both queries (MinSuppIn) and that at least 30% of localities285

satisfy neither of the queries (MinSuppOut). In other words, the intersection of the supports of the two queries286

(the support of the redescription) and their union were required to contain at least 1% and at most 70% of all287

localities. This is an inclusive choice, not overly restrictive, that aims at capturing local patterns. Increasing the288

upper threshold further would jeopardize the local aspect of the analysis, and would lead to something more akin289

to non-linear regression. For a redescription to be informative, its support should neither be too large nor too290

small, and we found these thresholds to provide a good balance, and small variations in these parameters did not291

impact the results much.292

We used two different setups when running the ReReMi algorithm. In the first run, we allowed only conjunctive293

queries on both sides (i.e. we explicitly forbid the use of ‘OR’) and restricted the number of variables to three294

dental variables and two climate variables. In the second run, we allowed dental queries to involve disjunctions,295

and climate queries to contain up to three variables, but tightened the requirement of accuracy gain. Specifically,296

under this constraint, a candidate query can be extended by automatically adding the next variable only if the297

accuracy, as measured by the Jaccard coefficient, increases by a least 0.1. The goal is to obtain interpretable, not298

overly complex (long) queries. This can be achieved either explicitly, by limiting the number of variables and the299

operators used in the queries, as in the first run, or implicitly, by allowing increased complexity only if it brings300

substantial improvement in terms of accuracy, as in the second run.301

4.3 Selecting individual redescriptions for further analyses302

Redescription mining typically outputs a large number of redescriptions, each holding on a subregion within the303

dataset. Subregions can overlap, and the same subregion can potentially be described by different variables.304

Analysts might manually sift through individual redescriptions. However, it is not practical to analyze large305

collections of redescriptions, since many of them contain similar information. Therefore, computational means are306

needed to remove redundant (very similar) redescriptions and identify the most informative (distinct) patterns.307

In this study we approach this challenge in three ways. First, we rank and filter redescriptions automatically308

using accuracy and redundancy measures. Among the top-listed redescriptions, we pick a few pairs for further309

analysis by visually inspecting maps of the corresponding subregions. We also analyze the top-listed redescriptions310

as a group, by means of clustering, allowing us to identify coherent computational ecoregions for the study area.311

In other words, we perform our analysis and reach conclusions through a combination of automated and manual312

processing.313

The first run, with strict explicit constraints, generated 271 redescriptions while the second run, with stringent314

threshold on accuracy gains, generated 188 redescriptions. Either run took about 50 minutes to complete on a315

commodity laptop.316

We filter the two collections separately, ranking the redescriptions by decreasing accuracy and removing any317

redescription having more than 90% of its support in common with a higher-ranked one. That is, a redescription318

Rx is removed from the set of results if it contains a more accurate redescription Ry such that319

|supp(Rx) ∩ supp(Ry)|
min(|supp(Rx)| , |supp(Ry)|)

> 0.9 .

We then inspect more closely the top-ten remaining redescriptions from both lists. We denote the ten redescrip-320

tions produced by the first run, i.e. using only conjunctions, and ordered by decreasing accuracy as R1.1–R1.10.321

Similarly, the ten redescriptions produced by the second run, i.e. under the stricter improvement requirement, and322

ordered by decreasing accuracy are denoted as R2.1–R2.10. All the selected redescriptions have p-values close to323

zero, without correction for multiple testing which is not yet possible with existing methods.324

In summary, the twenty selected redescriptions were obtained using automated processes driven primarily by325

accuracy with the second run yielding more compact but somewhat less accurate redescriptions than the first.326

4.4 Using redescriptions as building blocks for identifying new ecoregions327

While individual redescriptions and the associated limiting conditions can be analyzed in isolation (Sec. 5.2), they328

can also be used in combination as lenses to characterize ecosystems (Sec. 5.1). Conceptually, each redescription329

can be thought of as a basic ingredient. Each locality then can be described by a recipe, that involves some of330

these ingredients (redescriptions that hold true at that locality) but not others. We can then find similar localities331

in terms of their redescription profiles and denote them as distinct ecoregions. The procedure is as follows.332
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Each locality is represented by a binary vector recording whether or not the corresponding redescription holds333

at the locality, which we refer to as the support membership vector. The distance h(u, v) between two localities is334

measured as the Hamming distance, i.e. the number of mismatches, between their respective support membership335

vectors. In other words, the distance between localities u and v is the number of redescriptions that hold at either336

of the two localities but not both. The distance is zero if the localities satisfy exactly the same redescriptions.337

Clusters are then formed by applying a hierarchical agglomerative procedure to the support membership338

vectors. As with standard hierarchical clustering methods, we obtain different variants depending on how the339

distance between clusters is measured, and hence how the next pair of clusters to merge is selected. The distance340

D(U, V ) between two clusters U and V is defined as follows in the different redescription clustering methods:341

sizes the maximum distance between cluster members, i.e. D(U, V ) = max(u,v)∈U×V h(u, v). Ties are broken in342

favor of pairs of clusters having similar sizes.343

ones the maximum distance between cluster members, i.e. D(U, V ) = max(u,v)∈U×V h(u, v). Ties are broken in344

favor of pairs of clusters sharing more positive matches, first, and having similar sizes, second.345

wdist the sum of distances between cluster members, i.e. D(U, V ) =
∑

(u,v)∈U×V h(u, v), directly taking into346

account the sizes of the clusters.347

Because the clusters are generated based on which redescriptions the localities support, the redescriptions that348

are most represented within each cluster provide a characterization for it. In other words, the queries of the349

redescriptions can be used to understand what are the properties that lead to localities being grouped together350

into a cluster. Each cluster can be interpreted as a computationally identified ecoregion.351

5 Case study: biogeographic analysis with redescription mining352

The goal of this case study is to illustrate the type of insights and interpretations that can potentially be obtained353

from redescriptions. We first explain how an analysis can be performed at the ecosystem level, using redescriptions354

as ingredients. Then, we focus on a few selected redescriptions to show what type of information they can capture.355

5.1 Computationally identifying ecoregions with redescription summaries356

We obtain summaries in terms of the twenty most accurate redescriptions with the different clustering variants357

and for k = 3, 5 and 7 clusters. These clusterings reflect limiting conditions in terms of dental traits and climate358

variables. We focus on the summary obtained with the wdist clustering variant, as it accounts for cluster sizes in359

a natural way, and is therefore fairly interpretable. The summary obtained by setting the number of clusters to 5,360

which gives the best compromise between number of clusters and total distance, is shown in Fig. 4.361

The left panel of Fig. 4 shows a map of the resulting geographic clusters. As above with the support of362

redescriptions, the clusters tend to span over contiguous localities, not because we enforce spatial connectivity363

but, rather, as a consequence of autocorrelation within the variables. Since the clusters summarize the interplay364

between the support of multiple redescriptions, individual redescriptions are not expected to match the boundaries365

of any single cluster.366

The results suggest generally similar distinct biogeographical regions as the clustering analysis based on raw367

dental traits and climate data (Sec. 3), such as the Tibetan Plateau, East China and India. However, they exhibit368

a lower similarity between India and Southeast Asia and between the Tibetan Plateau and northern China, but a369

greater similarity between southern China and Southeast Asia and between southern China and northern China.370

A much finer spatial structure over southern China and Southeast Asia is captured, which seems to correspond371

well to the distribution of plant relicts found in these regions (Huang et al., 2015).372

The right panel of Fig. 4 shows how the localities supporting the redescriptions are distributed among these373

cluster regions. This can be used to look up the redescriptions that are most represented within a cluster (darker374

cells) and understand the reasons that led to the cluster being formed. For instance, redescriptions R2.1 and R1.2375

are very specific to cluster A, which corresponds to the Tibetan plateau. The Tibetan Plateau and surrounding376

regions, indeed, have been highlighted as one of the most complex and distinct biotas on Earth (He, Lin, et377

al., 2020), that also underwent striking changes over time. Redescriptions R1.8, R2.6 and R1.10 and R1.5 are378

particularly well represented in cluster B, while redescriptions R2.5 and R1.4 are represented in both B and C,379

as well as cluster D to a lesser extent. Most of the remaining redescriptions are represented in cluster C, as well380

as cluster D, cluster E, or both.381
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Fig. 4: Redescription summary. Redescription-based clustering with the wdist variant and k = 5 clusters. The
left-hand side panel shows a map of the five cluster regions formed by the supports of the top ten redescriptions
from both runs. The table in the right-hand side panel shows the repartition of the supports of the redescriptions
across these cluster regions. Each column of the table corresponds to one of the cluster regions and each row
corresponds to a redescription. The shade of the cells indicates the fraction of localities from the region belonging
to the support of the redescription, with black cells meaning that the entire region belongs to the support of the
redescription.
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Fig. 5: Distribution of the twenty redescriptions across terrestrial ecoregions. The left-hand side panel shows a map
of the terrestrial ecoregions in the study region, with the border between the Palearctic (north) and Indomalaya
(south) biogeographic realms as a red line (Olson and Dinerstein, 2002). The table in the right-hand side panel
shows the repartition of the support of the redescriptions across these ecoregions. Similarly as in Fig. 4, each
column of the table corresponds to one of the ecoregions and each row corresponds to a redescription.

Table 2: List of the terrestrial ecoregions (Olson and Dinerstein, 2002).

1 Tropical and Subtropical Moist Broadleaf Forests
2 Tropical and Subtropical Dry Broadleaf Forests
3 Tropical and Subtropical Coniferous Forests
4 Temperate Broadleaf and Mixed Forests
5 Temperate Conifer Forests
6 Boreal Forests/Taiga
7 Tropical and Subtrop. Grasslands, Savannas and Shrublands
8 Temperate Grasslands, Savannas and Shrublands

9 Flooded Grasslands and Savannas
10 Montane Grasslands and Shrublands
11 Tundra
12 Mediterranean Forests, Woodlands and Scrub
13 Deserts and Xeric Shrublands
14 Mangroves
98 Inland Water
99 Rock and Ice
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The geographic clusters of the redescriptions summary can be thought of as computational ecoregions. For382

comparison, the terrestrial ecoregions8 as defined by Olson and Dinerstein (2002) are plotted in Fig. 5 and listed in383

Table 2. While the original mapping is primarily based on vegetation, zoogeographically adjusted variants (Holt384

et al., 2013) offer by and large the same conclusions with somewhat more pronounced separation between India385

and southern Asia.386

We observe some correspondences between the terrestrial ecoregions and the clustering that emerges from the387

support of the redescriptions. These results suggest that the patterns extracted automatically from the dental traits388

distribution and climatic variables, without any geospatial information, closely correspond to manually defined389

terrestrial ecoregions. Redescription cluster A closely matches the Montane Grasslands and Shrubland ecoregion390

(ecoregion 10 in Fig. 5 and table 2). Redescription cluster B closely captures Temperate Broadleaf and Mixed391

Forests (ecoregion 4) and Temperate Conifer Forests (ecoregion 5). The narrow band of temperate forest along392

the southern slope of the Himalayas is especially well captured. Redescription cluster C largely matches Tropical393

and Subtropical Moist Broadleaf Forests (ecoregion 1) except some misses in India. Redescription cluster E mainly394

covers inland India and matches Tropical and Subtropical Moist as well as Dry Broadleaf Forests (ecoregions 2395

and 1), while redescription cluster D collects many isolated patches nearby coasts, to the exclusion of coasts396

corresponding to Deserts and Xeric Shrubland (ecoregion 13), to Mangroves (ecoregion 14), and to Broadleaf397

Forest ecoregions (ecoregions 1, 2 and 4).398

Comparison with the map of species richness of large herbivorous mammals (Fig. 1) reveals a good overlap of399

cluster D with the regions showing low number of species over Southeast Asia, Bangladesh and the southern coast400

of China. This implies that cluster D may emerge due to a lack of data. However, Cluster D also appears to be401

visually similar to the distribution of plant relicts, i.e. “plant groups that were once widespread in the Northern402

Hemisphere but are now restricted to some small isolated areas”, in southern China (Huang et al., 2015). Therefore,403

this represents a region (corresponding to cluster D in our results) with a unique climate-vegetation association,404

which cannot be observed in other places anymore nowadays. Cluster D also relates to the potential distribution of405

Savannahs in Asia (Fig. 1 in Ratnam et al., 2016) and its spatially fragmented nature is similar to the distribution406

of high mammalian diversity regions in Asia (Brum et al., 2017). These lines of evidence may explain the lack407

of spatial connectivity of cluster D, and indicate that the seemingly randomly distributed regions of cluster D408

are more likely to arise from their unique biogeographical features as reflected by their climate and dental traits409

together. We emphasize that cluster D does not emerge by doing clustering analysis on dental traits or climate410

variables alone, highlighting the potential of redescription mining for recognizing unique biogeographical regions411

(e.g. biodiversity hotpots or Savannahs)412

This part of our analysis has a close connection to the recent work of He, Kreft, et al. (2017). The main413

distinction, apart from the fact that we include southern Asia in addition to China, is in the source information.414

He, Kreft, et al. (2017) used species occurrence lists, while we primarily relied on functional dental traits. This415

way, our species coverage is narrower, but hopefully provides a direct biomechanical link, with vegetation as an416

interface between plants and the animals that eat them. Functional dental traits primarily relate to limiting417

rather than average climatic conditions for herbivores (Žliobaitė, Rinne, et al., 2016). Given those methodological418

differences it is reassuring to observe a general match in the prominence of the Tibetan plateau and the East–West419

division.420

5.2 Insights from individual redescriptions421

We now take a closer look at a selection of individual redescriptions. We analyze individual redescriptions from422

two runs. We selected the most accurate matching redescriptions from each run. As visible from the support maps423

in Fig. 6, the selected redescriptions characterize distinctive regions.424

Redescriptions R2.1 and R1.2 cover the Tibetan plateau. Redescription R2.1 requires longitudinal loph count425

(LOP) to be close to maximum and no thickened enamel (ETH), which in the context of our experimental scoring426

relates to the absence of suids. Redescription R1.2 requires obtuse lophs (OL) to be close to maximum, indicating427

generalist herbivory (Oksanen et al., 2019), and structural fortification (SF) to be very low, which hints towards428

seasonal environments lacking humid woodlands (Žliobaitė, H. Tang, et al., 2018), as well as low proportion of429

thickened enamel (ETH) as before. From the climatic perspective, redescription R2.1 prescribes low temperatures430

in the warmest quarter (T∼WarmQ) and low annual precipitation (PTotY), while redescription R1.2 prescribes a431

low mean annual temperature (T∼Y) and high but not extreme seasonality of the temperature (TSeason). Indeed,432

these redescriptions align with harsh seasonal environments in combination with generalist dental morphologies.433

Note that R2.1 seems to capture even harsher and continental climates than R1.2. The support of R1.2 is smaller434

than the support of R2.1 and does not cover part of the southeastern Tibetan plateau.435

8http://maps.tnc.org/gis_data.html
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J=0.845 %supp=20.22
qL=[0.769  MEAN_OL] and [MEAN_SF  0.222] and [MEAN_ETH  0.125]

qR=[bio1:TMeanY  5.9] and [592.8  bio4:TSeason  1064.0]

R1.2 J = 0.845 supp % = 20.22

qD = [0.769 ≤ OL] and [SF ≤ 0.222] and [ETH ≤ 0.125]
qC = [T∼Y ≤ 5.9] and [592.8 ≤ TSeason ≤ 1064]J=0.846 %supp=57.52

qL=[MEAN_LOP  1.556] and [MEAN_OO  0.25]
qR=[19.9  bio8:TMeanWetQ  29.6] and [388.0  bio12:PTotY]

R1.1 J = 0.846 supp % = 57.52

qD = [LOP ≤ 1.556] and [OO ≤ 0.25]
qC = [19.9 ≤ T∼WetQ ≤ 29.6] and [388 ≤ PTotY]J=0.810 %supp=51.43

qL=[MEAN_HYP  1.889] and [MEAN_LOP  1.75] and [MEAN_OO  0.4]
qR=[19.6  bio5:TMaxWarmM  38.5] and [116.0  bio18:PWarmQ]

R1.4 J = 0.810 supp % = 51.43

qD = [HYP ≤ 1.889] and [LOP ≤ 1.75] and [OO ≤ 0.4]
qC = [19.6 ≤ T+WarmM ≤ 38.5] and [116 ≤ PWarmQ]

J=0.749 %supp=50.05
qL=[0.077  MEAN_AL] and [MEAN_SF  0.25]

qR=[-5.5  bio1:TMeanY  23.9] and [bio5:TMaxWarmM  34.8]

R1.8 J = 0.749 supp % = 50.05

qD = [0.077 ≤ AL] and [SF ≤ 0.25]
qC = [−5.5 ≤ T∼Y ≤ 23.9] and [T+WarmM ≤ 34.8]

J=0.836 %supp=16.78
qL=[1.8  MEAN_LOP] and [MEAN_ETH  0.0]

qR=[bio10:TMeanWarmQuarter  17.9] and [bio12:PTotY  496.0]

R2.1 J = 0.836 supp % = 16.78

qD = [1.8 ≤ LOP] and [ETH ≤ 0]
qC = [T∼WarmQ ≤ 17.9] and [PTotY ≤ 496]J=0.829 %supp=57.81

qL=[MEAN_OO  0.25]
qR=[19.9  bio8:TMeanWetQ  29.6]

R2.2 J = 0.829 supp % = 57.81

qD = [OO ≤ 0.25]
qC = [19.9 ≤ T∼WetQ ≤ 29.6]J=0.783 %supp=52.42

qL=[MEAN_HYP  1.889]
qR=[19.6  bio5:TMaxWarmM  38.5]

R2.5 J = 0.783 supp % = 52.42

qD = [HYP ≤ 1.889]
qC = [19.6 ≤ T+WarmM ≤ 38.5]

J=0.749 %supp=52.22
qL=[0.077  MEAN_AL]

qR=[6.2  bio10:TMeanWarmQuarter  28.5]

R2.6 J = 0.749 supp % = 52.22

qD = [0.077 ≤ AL]
qC = [6.2 ≤ T∼WarmQ ≤ 28.5]

Fig. 6: Focus maps of example redescriptions. Localities that support both queries, only the dental trait query
and only the climate query, are drawn in purple, in red and in blue, respectively. For each redescription, we list the
query over dental traits variables (qD), the query over bioclimatic variables (qC), the accuracy of the redescription
(J) as well as the size of its support as a percentage of the total number of localities (supp %).
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Redescriptions R2.2 and R1.1 cover the majority of the continental part of the Indomalaya biogeographic436

realm, yet have tightly restricted queries both from the dental and climatic perspectives, which associate with437

relatively wet and woody habitats. Both dental queries require a low share of exclusively obtuse lophs (OO),438

which suggests a dominance of browsers in closed habitats and is in line with dominant closed woody vegetation439

in that region. The dental query of the second redescription excludes extreme high longitudinal loph count440

(LOP), which suggests a combination of selenodont and non-selenodont teeth, which is expected in the context441

of near-tropical woody vegetation. From the climatic perspective, both redescriptions require the temperature of442

the wettest quarter (T∼WetQ) to be warm, but not too hot, suggesting the presence of an extremely favorable443

growing season. The second redescription, R1.1, further requires annual precipitation (PTotY) not to be too low.444

Overall, these redescriptions and their support regions hint towards an accommodating environment, which does445

not require extremely specialized teeth and supports a high richness of herbivore species (cf. Fig. 1).446

Redescriptions R2.5 and R1.4 describe a subset of the Indomalaya biogeographic realm, excluding inland India447

but extending north into China. Both dental queries require hypsodonty (HYP) to be relatively low. Redescription448

R1.4, further requires a low loph count (LOP) and a low share of obtuse lophs (OO), similarly to the previous pair449

of redescriptions covering the Indomalaya realm (R2.2 and R1.1). Both climate queries require temperatures of the450

warmest month (T+WarmM) to range from rather mild to quite hot (from ca. 20 °C to ca. 40 °C). Redescription451

R1.4 further constrains precipitation of the warmest quarter (PWarmQ), excluding extreme dryness. Curiously,452

the two redescriptions cover costal areas of India and the foothills of the Himalayas, but not central India, where453

hypsodonty tends to be higher.454

Redescriptions in the last pair (R2.6 and R1.8) show a curious spatial pattern. They cover primarily mainland455

East China and southern Asia, extending into a narrow strip spanning across the slope of the Himalaya mountains,456

without ever including the top (Tibetan plateau) nor the bottom (central India) of the mountain range (cf.457

bottom row of Fig. 6). The dental queries of both redescriptions include acute lophs (AL). The specified range458

of values is broad, allowing all except total and near-absence, and is thus not particularly informative. However,459

high proportions of acute lophs generally indicate seasonal temperate environments with abundant woody cover460

(Oksanen et al., 2019), of deciduous forests in particular. The second redescription includes a constraint to low461

proportion of structurally fortified molars (SF). Structural fortification is generally a characteristic of tropical462

woody environments, and often comes along with high hypsodonty (Žliobaitė, H. Tang, et al., 2018). Only463

temperature variables appear in the climate queries of both redescriptions. The first redescription allows a wide464

range of temperatures during the warmest quarter (T∼WarmQ), down to a rather cold lower bound (6 °C). The465

second redescription instead involves the mean annual temperature (T∼Y), also allowing a wide range of values,466

down to rather low values (−5.5 °C).467

The last two pairs of redescriptions (R2.5 and R1.4) and (R2.6 and R1.8) are quite similar in terms of their468

geographic coverage, with the latter pair almost eschewing the Indomalayan realm while having a much broader469

coverage along the Himalayan slope and more coverage in more northern parts of the region. On the climate side,470

both pairs emphasize the warmest periods of the year, with the latter pair having a lower threshold for the warmest471

temperature. In terms of traits the first pair emphasizes (lack of extreme) durability via hypsodonty (HYP), while472

the second pair emphasizes the cutting capacity via acute lophs (AL).473

Overall, an in-depth analysis of every obtained redescription would normally be infeasible. Indeed, our runs474

produced a total of 459 redescriptions. Each redescription represents one local perspective towards an ecosystem.475

One can select individual redescriptions for analysis using quantitative criteria, or use them together as elements in476

structural analyses of ecosystems. This type of analysis also has potential in studies of past and future ecosystems,477

where some elements can be expected to vary over time. Decomposing an ecosystem into such functional elements478

might help, for instance, investigate which aspects of the system are changing over time and which aspects remain479

constant.480

6 Conclusions481

Redescription mining is a methodology for extracting local patterns between two perspectives over the same482

system. It can be seen as a hybrid of regression modelling and cluster analysis. Indeed, it delineates subsets of483

the data, similarly to clustering, and also captures relationships between variables, similarly to regression. Some484

descriptions might be generic and hold across a large number of localities, whereas other descriptions might be485

very specific and hold only at few localities.486

In our case study, we analyze dental traits and climate variables in China and southern Asia via redescription487

mining. We show that individual redescriptions allow to identify spatial associations between dental traits and488

climate variables, while redescription summaries (i.e. clusterings based on the redescriptions) can delineate dis-489

tinct biogeographic areas within this region. We show how an ecosystem level analysis can be carried out using490
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redescriptions as elements, and then zoom into selected redescriptions to show how they can capture ecological491

limiting conditions.492

The results based on redescriptions reveal a finer spatial structure over southern China and Southeast Asia,493

which seems to correspond well to plant relicts found in these regions. In contrast, the results of the classical494

clustering focus on the differences within the Tibetan Plateau. These discrepancies highlight the potential added495

value of using redescriptions-based clusters to delineate biologically meaningful ecoregions with finer structure.496

Different from regression methods that require strong assumptions on the shape of the association across the497

whole data set (e.g. linear or logarithmic), redescription mining allows a broader exploration of different associations498

for different subsets of the data, that can not be detected by classical methods. Redescription mining searches for499

pairs of descriptions that intersect in their areas of validity. In the ecological sense, a redescription automatically500

extracts and pairs collections of limiting conditions, such that if one collection of conditions is satisfied, the other501

is also very likely to be satisfied. Since redescription mining works by automatically identifying limiting conditions502

from two perspectives, it naturally lends itself to ecological analyses, where limiting conditions often play a central503

role.504

Through redescriptions, localities can be characterized in different ways in terms of the available variables, e.g.505

specific occurring species, species richness, vegetation types, average climate or elevation. The methodology is506

not limited to finding associations across space, when the considered objects have geospatial coordinates like the507

localities considered in this study. It can also be used to identify associations across time or biological organisms. It508

can be applied to different types of variables describing various aspects of an ecosystem, such as species abundance,509

plant traits, human disturbances, etc., and to other regions, depending on the research questions. We believe that510

redescription mining offers an interesting complementary tool for biogeographic and ecological analyses.511

One can select individual redescriptions for analysis using quantitative criteria, or use them all together as512

elements for structural analyses of ecosystems. This type of approach also has potential for studying past and513

future ecosystems, for instance to help tell apart aspects of the system that are changing over time from those514

that remain constant.515
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