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Abstract

In scientific investigations data oftentimes have different nature. For in-
stance, they might originate from distinct sources or be cast over separate
terminologies. In order to gain insight into the phenomenon of interest,
a natural task is to identify the correspondences that exist between these
different aspects.

This is the motivating idea of redescription mining, the data analysis task
studied in this thesis. Redescription mining aims to find distinct common
characterizations of the same objects and, vice versa, to identify sets of
objects that admit multiple shared descriptions.

A practical example in biology consists in finding geographical areas that
admit two characterizations, one in terms of their climatic profile and one
in terms of the occupying species. Discovering such redescriptions can
contribute to better our understanding of the influence of climate over
species distribution. Besides biology, applications of redescription mining
can be envisaged in medicine or sociology, among other fields.

Previously, redescription mining was restricted to propositional queries over
Boolean attributes. However, many conditions, like aforementioned cli-
mate, cannot be expressed naturally in this limited formalism. In this
thesis, we consider more general query languages and propose algorithms
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to find the corresponding redescriptions, making the task relevant to a
broader range of domains and problems.

Specifically, we start by extending redescription mining to non-Boolean
attributes. In other words, we propose an algorithm to handle nominal
and real-valued attributes natively. We then extend redescription mining
to the relational setting, where the aim is to find corresponding connection
patterns that relate almost the same object tuples in a network.

We also study approaches for selecting high quality redescriptions to be
output by the mining process. The first approach relies on an interface for
mining and visualizing redescriptions interactively and allows the analyst
to tailor the selection of results to meet his needs. The second approach,
rooted in information theory, is a compression-based method for mining
small sets of associations from two-view datasets.

In summary, we take redescription mining outside the Boolean world and
show its potential as a powerful exploratory method relevant in a broad
range of domains.
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Chapter 1

Introduction

The present thesis is concerned with redescription mining. Roughly speak-
ing, this data analysis task aims to find different ways of characterizing the
same things and, vice versa, to find things that admit the same alternative
characterizations.

As a practical example, consider the European regions of Scandinavia
and Baltia. They share similar temperature and precipitation conditions
and are both inhabited by the European Elk. Hence, this set of geographical
areas admits two characterizations, one in terms of their climatic profile and
one in terms of the occupying species.

The aim of data analysis in general is to gain useful knowledge from
data, that is, to turn large amounts of data into actionable information.
It is widely recognized that our understanding of a concept can be im-
proved by considering it from different vantage points. To be more prosaic,
several experiments might be carried out to study a phenomenon or, more
generally, data might be available from different sources, cast in various ter-
minologies or possess various semantics. This results in a group of datasets
characterizing the same objects, known as a multi-view dataset. Then, it
is of natural interest to relate and exploit these different aspects so as to
better understand the concepts or phenomena at hand. This is the idea
behind redescription mining.

Continuing with the example above, the data describes two different
aspects of geospatial regions of Europe: their climate and their fauna.
Characterizing the areas inhabited by a (set of) species in terms of the
climate encountered, and the other way around, provides valuable infor-
mation about the effects of climate on the species distribution. Finding
such characterizations is actually an important problem in biology, known
as bioclimatic niche finding [SN09, Gri17]. In this case, by providing an
automated alternative to the tedious process of manually selecting species
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2 1 Introduction

and fitting a climatic model, redescription mining allows to explore many
more combinations of conditions. Applications of redescription mining can
be envisaged in a broad range of domains, including for instance social
sciences and medicine.

This thesis consists of four original publications (Articles I–IV) and
this introductory part. The purpose of the introduction is not to repeat
the original publications. Rather, it aims to place the articles in their com-
mon context, articulate the issues addressed, and highlight the underlying
transverse principles. In particular, the reader is referred to the original
publications for careful review of related work, details regarding the algo-
rithms and thorough experimental evaluation.

After providing an outline of the contributions of the original publica-
tions in the next section, we introduce the problem of mining redescriptions
more thoroughly in Chapter 2. Then, in Chapters 3–5, we focus on three
facets of the problem, respectively query languages, exploration strategies
and pattern selection techniques. Based on these, we sketch the algorithms
that constitute the main contributions of this thesis, as an opening to Chap-
ter 6. We then proceed to illustrate the task with examples from different
fields. We present results obtained with our proposed algorithms on various
datasets, to illustrate the use of redescription mining in different domains
and to serve as a basis for a critical discussion of the approach, before
reaching conclusions in Chapter 7.

1.1 Outline of the Contributions

The contributions in this thesis are presented in the original Articles I–IV
and can be summarized as follows.

I. Previously, redescription mining could handle only Boolean data,
making discretization a prerequisite to using the existing tools. We
extended redescription mining to categorical and real-valued at-
tributes with a greedy algorithm that determines on-the-fly the cat-
egory or interval yielding the best accuracy.

II. Building on the algorithm presented in Article I, we developed an in-
terface for mining redescriptions from geospatial data, called Siren.
We discussed desirable features of visual and interactive data anal-
ysis tools, focusing on the case of geospatial redescription mining,
exemplified by Siren.

III. We introduced relational redescription mining, lifting the problem
to the first order level and thereby making the approach relevant
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to a new range of applications. We mine for structurally different
connection patterns that describe the same object pairs in a relational
dataset.

IV. Combining redescription mining with techniques from association rule
mining and compression-based model selection, we present a novel
method to find a small set of associations that explains how the two
sides of Boolean two-view datasets are related.

The contribution of the author to all of the original publications was
substantial.

Initially, Dr Pauli Miettinen suggested adapting his Greedy redescrip-
tion mining algorithm to handle real-valued variables. I implemented the
algorithm, largely rewriting and extending the existing code, and performed
the experiments. We participated equally in writing Article I.

Later, after repeated prompting from Dr Miettinen, I set out to imple-
ment a graphical user interface for our algorithm, the matter of Article II,
which we co-wrote.

Of Article III, I am the main contributor. Dr Angelika Kimmig carried
out the comparison experiments with the baseline tool and edited the pa-
per, in particular, acting as an interpreter from the field of inductive logic
programming.

The collaboration on Article IV was suggested by Dr Matthijs van
Leeuwen, to combine ideas from redescription mining and from his field
of expertise, exceptional model mining. The problem formalization, algo-
rithm design and article writing was done jointly. My role was very minor
in implementing the algorithm. I was responsible for running most experi-
ments.
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Chapter 2

Preliminaries

In the field of data analysis, especially when considering vast amounts
of data, in a process commonly called knowledge discovery in databases,
mining usually refers to the task of extracting regularities, or pat-
terns [HK00]. Specifically, novel, useful and understandable patterns are
sought after [HMS01]. Faced with a potentially large set of factual data,
obtained directly or derived from observations, for instance as the result of
scientific experiments involving sensor measurements or censuses, the hope
is that the analyst will be able to grasp the underlying reality by identifying
recurrent patterns.

In particular, the purpose of redescription mining is to find alternative
characterizations of almost the same objects. Such an approach allows to
shed light on the concepts present in the dataset by identifying coherent
sets of objects and related properties.

An instance of this task in the medical field could be, for example, to
relate patients’ background to their symptoms and to their diagnosis, so as
to improve the understanding of illnesses. Revealing patterns that connect
temperature and precipitation statistics to the fauna distribution consti-
tutes another instance of the redescription mining task. Such discovery
can contribute to our appreciation of the impact of climatic constraints on
the habitat of these species. As mentioned previously, this pertains to the
problem of ecological niche finding [SN09, Gri17].

In the relational setting, more specifically, redescription mining aims to
identify correspondences between complex connection patterns, beyond the
mapping of individual properties commonly considered in ontology match-
ing and schema alignment [SE05, SAS11]. It is potentially useful for the
exploration and maintenance of the massive amounts of structured infor-
mation stored in knowledge bases [ABK+07, CBK+10, SKW07, RLT+12].

5



6 2 Preliminaries

U.S.A.
Chile

Mexico
Russia
China

France
United Kingdom

Canada

A

LC

U

Mozambique

A Located in the Americas C History of state communism
L Land area above 8 Billion km2 U Permanent member

of the UN security council

Figure 2.1: Example dataset. Geographic and geopolitical characteristics
of countries represented as a Venn diagram. Adapted from [PR05].

Example 1. Throughout this introduction, we use a running example to
illustrate our discussion, with variations and refinements according to the
successive points of focus. Adapting the prototypical example that appeared
in the earliest redescription mining publications [RKM+04, PR05, ZR05],
we consider a set of nine countries as our objects of interest, namely
Canada, Chile, China, France, Mexico, Mozambique, Russia, the United
Kingdom and the United States of America.

Following Parida and Ramakrishnan [PR05], let us start with a simple
toy dataset consisting of four properties characterizing these countries, rep-
resented as a Venn diagram in Figure 2.1. Consider the pair of statements
below:

— Country outside the Americas with land area above 8 billion square kilometers.

— Permanent member of the UN security council with a history of state communism.

Both statements are satisfied by the same countries, namely China and
Russia. They constitute alternative characterizations of the same subset
of countries in terms of geographic and geopolitical properties, respectively.
Hence, they form a redescription.

We now provide a formal albeit very general definition of redescriptions
and the redescription mining task.

2.1 Problem Definition

Let O be a set of elementary objects and A a set of attributes characterizing
properties of the objects or of relations between them. The attributes arise
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from different sources, terminologies, etc., represented as a set of views
V . A function υ maps each attribute to the view to which it belongs,
υ : A → V . The dataset is fully specified by the triplet (O,A, υ).

A logical statement expressed over attributes inA and evaluated against
the dataset forms a query. A query language Q is a set of valid queries.
To evaluate a statement against a dataset is to replace the variables in the
statement by objects from the dataset and identify the substitutions for
which the ground formula holds true. This subset of objects or of non-
empty tuples of objects is called the support of query q and denoted as
supp(q). The set of entities, denoted as E, consists of all the possible
substitutions for queries in Q. The set of attributes appearing in query
q is denoted by att(q) and we overload the function υ to also denote the
union of their views, υ(q) =

⋃
A∈att(q) υ(A). As a straightforward means to

ensure that two queries provide different characterizations, their attribute
sets are required to be disjoint. We consider a symmetric binary relation ∼
over the power set of entities as a Boolean indicator of support similarity.
Finally, we denote by C a set of arbitrary constraints that can be used to
specify a bias towards certain queries.

In this context, we define a redescription as follows.

Definition 1. Given a dataset (O,A, υ), a query language Q over A and
a binary relation ∼, a redescription is a pair of queries (qA, qB) ∈ Q×Q
such that υ(qA) ∩ υ(qB) = ∅ and supp(qA) ∼ supp(qB).

And redescription mining is simply the task of finding such pairs.

Problem 1 (Redescription Mining). Given a dataset (O,A, υ), a query
language Q over A, a binary relation ∼, and a set C of constraints, find all
redescriptions that satisfy constraints in C.

Example 2. Let us consider the example above in light of this terminology.
The objects are nine countries, and the four attributes can be divided into
two views, say G and P, corresponding to the domains of geography, i.e. at-
tributes A and L, and geopolitics, i.e. attributes C and U, respectively. That
is, we have that A = {A,C,L, U} and, for instance, υ(A) = G. The first
statement forms a query over geographic attributes, which could be equiva-
lently written as qG = ¬A∧L. When evaluated on the dataset, it is satisfied
by two countries. Specifically, we have supp(qG) = {China,Russia }. The
second query, over geopolitical attributes, qP = U ∧ C, has the same sup-
port. Thus, for any reasonable choice of similarity relation ∼ we have that
supp(qG) ∼ supp(qP). Since in addition υ(qG) ∩ υ(qP) = {G } ∩ {P } = ∅,
then (qG, qP) is a redescription.
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Here, we roughly consider data analysis methods with a focus on de-
scription to belong to data mining, while those methods with a focus on
prediction are categorized into machine learning. In other words, the former
area consists of techniques that aim at detecting regularities in the data,
i.e. patterns, emphasizing the interpretability of the results, while the lat-
ter comprises techniques that aim to predict some properties or relations of
unseen objects given a subset of observed ones. However, patterns resulting
from data mining can constitute the building blocks of learning systems by
providing higher level features, while machine learning tasks such as classi-
fication or regression can be found at the core of pattern discovery systems.
The line between the two areas is easily blurred.

As its name suggests, redescription mining is a descriptive data analysis
problem, a data mining task. Because the aim is not to learn a model to
predict unseen data, but rather, to describe the data at hand as well as
possible, the expressivity and interpretability of the results are particularly
emphasized.

In our context, expressivity and interpretability are to be understood
in the following acceptations: The variety of concepts that a language can
represent determines its expressive power, or expressivity, while the inter-
pretability of an element of the language relates to the ease with which
the associated meaning can be apprehended. Interpretability is difficult to
measure but is promoted by favoring concise, simple queries. As a conse-
quence of this accent put on the descriptive aspect, certain query languages
are more adequate for the task than others. In particular, throughout our
work we adopt the following position with respect to query languages. Our
preference goes to Boolean formulae specifying explicit constraints on the
range of individual attributes. Linear functions defined over the attributes,
on the other hand, are deemed to have limited interpretability and hence
to be unsuitable for our purpose.

In any given instance of the redescription mining task, we consider a
collection O of elementary objects, sometimes also referred to as samples.
The dataset consists of attributes in A characterizing the properties of
these objects and possibly of the relations linking them, as well. That is,
we consider both propositional and relational datasets. These two settings
are formalized and discussed in more depth together with the associated
query languages in Chapter 3.

The set of views V represents the various sources, domains or termi-
nologies from which the data originate. For instance, the attributes of our
toy dataset above can be naturally split between geography (A and L) and
geopolitics (C and U), while additional attributes could stem from the eco-
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nomic, social or cultural domains. Climatic conditions on one hand and
fauna on the other hand form two clearly distinct sets of attributes in bio-
logical niche finding, our example in the field of biology, while in the field
of medicine, the objects of the study might be a set of patients with their
personal background information, symptoms and elements of diagnosis, as
three different views, for instance.

The purpose of redescription mining is to find alternative characteriza-
tions of almost the same objects, so as to relate concepts across different
sources, domains or terminologies. Therefore, we require that the attributes
over which both queries of a redescription are expressed come from disjoint
sets of views, i.e. υ(qA) ∩ υ(qB) = ∅, and say that such queries are struc-
turally different. If two statements are logically equivalent, then the asso-
ciated queries trivially have the same support. Uninteresting tautologies of
this kind are ruled out by this requirement.

Conceptually, the number of views can be arbitrarily large. Yet, two
settings are generally preferred. At one extreme, each individual attribute
can be seen to form a separate view. This corresponds to the case where all
attributes are gathered into a single dataset and the restriction that none
of them appears in both queries simultaneously. At the other extreme, we
might consider the attributes to be naturally split into two subsets that
each constitutes a view.

From now on, we will focus primarily on the case where the attributes
are split between two views, arbitrarily denoted as L (for left-hand side)
and R (for right-hand side). That is, we have two subsets of attributes,

AL = {A ∈ A, υ(A) = L} and AR = {A ∈ A, υ(A) = R},

such that AL ∪ AR = A and, trivially, AL ∩ AR = ∅. Then, a pair of
structurally different queries simply consists of queries qL and qR expressed
over AL and AR, respectively. Still, discussions on this setting, known as
two-view or two-fold setting, extend naturally to other settings as well.

In the presence of multiple views, the correspondence between the ele-
mentary objects across the views might not be available. It might be that
the sets of objects occurring in different views are not identical, that some
objects are associated with redundant observations in one view, or that
a single object from one view corresponds to multiple objects in another
view, as is the case for instance of geospatial measurements with varying
scales. Establishing the mapping between the views can be nontrivial and
constitutes a problem of its own [TKOK11], ignored here. We assume that
the input data consist of aligned views, i.e. that the bijection of objects
across the views is known. Moreover, except for missing values which we
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consider in Article I, dealing with measurement errors, sampling bias and
similar problems affecting the data quality is outside the scope of our work.

The purpose of redescription mining is to find alternative characteriza-
tions of almost the same objects. Thus, the similarity of the supports of
the queries is a defining quality of a redescription. We say that a pair of
queries is accurate if their supports are similar. In general, the similar-
ity relation ∼ between support sets is specified as a set similarity function
f together with a threshold σ, such that Ea ∼ Eb ⇐⇒ f(Ea, Eb) ≥ σ.
Specifically, the Jaccard coefficient is a common choice for f , as we mention
in Section 5.1.1.

Nevertheless, structural difference and accuracy are typically not suf-
ficient to guarantee the interestingness of the result. Other criteria also
impact its quality. The set of constraints on the queries and their supports,
C, allows to specify a bias towards certain redescriptions, in particular to
include background knowledge. Furthermore, we are generally looking for
a set of redescriptions, the interestingness of which we want to evaluate not
just individually but as a whole. Interestingness and the selection of high
quality redescriptions constitute the focus of Chapter 5.

2.2 Related Work

Redescription mining is a multi-view data mining technique in that it
exploits multiple views on the objects to identify interesting patterns.
Similar ideas motivate multi-view learning approaches. Pioneered by
Yarowsky [Yar95] in the context of word sense disambiguation, and by Blum
and Mitchell [BM98] under the term co-training, the principle of exploiting
distinct views to strengthen learning algorithms has attracted increasing
interest. It has been applied to clustering [NG00, BS04, BS05], support
vector machines [FHM+05], canonical correlation analysis [KK08] or fac-
tor analysis [VKKK12], among others. Arguably, redescription mining can
be seen as the data mining pendant of multi-view techniques in machine
learning.

Other data mining problems such as emerging patterns [NLW09], sub-
group discovery [UZT+09] or exceptional model mining [LFK08] can also
be seen as multi-view approaches, although they are rarely presented from
that perspective. Indeed, the common aim of these techniques is to find
queries over one view defining a set of objects with an uneven distribution
in the other view when compared to the remaining objects. That is, these
approaches consider one view as description and the other as target. In this
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context, the symmetricity of its approach, in other words, the fact that the
views are treated equally, is a distinguishing feature of redescription mining.

The relational setting is tightly related to inductive logic programming
concepts in general [DR08, MDR94, QCJ93, Mug95, Sri07] and multi-
relational query mining in particular [DT99, DRR04], from which termi-
nology and notation are borrowed. The work presented here draws on
techniques from various other areas of data analysis, such as, in particular,
graph mining, constraint-based mining or model selection. References are
provided in the relevant chapters and the original articles.

Redescription mining was introduced by Ramakrishnan et al. [RKM+04]
in 2004. They proposed to find set theoretic expressions over indicator
functions that define similar subsets of elements. There, indicator functions
and set theoretic expressions are used as representation, equivalently to
Boolean attributes and logical statements.

Several conceptually related problems are discussed in [PR05], includ-
ing story telling [RKM+04], the task of finding a succession of approx-
imate redescriptions such that the first and last are supported by two
distinct given sets of entities. Another kindred task, finding straddling-
biclusters [JMR08], combines mining redescriptions and biclusters. Finally,
query by output is a closely related problem in the area of database sys-
tems [TCP09]. It aims at finding an instance-equivalent query for a given
input query, or in the words of redescription mining, completing a query
pair to form an accurate redescription. Considering SQL queries, it requires
to determine not only good selection predicates but also relevant relations
and projections.

The approaches proposed for redescription mining have been based
on various ideas, including decision trees [RKM+04, Kum07], Karnaugh
maps [ZR05], co-clusters [PR05], frequent itemsets [ZR05, GMM08] and
greedy search [GMM08]. However, they all focused on Boolean proposi-
tional attributes, restricting the applicability of the method. Indeed, as
a consequence, discretization, binarization or propositionalization were re-
quired preliminaries in order to mine redescriptions from datasets contain-
ing non-Boolean or relational attributes. Such preprocessing procedures
typically require extensive domain knowledge, entail an information loss
that can impact the subsequent analysis and greatly inflate the search space.

To address this issue, we extended the Greedy algorithm [GMM08]
with efficient on-the-fly discretization in its innermost loop, allowing to
handle nominal and real-valued attributes, as reported in Article I. Next, we
designed an algorithm to mine redescriptions from network data, presented
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in Article III, using an alternating scheme similar to that presented by
Ramakrishnan et al. [RKM+04].

Main strategies for mining redescriptions are discussed in Chapter 4.

To summarize, redescription mining automatically identifies both a pair
of queries and an associated set of objects, neither of which needs to be
specified in advance. The results of redescription mining offer a dual per-
spective. On one hand, the queries of a redescription contain attributes
that are related to each other, as they can be used to characterize the same
set of objects. On the other hand, the support of the redescription defines
a particularly coherent set of objects, as it admits alternative characteriza-
tions.

So far we presented the problem of redescription mining from a con-
ceptual point of view, deliberately keeping the discussion at a fairly high
abstraction level. We will now focus on some more practical aspects, in
other words, on choices that need to be made when implementing the gen-
eral principle.

The three following chapters are organized around three primary facets
of the problem that can be considered independently from each other, to
some extent. First, we discuss query languages in Chapter 3, where possible
choices for Q are defined formally. Second, we sketch strategies to explore
the space of query pairs in search for redescriptions, in Chapter 4. Third,
in Chapter 5, we look at what constraints C can be used to characterize
good redescriptions and study pattern selection techniques more generally.



Chapter 3

Query Languages

In this chapter, we explore variations on a theme and are concerned with
choices of query languages. More precisely, we define the queries that are
used in redescription mining, offering means to represent logical combina-
tions of constraints on the range of individual attributes.

The formalism presented here corresponds to that previously used in
Boolean propositional redescription mining [PR05, GMM08], which we
adapted to support other types of attributes and later extended to the
relational case, respectively in Article I and Article III.

Queries consist of logical statements evaluated against the dataset. The
statements are obtained by combining atomic predicates built from individ-
ual attributes using Boolean operators. Replacing predicate variables by
objects from the dataset and verifying whether the conditions of the pred-
icates are satisfied returns a truth value. The objects or object tuples in
substitutions satisfying the statement constitute the support of the query.

A query language is a set of acceptable queries, dependent on the sup-
ported types of attributes, the principles for building predicates and the
syntactic rules for combining them into statements. We discuss, in turn,
propositional and relational queries.

3.1 Propositional Queries

A propositional dataset consists of attributes characterizing properties of
individual objects. We generally consider a homogeneous set of objects, in
the sense that each attribute applies to all objects, regardless of possible
missing values. In that context, the values taken by the attributes in A for
each of the objects are collected into a matrix D with |O| rows, one per

13
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Table 3.1: Example dataset. Geographic attributes of world countries:
localization in the southern hemisphere (1), existence of oceanic borders
(2–4), continental location (5), land area (6) and maximum elevation (7).

Country
1) South 2) Atlantic 3) Indian 4) Pacific 5) Continent 6) Area 7) Elev.

Hemisphere Ocean Ocean Ocean (109 km2) (m)

CA false true false true {North America} 9.98 5959
CL true true false true {South America} 0.76 6893
CN false false false true {Asia} 9.71 8850
FR false true false false {Europe} 0.64 4810
GB false true false false {Europe} 0.24 1343
MX false true false true {North America} 1.96 5636
MZ true false true false {Africa} 0.79 2436
RU false false false true {Asia, Europe} 17.10 5642
US false true false true {North America} 9.63 6194

object, and |A| columns, one per attribute. In other words, D(i, j) = Aj(oi)
is the value of attribute Aj ∈ A for object oi ∈ O.

As a special case, we say that the dataset is geospatial when the objects
are associated to spatial coordinates, that is, when they can be located in
a spatial reference system. Then, the support of the resulting geospatial
queries and geospatial redescriptions over that dataset can be naturally
represented on a map.

Example 3. Refining Example 2, consider the dataset shown in Table 3.1.
Again, the set of objects is a subset of world countries. Each of the seven
attributes corresponds to a geographic property: localization in the southern
hemisphere (1), existence of a border to the Atlantic Ocean (2), to the
Indian Ocean (3), or to the Pacific Ocean (4), continental location (5), land
area in billion squared kilometers (6) and maximum elevation in meters
(7), referring to the mainland area only. This data can be represented as
matrix G with ten rows and seven columns. Furthermore, we can identify
attributes with the columns of this matrix. For instance, the first attribute,
localization in the southern hemisphere, is denoted as the corresponding
vector G1.

This constitutes a simple example of a geospatial dataset, since the ob-
jects, i.e. the countries, can be associated to spatial coordinates such as
latitude and longitude (omitted here).

Predicates are constructed over individual attributes and combined into
statements to form the queries.
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3.1.1 Predicates

The values that an attribute can take constitute its range. A predicate is
constructed from an attribute by restricting the values to a selected subset
of its range. Consider an attribute Aj ∈ A with range R. By fixing a
subset RS ⊆ R we can turn the associated data column into a truth value
assignment, that is, into a Boolean vector indicating which values are within
the specified range. Using Iverson bracket, this is denoted as [Aj ∈ RS ]. In
effect, this selects the subset of objects for which attribute Aj takes value
in RS , s(Aj , RS) = {oi ∈ O, Aj(oi) ∈ RS} and [Aj ∈ RS ] is an indicator of
membership in this subset.

Depending on their range, object attributes can be classified into types.
In turn, we consider three types of attributes, Boolean, nominal and real-
valued and the predicates constructed from them.

Boolean predicates. Boolean attributes take value either false or
true. Equivalently, their range is {0, 1}. A Boolean attribute can be
interpreted as a truth value assignment for the objects in a natural way
and thus directly yields a predicate. For Boolean attributes we omit the
bracket notation and simply denote the Boolean predicate [A = true] by A.
Typically, we do not consider the complementary assignment [A = false]
as it can be equivalently obtained with negation.

In our example, G4 is a Boolean attribute that corresponds to a predi-
cate with the following truth assignment on this dataset:

〈1, 1, 1, 0, 0, 1, 0, 1, 1〉 ,

selecting the six countries bordering the Pacific Ocean.

Nominal predicates. An attribute A whose range is an unordered set C,
or its powerset, is called a nominal (or categorical) attribute, single-valued
or multi-valued respectively. The elements of C are called the categories
of attribute A. A truth value assignment is obtained by choosing a subset
of the categories CS ⊆ C or a single category c ∈ C, to select objects
that belong to these categories. The corresponding nominal predicates are
denoted as [A ∈ CS ] and [A = c], respectively.

The first attribute from our example, the continental location, is a nom-
inal attribute. Four countries located in the Americas satisfy the predicate

[G5 ∈ {North America, South America}] ,
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corresponding to the truth assignment 〈1, 1, 0, 0, 0, 1, 0, 0, 1〉. In this case,
the attribute is multi-valued because objects can be associated to multiple
categories: Russia spans over both Europe and Asia.

Practically, only single-valued nominal attributes and predicates with
an individual category are considered. Multi-valued nominal attributes are
equivalently represented with several Boolean attributes, one per category.

Real-valued predicates. An attribute A whose range is a subset of the
real numbers R ⊆ R is a real-valued attribute. A truth value assignment
for the objects can be obtained by choosing any subset of R. However,
for interpretability reasons, it is typically constructed based on a single
contiguous subset of R, i.e. an interval [a, b] ⊆ R, and denoted as [a ≤ A ≤
b].

Notice that for a given real-valued attribute, there can be an infinity of
intervals yielding the same truth-value assignment. Consider for example
the sixth attribute, the land area, corresponding to the following vector

G6 = 〈 9.98, 0.76, 9.71, 0.64, 0.24, 1.96, 0.79,17.10, 9.63〉 .

Any pair (λ, ρ) where λ ∈ ]0.79, 1.96[ and ρ ∈ ]9.98, 17.10[ will yield the
same truth value assignment

[λ ≤ G6 ≤ ρ] = 〈 1, 0, 1, 0, 0, 1, 0, 0, 1〉 .

Hence, the definition of a consistent query language must include a criterion
for selecting one among these equivalent intervals. Yet, it is disputable
whether [1 ≤ G6 ≤ 10], because it has rounded bounds, is a better choice
than tighter [1.96 ≤ G6 ≤ 9.98], and similarly, whether [G6 ≤ 10] should
be preferred over equivalent [0.24 ≤ G6 ≤ 10], for instance. Indeed, in
both cases the two intervals correspond to the same truth assignment and
favoring one over the other depends, in particular, on whether rounded
bounds are considered more interpretable than tight intervals, or vice versa.

3.1.2 Statements

Predicates make up the building blocks of statements. Propositional pred-
icates can be combined using Boolean operators, negation (¬), conjunction
(∧) and disjunction (∨). The truth assignment for the associated query is
obtained by combining the truth assignment of the individual predicates
accordingly. Equivalently, the individual truth assignments define subsets
of objects that can be combined by means of the corresponding set opera-
tors, complement (\), intersection (∩) and union (∪). The resulting subset
of objects is the support of the query.
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For instance, in the context of Example 3, the query

q1 = G4 ∧ ¬ G1 ∧ [6000 ≤ G7]

describes countries bordering the Pacific outside the southern hemisphere
where the highest peak reaches over 6000 meters. Two countries, China
and the U.S.A., satisfy these conditions, that is, support this query.

In the propositional case, the possible substitutions for the queries,
called the entities, are simply individual objects, E = O.

Monotone conjunctions. Monotone conjunctions are the most re-
stricted query language, where predicates are combined using only conjunc-
tion operators. For example, the following query is a monotone conjunction

q2 = G3 ∧G2 ∧ [1000 ≤ G7 ≤ 2000] ,

while q1 above does not belong to this language since it is not monotone.
Conjunctive monotone queries directly correspond to itemsets where

each predicate is an item. Itemsets have been extensively studied in
the literature, especially to design efficient frequency based mining algo-
rithms [HCXY07, Goe03]. In particular, they are easily arranged in a
partial order based on inclusion and verify the downward closedness prop-
erty. That is, if query qi is a subset of query qj , then the support of qi is
a superset of the support of qj . As a consequence, the search space of this
query language can be explored efficiently in a level-wise fashion.

The query language used in Article IV consists of monotone conjunc-
tive queries over Boolean predicates, which, being the most restricted also
affords efficient exhaustive search.

Monotone conjunctions are at the lower end of the scope of propositional
queries, at the same time easy to interpret and to find. But excluding
negations and disjunctions severely limits the expressivity.

Unrestricted queries. At the other end of the scope are unrestricted
propositional queries, in which predicates can be combined using any of the
three operators with no other limits than the usual rules of algebra. For
example

q3 = (G3 ∨G2) ∧ ¬ G1 ,

q4 = (¬ G2 ∧ [G5 = Asia]) ∨ ([5000 ≤ G7] ∧G4) ,

q5 = (G1 ∧ ¬ [4000 ≤ G7 ≤ 6000]) ∨ [3000 ≤ G7] , and

q6 =
(
¬
(
G3 ∨ ([G5 = Europe] ∧G2)

)
∧ [0.3 ≤ G6 ≤ 0.9]

∧G1

)
∨
(
[G7 ≤ 6300] ∧G4

)
,
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<query> → (<query>) ∧ <literal>
<query> → (<query>) ∨ <literal>
<query> → <literal>

<literal> → <predicate>

<literal> → ¬ <predicate>

Figure 3.1: Generative grammar of the linearly parsable propositional query
language. The non terminal symbol <predicate> is a predicate as defined
in Section 3.1.1.

as well as q1 and q2 above, all belong to this query language.
However, while permitting full expressivity of Boolean formulae, this

unrestricted query language contains queries that are difficult to interpret,
for instance because of deeply nested structures.

Consider, as a simple example, a query over numerous attributes, pos-
sibly with a complex nested structure, such as q6. Its support might match
very well that of another query, resulting in a highly accurate redescription.
However, because of the many entangled conditions, it will be difficult for
the analyst to interpret it, that is, to understand the conveyed meaning,
directly limiting its interestingness.

In addition, the resulting space of redescriptions lacks organizing struc-
ture and is therefore very hard to search.

Linearly parsable queries. As a compromise between these two ex-
tremes, we propose in Article I to use linearly parsable formulae as our
propositional query language. This language comprises the queries gener-
ated by the simple formal grammar shown in Figure 3.1, where the non
terminal symbol <predicate> is a predicate as defined in Section 3.1.1.

Simply put, these are queries which can be evaluated from left to right
irrelevant of the binary operators precedence. Among the example queries
q1–q6, all but q4 and q6 satisfy this criterion.

As an additional requirement of the language to ensure better inter-
pretability, we restrict every attribute to appear only once. Query q5 will
be rejected since attribute G7 appears twice. However, in this case, q5 can
be equivalently rewritten in the acceptable form G1 ∨ [3000 ≤ G7].

Although in theory the choice of a query language is a building block
of the problem definition, prior to the algorithm design, computability rep-
resents a strong practical constraint influencing the choice. For instance,
linearly parsable queries naturally result from iterative atomic extensions,
progressively appending literals, i.e. positive or negated predicates, to the
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current query, as it happens in the Greedy algorithm [GMM08]. An-
other example are the queries obtained with the CARTwheels algo-
rithm [RKM+04], whose typical form directly reflects the decision trees
used for mining them.

3.2 Relational Queries

When the dataset contains information about the relations between objects
in addition to, or instead of, the properties of individual objects, it is called
a relational dataset. An interaction between n objects is modelled as an n-
ary relation, corresponding to a hyperedge of cardinality n in a hypergraph
whose nodes represent the objects.

In the work presented here, we restrict ourselves to binary relations.
That is, we consider only interactions involving two objects at once, as
can be represented by usual graph edges. This restriction allow us to em-
ploy techniques from graph mining when processing the datasets. Indeed,
this kind of relational dataset can be viewed as a multilabelled directed
graph (O,R), where nodes correspond to the objects O, and edges to rela-
tions R between them. Two families of functions, N and E , label nodes and
edges with their attributes, respectively. Relations of higher arity might be
decomposed into binary relations, possibly by introducing intermediary ob-
jects.

Similarly to the propositional setting, predicates can be constructed
from the attributes and combined into statements to form relational queries.
We introduced relational queries for redescription mining in Article III.

Example 4. Continuing with our example on world countries, we now
look at a dataset representing their relations from a geopolitical point of
view. This dataset involves other objects in addition to the nine countries:
five international organizations, namely the Commonwealth of Nations, the
European Union (EU), the North Atlantic Treaty Organization (NATO),
the Organization of American States (OAS) and the United Nation Security
Council, as well as five cities and seven languages.

The relations existing between these objects can be represented as a di-
rected and labelled network, as shown in Figure 3.2. Object attributes could
be indicated as labels on the nodes. However, they are listed separately in
Table 3.2 for better readability.



20 3 Query Languages

CA

CL

CN

FR

GB

MX

MZ

RU

US

French

Russian

English

Portuguese

Spanish

Chinese

Arabic

London

Bruxelles

Washington

New-York

Beijing

NATO

UN Security Council

EU

Commonwealth

OAS

member

membermember

language

language

language

language

language

language

language

language

language

language

capital

capital

capital

located
in

located in

located
in

headquarters

headquarters

headquarters

headquarters

language

language

language

language

language

language

language

language

language

language

language

language

member

member membermember

member
member

member

member

member

member

membermember

member

member

member
language

headquarters

located
in

Figure 3.2: Example dataset. Geopolitical relations between world coun-
tries involving cities, international organizations and languages.

3.2.1 Predicates

A relational dataset might be heterogeneous, in the sense that not all at-
tributes are defined for every object. The subset of objects that an attribute
characterizes constitute its domain, such that dom(Ni) ⊆ O for node at-
tributes and dom(Ei) ⊆ O ×O for edge attributes.

For instance, in our example, population is recorded for both countries
and cities and the year of foundation is defined for organizations only. All
attributes are not gathered into a single matrix. Here, they are presented
in distinct tables for the countries, cities and international organizations,
in Tables 3.2 (a), (b) and (c), respectively.

Similarly to the propositional predicates seen previously, node and edge
predicates can be built from object and relation attributes, respectively. In
addition, we also consider comparison predicates.
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Table 3.2: Example dataset. Geopolitical attributes.

(a) World countries.

Country
1) History of 2) History of 3) Political 4) Population
Communism Colonialism Regime (106 hab.)

CA false false Monarchy 33.476
CL false false Republic 16.572
CN true false Republic 1 353.821
FR false true Republic 65.350
GB false true Monarchy 63.181
MX false false Republic 115.296
MZ true false Republic 22.894
RU true false Republic 143.300
US false false Republic 315.550

(b) Cities.

City
6) Population

(106 hab.)

Beijing 16.801
Bruxelles 1.119
London 8.173

New-York 8.336
Washington D.C. 5.703

(c) International organizations.

Organisation
7) Year of

Foundation

Commonwealth 1926
EU 1952

NATO 1949
OAS 1948

UN Security Council 1946

Node predicates. For a given node attribute Ni and subset RS of its
range, a node predicate νRS

Ni
(o) is true for an object o if and only if the

node attribute Ni is defined and takes value in RS for this object. Node
predicates are the counterpart of propositional predicates, with the addi-
tional condition that the attribute needs to be defined, which is implicitly
assumed in the propositional case. Using Iverson bracket notation, this is
written as

νRS
Ni

(o) = [o ∈ dom(Ni) ∧ Ni(o) ∈ RS ] .

For example, objects for which population information is available and

ranges from 10 to 30 millions support the predicate ν
[10,30]
population(o), that

is, Chile, Mozambique and Beijing. Node predicates ν
[1800,1900]
independence(o) and

νMonarchy
regime (o) respectively select countries that became independent during

the XIXth century and monarchies, namely Canada, Chile and Mexico, on
one hand, Canada and the United Kingdom on the other. In the latter
case, we slightly abuse notation to denote, strictly speaking, the singleton
set {Monarchy }.
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Edge predicates. Likewise, for a given edge attribute Ei and subset R′T
of its range, an edge predicate ε

R′
T

Ei
(o1, o2) is true for a pair of objects (o1, o2)

if and only if the edge label Ei is defined for that pair and takes value in
R′T . This is equivalently expressed as

ε
R′

T
Ei

(o1, o2) = [(o1, o2) ∈ dom(Ei) ∧ Ei(o1, o2) ∈ R′T ] .

When the range of the attribute is limited to a single value it simply
indicates the existence of the relation without qualifying it. In our example,
all edge attributes are of such existential type. In that case, we denote the
corresponding predicate simply as εEi(o1, o2).

In particular, the edge predicate εlanguage(o1, o2) selects pairs of objects
where the former is an official language of the latter. There are 21 such pairs
in our example dataset, including the pairs of languages and organizations
(Arabic, UN Security Council), (Spanish, OAS) and (French, NATO), as
well as the pairs of languages and countries (Spanish, Mexico) and (Chinese,
China). The membership predicate εmember(o1, o2) is supported by 18 pairs
of objects, a country and an organization, where the country is a member
of the organization.

In comparison to these existential edge attributes we could consider a
detailed variant, e.g. an attribute which does not simply indicate member-
ship but more precisely qualifies the relation with values such as permanent,
observing, or elected.

Comparison predicates. Finally, comparison predicates are built as fol-
lows. For a given object attribute we choose as a comparison function a
binary relation ≺ defined over its range. Then, a comparison predicate
φ≺Ni

(o1, o2) is true for a pair of objects (o1, o2) if and only if both node
labels Ni(o1) and Ni(o2) are defined and Ni(o1) ≺ Ni(o2). That is, a com-
parison predicate is defined as

φ≺Ni
(o1, o2) = [o1 ∈ dom(Ni) ∧ o2 ∈ dom(Ni) ∧ Ni(o1) ≺ Ni(o2)] .

As an example, consider the less-than relation over the real-valued popu-
lation attribute, such that the comparison predicate φ<population(o1, o2) holds
true if and only if o1 is less populated than o2. The pairs (Chile, Beijing),
(London, New-York) and (Canada, Russia), among others, support this
predicate.
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Figure 3.3: Graphical representation of a relational query q1(#A,#Z).

3.2.2 Statements

As in the propositional case, the predicates introduced in the previous
section constitute building blocks, which are combined into statements to
form queries.

In the relational setting, queries consist of monotone conjunctions of
nodes, edges and comparison predicates with a subset of variables of in-
terest selected as query variables. More precisely, borrowing terminology
from inductive logic programming [MDR94] and using the Prolog nota-
tion [DEDC96], a relational query is a definite clause of the form

q(X1, . . . , Xm) : - b1, . . . , bn .

where the body elements bi are node, edge or comparison predicates and q
is a special predicate denoting the query. The query variables X1, . . . , Xm

in the head also occur in the body.
Such queries can be represented in graphical form. For this purpose,

we adopt the following conventions. While data nodes are represented as
squares, variables, i.e. query nodes, are represented as circles. Furthermore,
we use the hash symbol together with a letter to denote the query variables
and with a number to denote any other intermediate variable.

For instance, the graph in Figure 3.3 represents the following relational
query

q1(#A,#Z) : - νRepublic
regime (#A), ν

[1940,1950]
foundation(#Z), εmember(#A,#Z),

εlanguage(#1,#A), εlanguage(#1,#Z) .

This query involves node predicates based on nominal and numerical at-
tributes. However, we generally consider only Boolean and nominal object
attributes to construct node predicates, while numerical attributes are used
to construct comparison predicates.

To determine the support of the query, the statement is matched against
the data: each variable in the query has to be matched to a node in
the graph, respecting the predicates in the query body. We denote such
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a match of variables Yj to objects oij by the corresponding substitution
θ = {Y1/oi1 , . . . , Yl/oil}; θ reduced to the query variables is called answer
substitution. The set of all distinct answer substitutions of query q is its
support, supp(q). Hence, the support of query q(X1, . . . , Xm) is a set of
m-tuples of objects.

The support of query q1 above consists of pairs of objects, a republic
and an organization founded in the 1940s, where the former is a member
of the latter and they share an official language. Such is the case of Chile
and the OAS or Canada and the NATO, among others.

As another example, by adding the intermediate variable #1 to the
head as a query variable renamed as, say, #B, we obtain a query of arity
three, q2(#A,#B,#Z). Entities supporting this modified query are triplets
consisting of a country, a language and an organization, including (Chile,
Spanish, OAS) or (Canada, English, NATO) as well as (Canada, French,
NATO).

Further examples are shown in Figure 3.4 respectively representing the
following relational queries:

q3(#A) : - εcapital(#A,#1), εheadquarters(#2,#A) .

q4(#A,#Z) : - εcapital(#1,#A), εlocated in(#2,#A),

εheadquarters(#Z,#2) .

q5(#A,#Z) : - εcapital(#1,#A), εheadquarters(#Z,#2),

φ<population(#1,#2) .

q6(#A,#B,#Z) : - εcapital(#1,#A), εlanguage(#3,#A),

εlocated in(#2,#B), εlanguage(#3,#B),

εheadquarters(#Z,#2), φ<population(#1,#2) .

Interpretability of relational queries. Relational queries are a rather
complex type of pattern. They are more easily understood in their graphical
representation, allowing to visualize the different objects involved and their
connections.

The limitation to monotone conjunctions aims to ensure the inter-
pretability of the queries. First, queries involving both conjunctions and
disjunctions would be still more complex and could not be represented as
graphs, making interpretation very difficult. Second, because of the hetero-
geneity of the dataset, negation is equivocal. A predicate might not hold
for an object or pair of objects for one of two reasons, either because the
attribute is not defined or because it takes a different value. In most cases,
the complementary predicate, selecting objects or object pairs for which
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Figure 3.4: Four relational queries.

the attribute is defined but takes a different value or compares differently,
can be obtained by replacing the value range by its complement or choosing
a different comparison function. For example,

νRepublic
regime (#A) becomes νMonarchy

regime (#A) , and

φ<population(#1,#2) becomes φ≥population(#1,#2) .

In addition, we require clauses to be linked, meaning that the set of
edge predicates connects any two query variables (X,Y ). Indeed, relational
queries should characterize the connections between the objects of interest
and unlinked queries are of little use for this purpose. In particular, query
q5 above does not satisfy this requirement, since the comparison predicate
between variables #1 and #2 is not considered for linkage. All other queries
are linked.

Furthermore, when mapping the statement onto the data, we require
that each variable in the query be matched to a different node in the graph.
As common in graph mining, we use subgraph isomorphism or, in terms of
logic, θOI -subsumption [EMS+94], to match queries against the data graph.
We consider that the resulting queries are more intuitive. They are also
easier to search. For instance, variables #1 and #2 in query q4 should be
mapped to different objects. The substitution

{#A/US,#1/Washington D.C.,#2/New-York,#Z/UN Security Council}
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complies with this requirement so the pair (US, UN Security Council) sup-
ports query q4. On the other hand, the pair (GB, Commonwealth) does
not support this query because London is simultaneously the capital of the
United-Kingdom and houses the headquarters of the Commonwealth.

Finally, the definitions above apply to queries of arbitrary arity but our
work focuses on queries of arity two, those describing the relations between
pairs of objects. While our proposed techniques are tuned towards this
type of patterns, they might still be extended to queries of higher arity.

As a word of warning about the terminology, we point out that the term
variable refers exclusively to a place holder for objects in this introduction
and in Article III, while it is used to refer to a vector-valued attribute in
the propositional setting described in Articles I and II.

The propositional setting presented in Section 3.1 readily corresponds
to the relational case where attributes are restricted to node attributes over
a homogeneous set of objects, i.e. such that A = N , E = ∅, and dom(A) =
O, ∀A ∈ A. In the absence of edge attributes, the connectivity requirement
practically restricts the number of variables appearing in the body of the
query to one. This variable also necessarily appears in the head as the only
query variable. Hence, the support of such a query consists of tuples of
size one. This directly maps to propositional monotone conjunctive queries
whose support consists of a set of individual objects. In a propositional
query, all predicates characterize the same object. For this reason, the
variable that refers to that object always remained implicit. In fact, the
notation [Aj ∈ RS ] used in propositional queries is a short hand for

νRS
Aj

(o) = [o ∈ dom(Aj) ∧ Aj(o) ∈ RS ] .

This shows that the propositional setting is a restriction of the general
relational setting.

Propositional redescription mining is directed towards the description
of individual objects, as compared to the characterization of connection
patterns between multiple objects in the relational setting. Propositional-
ization tools aim at turning relational datasets into propositional ones by
constructing propositional attributes based on the local connections around
individual nodes [KZ09, DEV12]. Redescriptions consisting of queries of
arity one, such as q3, can be obtained by applying propositionalization cou-
pled with a propositional redescription mining algorithm. More generally,
as argued in Article III, replacing a fully relational method by proposition-
alization coupled with a propositional redescription mining algorithm does
not allow to maintain the full connectivity information.



Chapter 4

Exploration Strategies

Given a query language, the space of possible queries needs to be explored
in search of pairs that constitute good redescriptions. Combined with di-
verse constraints on the redescriptions, different query languages give rise
to different search spaces. Beneficial properties of the language and con-
straints, such as anti-monotonicity, might allow for a particularly efficient
exploration. However, this is not the case in general.

Considering propositional data, there are 22k non-equivalent unre-
stricted Boolean expressions over a set of k predicates, the number of k-
place truth functions. Hence, given a set of n predicates, there are

κn =
n∑

k=0

(
n

k

)
22k

different expressions of arbitrary length. Furthermore, when looking at two
datasets with nL and nR predicates respectively, there are potentially up
to (κnL − 1)(κnR − 1) pairs of non-empty queries to examine.

For reasons of interpretability, one would generally only consider queries
involving at most a small fixed number of predicates and impose syntactic
restrictions on the combination of predicates, significantly reducing the
amount of candidate pairs. Still, it is generally too large to allow for an
exhaustive enumeration. In the presence of non-Boolean attributes, the
number of predicates that can be constructed might be extremely large.
Furthermore, in the relational case, there can be infinitely many distinct
valid queries. Thus, resorting to heuristics is a practical necessity.

The rest of this chapter outlines and compares three generic exploration
strategies for mining redescriptions.
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4.1 Query Mining and Pairing

The simplest exploration strategy consists of two steps. First, individual
queries are mined from the dataset independently. Second, queries with
similar supports are paired to form redescriptions.

On one hand, if the number of views is small, the most practical ap-
proach is to mine queries from each view separately, then to pair them
across the views. On the other hand, if the number of views is large, for in-
stance when each predicate is associated to a distinct view, one might mine
queries over all predicates pooled together, then pair queries with similar
supports that involve predicates from disjoints sets of views.

Example 5. Continuing with our running example, we now consider the
case of a propositional dataset divided into two views. Specifically, one view
consists of the seven geographic attributes, G1, . . . , G7, listed in Table 3.1,
while the other consists of the four geopolitical attributes of Table 3.2 (a),
henceforth denoted as P1, . . . , P4.

Faced with such data, the first mining strategy would be carried out
by mining geographic and geopolitical queries independently, before pairing
them based on support similarity.

The main advantage of such a mine-and-pair scheme is to allow the
adaptation of frequent itemset mining algorithms in a very straightforward
fashion. Over the last couple of decades, a great number of algorithms have
been developed to mine monotone conjunctive queries over a fixed set of
propositional predicates [AS94, PCY95, ZH02, CG02, HPYM04], to cite
only a few among the most prominent examples. Typically, they exploit
the anti-monotonicity of the support of queries to safely prune the search
space, resulting in highly efficient complete enumeration procedures.

An alternative to mining and pairing is to replace the second step with
a splitting procedure. That is, pool together all predicates for the initial
mining step, then split the queries depending on views. However, the ex-
istence of a query does not imply that it can be split into two subqueries
that both hold with the same supports. More generally, there is no guar-
antee that there will be a way to split the query found into two subqueries
over disjoint views with sufficiently similar supports and even less so with
relational queries, when the connectivity needs to be maintained.

When the data originate from two views, monotone conjunctive re-
descriptions can be mined exhaustively in a level-wise fashion similar to
the Apriori algorithm [AS94, MTV94]. The support cardinality of both
queries and of their intersection, as well as some associated measures, are
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antimonotonic and can be used safely for pruning. However, support simi-
larity functions are typically not antimonotonic, even in this simplest case.
This strategy is adopted in Article IV, where the search for the best rule
at each iteration is carried out exhaustively.

Mining and pairing is best suited for exhaustive search. We now turn
to schemes that can be used for an exploration relying on heuristics.

4.2 Alternating Scheme

Another strategy for mining redescriptions is to use an alternating scheme.
The general idea is to start with one query, find a good matching query to
complete the pair, drop the first query and replace it with a better match,
and continue to alternate in this way, constructing a fresh query on either
side until no further improvement can be achieved.

For example we would start with an initial query q
(0)
L over geographic

attributes and look for a good matching query over geopolitical attributes,

q
(1)
R . Next, we would look for another query on the geographic attributes,

q
(2)
L , that forms a better pair (q

(2)
L , q

(1)
R ), and so on.

In fact, if one side of the redescription is fixed, finding an optimal query
to complete the pair constitutes a binary classification task. The entities
supporting the fixed side provide positive examples and the remaining en-
tities might be considered as negative examples. Thus, any feature-based
classification technique could potentially make up the basis for a redescrip-
tion mining algorithm, with the associated query language consisting of the
possible classification criteria.

However, to be consistent with our position on the interpretability of
queries, we exclude for instance the direct use of linear classifiers. Indeed,
the resulting weight vectors have reduced interpretability compared to ex-
plicit constraints on the range of attributes.

This alternating scheme was introduced by Ramakrishnan et
al. [RKM+04]. Their CARTwheels algorithm is based on decision
trees and the query language consists of the resulting rules. In Article III
we propose an alternating scheme for mining relational redescriptions. It
relies on a relational query miner in order to find matching queries to
complement the current pair.

The question of finding good starting points arises naturally. One option
is to randomly partition the entities into positive and negative examples,
using one or several such partitions to initialize the search, instead of ac-
tual queries [RKM+04]. Queries that consist of a single predicate, i.e. the
simplest possible queries, offer another choice for the initialization. This
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option, adopted in Article III, is particularly appropriate for the relational
setting, where the number of possible partitions is extremely large and a
majority would not result in any query. In either case, accepting queries
that do not match the fixed side very well during the first iterations can
help increase the exploratory power of the algorithm.

For a fixed number of starting points and a limit on the number of
alternations, the complexity of such a scheme depends primarily on the
complexity of the chosen classification algorithm.

4.3 Greedy Atomic Updates

Finally, a third exploration strategy relies on iteratively finding the best
atomic update to the current query pair. More precisely, given a pair of
queries, one tries to apply atomic operations on either query to improve
the candidate redescription, until no further improvement can be achieved.
Conceptually, atomic operations at hand include the addition, deletion and
edition of predicates. That is, one might add a fresh predicate to the
query, remove a predicate from the query or alter some predicate already
occurring in the query, in particular, by modifying the range of the truth
vale assignment.

For example, if our current candidate redescription is

( G2 ∧ [1 ≤ G6 ≤ 10] , [100 ≤ P4] )

by adding, deleting and editing a predicate, we might modify it respectively
to

( G2 ∧ [1 ≤ G6 ≤ 10] , [100 ≤ P4] ∨ [P3 = Monarchy] ) ,

( [1 ≤ G6 ≤ 10] , [100 ≤ P4] ) or

( G2 ∧ [5 ≤ G6 ≤ 10] , [100 ≤ P4] ) .

Memorization of the explored queries can be employed to prevent the
algorithm from repeating itself. For the initialization, one might consider
the pairs of best matching predicates constructed with any two attributes
from different views.

This strategy, restricted to addition of predicates, i.e. extensions, was
first introduced as the Greedy algorithm by Gallo et al. [GMM08]. Build-
ing upon this work, we proposed the ReReMi algorithm in Article I. The
algorithm is strengthened with a beam search to keep the current top can-
didates at each step instead of focusing on the single best improvement.

Typically, such an algorithm would consider in turn each attribute to
generate modified candidates, a subset of which will be selected and further
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updated at the next step. The running time upper bound for this strategy
is in the order of the product of the number of starting points, the maximal
number of iterations and the beam width multiplied by the number of real-
valued attributes times the squared number of objects plus the number of
Boolean attributes and of categories of nominal attributes times the number
of objects. For instance, in the example of Section 6.3, this product equals
100× 10× 4× (48× 25752 + 190× 2575) ≈ 1012. In fact, not all objects can
affect the support for a particular extension and determining the optimal
extension attainable with a given real-valued attribute is quadratic in the
number of cut points, which is at most the number of distinct values of the
attribute and usually much smaller than the number of rows, as we argue
in Article I. Thus, this strategy proved feasible in practice.

When global constraints on the query need to be enforced, like connec-
tivity in the relational case, the alternating scheme presented previously is
better suited compared to such atomic updates. On the other hand, atomic
extensions might be favored when the construction of individual predicates
is costly, as for instance when it involves finding the best interval for real-
valued attributes. Indeed, in such cases, building a fresh query from scratch
at each alternation can represent a waste of energy if the successive queries
are close variations of their replacement and, in effect, the same predicates
are generated over and over again.
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Chapter 5

Pattern Selection

In this chapter we take a closer look into pattern selection. After having de-
fined query languages and sketched methods for exploring the search space,
we now discuss the evaluation of quality and the selection of redescriptions.

First, we consider the definition of quality criteria and their enforcement
with respect to individual redescriptions. Such quality criteria, arising from
background knowledge or particular domain requirements and modelled as
a set of constraints C, determine a bias towards individual redescriptions.

However, the aim of a data mining task generally lies in finding patterns
that together describe the data well, instead of finding good patterns taken
in isolation. That is, the analyst is interested in identifying a high quality
set of patterns rather than a set of high quality patterns. Thus, we also
consider the problem of mining sets of redescriptions.

5.1 Individual Patterns

In this section, we inventory criteria that affect the quality of redescriptions,
before giving an outline of how they are enforced during the mining process.

5.1.1 Quality Criteria

Soon after the problem of association rule mining was defined [AIS93] and
the first efficient solution, the now standard Apriori algorithm, was pro-
posed [AS94, MTV94], it became clear that frequency and confidence are
not sufficient to ensure the quality of the results [KMR+94, SVA97]. Simi-
larly with redescriptions, while the structural difference in the queries and
the similarity of their supports are defining features, they are not sufficient
to guarantee the quality of the results. Other crucial aspects need to be
taken into account.
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The quality of a pattern is a rather abstract property. It results from
a combination of characteristics that we try to evaluate with objective
criteria. For instance, we might consider that a good redescription is a
redescription with easily interpretable queries and statistically significant
supports. That said, we still need to define precisely what is meant by
interpretability and statistical significance, preferably in an operative way,
by defining means to measure these characteristics.

Queries. Besides structural difference, in other words, the requirement
that the attributes over which the queries forming a redescription are ex-
pressed must belong to distinct views, expressivity and interpretability are
the main desirable characteristics for the queries of a redescription. For
instance, long and nested formulae are generally hard to interpret, and
are therefore of little interest for describing the data. Yet, too strong re-
strictions imposed on the syntactic complexity of queries might severely
limit the expressive power of the language. Hence, a balance needs to be
struck between these partly conflicting characteristics, which are moreover
difficult to measure. The expressivity of the language and interpretability
of individual elements are largely determined by the syntactic restrictions
imposed on the construction of statements, discussed in Chapter 3. In ad-
dition, a simple means to control the complexity of a query is to limit its
length as it is generated.

Support. The similarity between the supports of the queries of a rede-
scription is a defining property of a redescription, also called its accuracy.
As mentioned in Section 2.1, the similarity relation ∼ is generally specified
as a set similarity function together with a threshold. Various functions
can be used for this purpose. For a pair of queries (qL, qR), we denote by
E1,1, E1,0, E0,1 and E0,0 the subsets of entities that support both queries
(i.e. E1,1 = supp(qL) ∩ supp(qR)), support only qL, support only qR and
do not support either queries, respectively. Then, examples of similarity
functions include the following:

matching number = |E1,1|+ |E0,0| ,

matching ratio =
|E1,1|+ |E0,0|

|E1,0|+ |E1,1|+ |E0,1|+ |E0,0|
,

Russel & Rao coefficient =
|E1,1|

|E1,0|+ |E1,1|+ |E0,1|+ |E0,0|
,

Jaccard coefficient =
|E1,1|

|E1,0|+ |E1,1|+ |E0,1|
,
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Dice coefficient =
2 |E1,1|

|E1,0|+ 2 |E1,1|+ |E0,1|
, and

Rogers & Tanimoto coefficient =
|E1,1|+ |E0,0|

|E1,0|+ 2 |E1,1|+ |E0,1|+ |E0,0|
.

The Jaccard coefficient is commonly used in redescription mining. This
choice is motivated mainly by the simplicity of the measure and its agree-
ment with the symmetric approach adopted in redescription mining. In-
deed, the Jaccard coefficient weights the support of the two queries equally.
In addition, it is scaled to the unit interval without involving the set of en-
tities that support neither queries, E0,0. This is an asset, particularly in
the relational setting, when the dataset is heterogeneous or requires the use
of the open world assumption, i.e. the assumption that a relation may exist
despite not being recorded in the dataset, so that this set may not be easily
and appropriately defined.

Besides accuracy, it can be desirable to fix lower or upper bounds on
the support cardinality of the queries and possibly on that of the individ-
ual predicates involved as well. Also, in the relational case where entities
consist of object tuples, more complex constraints can be imposed, for in-
stance on the number of distinct objects appearing at any given position
or on the number of distinct tuples up to reordering. These constitute sec-
ondary constraints on the redescriptions that might arise from the domain
knowledge and help select redescriptions of interest.

Statistical significance. A crucial requirement for the redescriptions
mined is that they be statistically significant. To provide new insight about
the data at hand, a redescription should not be likely to arise at random
from the underlying data distribution. In particular, the accuracy of a
redescription should not be readily deducible from the support of its queries.
For instance, if both queries cover almost all objects, the overlap of the
supports is necessarily large, too, and a high accuracy is no surprise.

Hence, one way to measure the significance of a redescription is to esti-
mate how likely such a pattern is to arise randomly. That is, the presence
of the redescription is tested against the null-model where the two queries
are assumed to be independent. Consider two statistically independent ran-
dom queries whose marginal probabilities correspond to those of the queries
under consideration. In other words, their marginal probabilities equal the
fraction of covered entities pL = |supp(qR)| / |E| and pR = |supp(qR)| / |E|,
respectively. A p-value representing the probability that these independent
queries have an overlap equal to or larger than the one observed can be
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computed using the binomial distribution as follows

pvalM(qL, qR) =

|E|∑

s=|E1,1|

(|E|
s

)
(pLpR)s(1− pLpR)|E|−s .

This is the probability of obtaining a set of same cardinality |E1,1| or larger
if each element of a set of size |E| has a probability equal to the product of
marginals pL and pR to be selected, in accordance with the independence
assumption.

Alternatively, a p-value can be computed as the probability that two
sets of cardinalities |supp(qR)| and |supp(qL)|, respectively, drawn indepen-
dently at random from a set of size |E| have an overlap of cardinality |E1,1|
or larger. This is Fisher’s exact one-sided p-value [Fis38], evaluated using
the hypergeometric distribution:

pvalO(qL, qR) =

|E|∑

s=|E1,1|

(|supp(qL)|
s

)(|E|−|supp(qL)|
|supp(qR)|−s

)
( |E|
|supp(qR)|

) .

High p-values indicate that the independence assumption, i.e. the null
hypothesis, cannot be rejected and the redescription is then considered
less significant. The computation of such theoretical p-values relies on
assumptions about the underlying data distribution. Both tests assume
that all elements of the population can be sampled with equal probability,
from a fixed distribution. The sampling distribution is calculated only
on expectation in the former case, while the latter relies on the stronger
assumption of fixed marginals. However, the real data might deviate from
these simple assumptions, weakening the significance tests.

Theoretical p-values can be complemented by empirical statistical tests,
carried out after randomizing the original data. Both approaches rely
on statistical hypothesis testing. Developing a well-founded methodology
based on this theory to assess the significance of redescriptions requires
to consider a number of issues such as appropriate multiple testing with
scaling and corrections, as well as property-preserving randomization and
uniform sampling of datasets in the case of randomization tests.

These questions do not constitute the core of our contribution and we do
not discuss them in depth here. Instead we refer the interested reader to the
relevant literature [LR05, Edg95] for general considerations about statistical
hypothesis testing and randomization tests or concerning their application
to data mining, from the early study of statistical significance of association
rules [BMS97, MS98] to recent developments [Oja11, Han12, Vuo12], among
others [Web07, ZPT04].
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In Article I, we assess the significance of propositional redescriptions
using both approaches. Empirical p-values, in particular, were obtained
following the approach of Gionis et al. [GMMT07]. Specifically, copies
of the original data are generated and randomized so as to maintain, at
least approximately, the row and columns marginals. Then, the mining
process is run anew on each of the copies. Redescriptions from the original
data that are more accurate than a chosen fraction of the redescriptions
obtained from the randomized copies are deemed significant with respect
to the preserved properties, others are discarded.

We did not study this aspect in the context of relational datasets. Eval-
uating the statistical significance of complex connection patterns such as
our relational queries is a difficult but interesting question. It is open for fu-
ture investigations, possibly building on works by Hanhijärvi et al. [HGP09]
and by Günnemann et al. [GDJE12].

5.1.2 Constraint-based Mining

In the previous section, we discussed characteristics that impact the qual-
ity of a redescription and the associated evaluation criteria. Such criteria
result in a set of constraints C that limits the space of acceptable redescrip-
tions. They can be enforced either during the exploration, by pruning the
search space, or as a post-processing step, by filtering the output. Clearly,
it is preferable to push the constraints as deeply as possible into the search
algorithm, as this improves efficiency by preventing the generation of rede-
scriptions only to discard them later on.

Significant effort has been directed towards the integration of various
constraints into exhaustive search algorithms [SVA97, GR00], giving rise to
constraint-based data mining. This integration relies on the classification
of constraints according to properties such as anti-monotonicity and suc-
cinctness [NLHP98] that determine their behavior and consequently how
they should be used to prune the search space safely but optimally.

However, these works focus on conjunctive query languages and exhaus-
tive pattern enumeration, by extending the Apriori algorithm. Allowing
disjunctions makes these methods inapplicable because anti-monotonicity
no longer holds. Then, heuristic approaches are preferred. Beam-search al-
gorithms, in particular, depend on a ranking function to determine the top
candidates that will be explored at the next step. Designing an appropriate
score to ensure a satisfactory exploration of the search space with respect
to a set of quality constraints is far from trivial.

Conceptually, constraint-based data mining is a step towards inductive
databases [IM96], a framework for data mining where databases in addi-
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tion to the usual data also contain patterns over this data [BKM99, DR02,
BDRM05]. Inspired by the success of Codd’s model [Cod70] and the pow-
erful closure property, this framework proposes to see data mining as the
manipulation of patterns using a set of expressive operations, similarly to
the way ordinary database records can be manipulated using relational
algebra.

Consider the following abstract model of data mining introduced by
Mannila and Toivonen [MT97]. Given a language of patterns L, a dataset
D and a selection predicate S, a data mining task aims at determining the
theory of D with respect to L and S,

Th(D,L,S) = {φ ∈ L , S(φ,D)} .

From the point of view of inductive databases, the computation of
Th(D,L,S) is a generic database operation of evaluating S, known in this
context as an inductive query. Redescription mining naturally integrates
into this framework. The language of patterns consists of all query pairs, i.e.
L = Q×Q, and the selection predicate takes the form of the accuracy and
structural difference requirements together with the auxiliary constraints
on the patterns.

Recently, constraint programming has been proposed as a declarative
approach for constraint-based data mining [DRGN08, GNZDR11, KBC10].
It shares with inductive databases the aim of providing a generic language
for specifying desirable characteristics of patterns, independently of the
procedure used to identify the actual patterns. Constraint programming
has been applied to redescription mining restricted to monotone conjunc-
tions [GNDR13]. In general, this approach is currently unable to deal
efficiently with certain classes of patterns and constraints, but promising
for others.

5.1.3 Interactive Data Mining

Selecting patterns by explicitly specifying a set of desired characteristics
and the associated means of evaluation offers much flexibility. However,
such an ad-hoc approach also has its drawbacks. It might require extensive
background knowledge and multiple rounds of trial and errors to familiarize
with the tool and tune the parameters so as to obtain good results.

There, an interactive interface that allows the analyst to inspect pat-
terns as they are generated and that readily provides feedback comes in
handy. The Siren interface presented in Article II is a first step in this
direction. Potentially, by modifying the selection criteria, the analyst is
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able to specify his interest dynamically, in response to the output produced
hitherto by the mining algorithm.

However, such high flexibility and adaptability might actually enable
the analyst to fine-tune the mining process to obtain only the results that
confirm his expectations, putting the discovery of new knowledge in jeop-
ardy.

5.2 Sets of Patterns

Even with strict quality requirements, the returned set of redescriptions
might be large and contain near duplicates.

For instance, a collection of a dozen results which are minor variations
of each other is an undesirable result, even if each redescription is highly
accurate and of good quality when considered separately. The problem here
lies in the redundancy of the redescriptions. When each of them conveys
more or less the same information, communicating the whole set of patterns
to the analyst represents a large cognitive overhead compared to returning
only one, while the informative content remains almost unchanged.

One way of measuring the redundancy between two redescriptions is
to compare the occurring attributes and covered entities, since they carry
most of the information of a redescription. In particular, given a set of
redescriptions, one can consider the similarity of their attribute sets and
support intersection separately or compare the overlap of the area defined
by the rows and columns involved in either propositional queries. Still, this
is a rather crude way of measuring redundancy.

Overwhelming results are a major issue of data mining algorithms. In
the domain of frequent itemset mining, it has been proposed to look for
concise representations of the results, that is, to identify a small set of
patterns from which the rest can be derived exactly or approximately. Such
summaries also provide a condensed representation of the data [MT96].
This leads to the notions of closed itemsets [PBTL99] and free-sets [BB00],
among others (see [CRB04] for an overview).

More generally, given a dataset, a typical aim is to mine a small set
of patterns that together describe the data well, rather than consider pat-
terns taken in isolation. One approach to pattern set mining is to employ
constraint-based techniques as discussed in Section 5.1.2, this time also tak-
ing into account constraints on the entire set of patterns such as support
overlap or coverage [GNZDR11].

Methods rooted in Information Theory constitute more holistic ap-
proaches to selecting sets of patterns. In particular, alternatives based
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on compression and on subjective interestingness, are presented in the fol-
lowing sections, respectively.

5.2.1 Compression-based Model Selection

Compression-based approaches for pattern set mining use compression as a
selection criterion. They are motivated by the intuition that the data can
be compressed more efficiently by exploiting its internal structure, so that
uncovering more of the structure results in improved compression. Simul-
taneously, redundancies among the patterns result in increased compressed
size and are therefore penalized.

Different techniques have been studied to select a model for a given
dataset based on information theoretic principles such as the Mini-
mum Description Length (MDL) [Grü07] or the Information Bottleneck
(IB) [TPB00]. The MDL and IB approaches differ notably in the fact that
the first requires a lossless compression scheme while the latter allows for
lossy compression.

The central ingredient of the MDL recipe is the definition of an encoding
scheme for the patterns. Then, patterns mined from the data can be stored
in a table together with their associated code-words and used to encode the
data. The aim is to find a set of patterns that yields the shortest encoding
of the data while keeping the size of the code table minimal. A prime
example of mining tool based on the MDL principle is the Krimp itemsets
miner [VvLS11].

Inspired by this approach, we propose a method for mining associations
from two-view datasets, or, roughly speaking, for compressing the mapping
between datasets using redescriptions, presented in Article IV.

Consider a pair of queries, (qL, qR), with very similar supports, i.e. an
accurate redescription. The fact that qL holds implies that qR is very likely
to hold too, and vice versa. Therefore, such patterns provide information
about the associations between the two views of the dataset and can be used
to encode one view given the other. In other words, they allow to translate
one view into the other, and we call them translation rules. Then, we look
for a set of such rules that together capture the cross-view structure of the
data well, as measured by their ability to compress it.

Pairs of propositional monotone conjunctive queries constitute our
translation rules and we allow both unidirectional and bidirectional as-
sociations, as this provides more flexibility to capture the structure of the
dataset and consequently increases the compression ability of our model.
More precisely, we consider query pairs where the support of the former
query is almost a subset of the support of the latter, i.e. such that the



5.2 Sets of Patterns 41

presence of one query implies the presence of the other, but the converse
need not be true.

To summarize, our proposed algorithm identifies pairs of monotone con-
junctions which allow to encode one view of the data given the other, or
vice versa. Practically, this results in a parameter-free method for mining
pairs of queries.

5.2.2 Subjective Interestingness

All the approaches presented so far are concerned only with objective qual-
ities of the patterns, in the sense that the quality depends only on the data
and not on the beliefs or preconceived, possibly erroneous, understanding
that the analyst possesses prior to the data mining task.

Early on, Silberschatz and Tuzhilin argued that the interestingness of
patterns should be evaluated from the point of view of the user [ST95].
They proposed two subjective measures of interestingness. First, action-
ability depends on whether the analyst can react to the information pro-
vided [PSM94]. Second, unexpectedness depends on whether the infor-
mation surprises the analyst, that is, whether the pattern contradicts the
expectations of the analyst, formalized as a system of beliefs [PT98, PT00].

While such approaches arguably employ an extremely simplified repre-
sentation of the analyst’s expectations, they attempt to take these beliefs
explicitly into account in the mining process. Therefore, they are called
subjective, in contrast to other, objective, approaches.

Already a decade ago, Mannila [Man00] advocated the definition of a
theoretical framework for data mining, arguing for the usefulness of such
formalization and suggesting five possible candidates for the role, includ-
ing inductive databases and data-mining as data compression. Pursuing
this endeavor, De Bie [DB11a] recently proposed a subjective information
theoretic framework for data mining. It is based on the idea that the data
mining task can be considered as an exchange of information between the
mining process and the analyst.

From this point of view, the data analyst has initial apriori beliefs about
the data, modelled as a distribution over possible datasets. During the
mining process, information about the data is communicated to the analyst
in the form of patterns, allowing him to adjust his beliefs. Then, the amount
of new information conveyed by a pattern, i.e. its subjective interestingness,
is measured as the reduction of the uncertainty in the data miner’s beliefs.

Significance testing approaches based on data randomization mentioned
in Section 5.1.1 share some similarities with this line of work. The apriori
knowledge of the analyst consists of the preserved properties, so that his
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belief is modelled by sampling datasets that possess such properties. How-
ever, these empirical approaches are less scalable and suffer from limited
resolution compared to the analytical alternative [DB11b]. In addition,
they do not allow to model belief updates.

Relying on strong roots in information theory, this framework provides a
principled way to define the subjective quality of patterns, as well as the cost
of their transmission, i.e. their description length. Formalizing the mining
process within this framework should allow to adapt existing algorithms and
design new ones so as to maximize the transfer of information from the data
to the analyst, for various families of patterns. In particular, integrating
redescription mining into this framework is an attractive direction for future
research.



Chapter 6

Illustrated Discussion

This chapter provides a practical illustration of the redescription mining
task. We present examples of redescriptions mined with the different algo-
rithms we developed, from datasets of diverse domains and using various
query languages. These examples complement those of the original publi-
cations.

In a sense, the present chapter is a showcase for redescription mining.
It is intended to exhibit the power of the method, its versatility, expressiv-
ity and interpretability, and not to constitute an experimental evaluation.
Detailed documented assessments of the proposed algorithms can be found
in the corresponding original publications.

Simultaneously, this exposition provides a basis for a critical discussion
of redescription mining. Indeed, through these examples, we point out some
weaknesses and drawbacks of the method, which could benefit from further
investigations.

We start with a summary of the different algorithms proposed in this
thesis with which the results illustrating this chapter were obtained. Each
of the four proposed algorithms, indicated in bold in the text, combines as-
pects of redescription mining discussed in the previous chapters, as outlined
below.

6.1 Overview of the Algorithms

As our main contribution, we extended redescription mining outside the
world of propositional queries over Boolean attributes. We studied more
general query languages and associated algorithms, making the task appli-
cable to a broader range of domains and problems.

In Article I, we proposed the ReReMi algorithm for propositional re-
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description mining. Specifically, the query language considered consists of
propositional linearly parsable queries (Section 3.1.2) over Boolean, nom-
inal and real-valued predicates (Section 3.1.1). Our algorithm was built
upon the Greedy algorithm [GMM08], and similarly constructs queries by
successive atomic extensions (Section 4.3). Compared to its predecessor,
it can handle non-Boolean attributes and missing values and uses a beam
search to maintain top candidates, improving exploration. The search is
primarily driven by the Jaccard coefficient as the support similarity function
(Section 5.1.1). Auxiliary constraints on the redescriptions are enforced ad-
hoc by means of ranking and filtering (Section 5.1.2). In addition, we use
randomization methods to assess the statistical significance of the obtained
redescriptions (Section 5.1.1).

In Article III, we proposed an algorithm for relational redescription
mining, called Arrm. Node and edge predicates are built over Boolean
and nominal object and relation attributes, respectively, while comparison
predicates are obtained from real-valued object attributes (Section 3.2.1).
These three types of predicates are then combined together into relational
queries (Section 3.2.2). To explore the space of queries, we resort to an
alternating scheme (Section 4.2). We used the Jaccard coefficient as our
measure of choice for accuracy, but it can easily be replaced with another
set similarity function (Section 5.1.1). The generation of non-compliant
candidates with respect to quality constraints is prevented whenever possi-
ble, and filtering is applied to the output to exclude remaining low-quality
results (Section 5.1.2).

As we argue in Chapter 4, exploring the space of query pairs with
iterative atomic updates is best suited to the propositional setting in the
presence of real-valued attributes as it reduces the need for computationally
intensive on-the-fly discretization. This approach naturally maps to linearly
parsable queries. In the propositional setting, connectivity represents a
global constraint on the queries that makes the alternating scheme the
most appropriate exploration strategy.

The investigation of pattern selection methods, focusing on the example
case of redescriptions, is our second major contribution.

First, we developed an interface for visualizing and mining proposi-
tional geospatial redescriptions (Section 3.1), presented in Article II. The
proposed interface, called Siren, relies on the ReReMi algorithm as its
core component. With this tool we take a first step towards interactive and
instant redescription mining. Ultimately, such an endeavor could support
an entirely interactive selection of redescriptions, by allowing to visualize
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results as they are generated and, in response, adjust the parameters of the
running algorithm (Section 5.1.3). By giving the analyst as much control
as possible over the mining algorithm and filtering procedures, it provides
a manually adjustable solution to the selection problem at hand.

Second, we proposed a compression-based method for mining small sets
of directional associations from two-view datasets, which can be understood
as a preliminary method for mining sets of redescriptions (Section 5.2.1).
Specifically, the aim is to find a set of patterns that best describes one side
of the data given the other side and vice versa. In other words, we seek to
translate one side into the other and hence call such patterns translation
rules. The algorithm to find them, dubbed Translator, is presented in
Article IV. This algorithm uses exhaustive search with pruning (Section 4.1)
and is limited to propositional monotone conjunctions (Section 3.1.2).

Both approaches have advantages and drawbacks. The first approach is
very flexible but lacks a theoretical basis, while the second approach con-
stitutes a principled method rooted in information theory but is currently
applicable only to a very restricted query language and does not allow to
incorporate background knowledge.

The redescriptions presented in the rest of this chapter are sampled from
larger sets of results. The indices appearing in the first column of the tables
of examples stand for the position of the corresponding redescriptions in
the entire result set ordered by decreasing Jaccard coefficient. In the text,
we use the table reference together with this index to refer to a redescrip-
tion, e.g. we refer to the second redescription in Table 6.2 as redescription
6.1(26). For each redescription, we indicate the right-hand side and left-
hand side queries, denoted by qL and qR, respectively, as well as the Jaccard
coefficient, J, and the cardinality of the support intersection, |E1,1|.

6.2 Computer Science Bibliography

The first illustration concerns publication patterns in computer science re-
search.

Dataset. Specifically, the dataset was obtained from the DBLP Com-
puter Science Bibliography data base.1 It consists of a pair of matrices
with authors as the objects. The first matrix defines the venues in which
each author has published, while the second defines other authors with
whom they have published. DBLPF is a dataset with 6455 authors and 304

1Data retrieved from http://dblp.uni-trier.de/db in March 2010.

http://dblp.uni-trier.de/db
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Table 6.1: Sample of redescriptions from DBLPFB mined with ReReMi.

qL qR J |E1,1|
(1) ICDM ∧ CIKM ∧ APWeb ∧ SIGIR Q. Yang ∧ W. Fan 0.714 10

(26) CCCG ∧ SODA ∧ GD M. Yvinec ∨ K. Kriegel
∨ J. O’Rourke

0.409 27

(27) VLDB ∧ SDM ∧ SIGMOD ∧ KDD J. Han ∧ P. S. Yu 0.407 11

(36) CCCG ∧ SODA ∧ SoCG K. Kriegel ∨ O. Devillers
∨ K. L. Clarkson ∨ D. M. Mount

0.383 49

(38) EUROCRYPT ∧ CRYPTO S. Halevi ∨ U. M. Maurer
∨ Y. Desmedt ∨ D. Naccache

0.382 58

(56) SDM ∧ SIGMOD ∧ ICDE ∧ KDD ( H. Mannila ∨ P. S. Yu ) ∧ J. Han 0.367 11

(59) COLT ∧ ICML A. J. Smola ∨ R. Khardon
∨ S. P. Singh ∨ Y. Singer

0.366 34

(60) STOC ∧ EUROCRYPT ∧ CRYPTO R. Ostrovsky ∨ P. Landrock 0.365 35

(71) PODC ∧ STOC ∧ EUROCRYPT ( K. Kurosawa ∨ A. Sahai )
∧ R. Canetti

0.351 13

(72) SODA ∧ SoCG ∧ WADS S. Bereg ∨ F. P. Preparata
∨ E. D. Demaine

0.351 54

(92) FOCS ∧ STOC ∧ EUROCRYPT
∧ CRYPTO

R. Ostrovsky 0.342 26

Table 6.2: Sample of redescriptions from DBLPF mined with ReReMi.

qL qR J |E1,1|
(1) [1 ≤ SEBD ≤ 8] ∧ [1 ≤ LPNMR ] ( [1 ≤ M. Lenzerini ] 0.909 10

∧ [1 ≤ SIGMOD ≤ 2] ∨ [1 ≤ F. Giannotti ] ) ∧ [2 ≤ N. Leone ]

(10) [1 ≤ ICDM≤ 12] ∧ [1 ≤ CIKM ≤ 5]
∧ [1 ≤ APWeb ≤ 10] ∧ [1 ≤ SIGIR]

( [1 ≤ J. Xu ] ∨ [1 ≤ B. Zhang ] )
∧ [1 ≤ W. Fan ≤ 9]

0.667 10

(33) [7 ≤ CCCG ≤ 22] ∧ [2 ≤ SoCG ≤ 9] [2 ≤ M. H. Overmars ]
∧ [4 ≤ E. D. Demaine ]

0.524 11

(42) [1 ≤ ICDM ] ∧ [1 ≤ DASFAA ≤ 10]
∧ [1 ≤ WAIM ] ∧ [1 ≤ SIGMOD ]

( [4 ≤ J. Pei ] ∨ [1 ≤ L. Zhang ]
∨ [1 ≤ G. Yu ] ) ∧ [1 ≤ J. Han ]

0.500 10

(48) [1 ≤ ESA ≤ 3] ∧ [7 ≤ GD ] [1 ≤ F-J. Brandenburg ] 0.476 10

(49) [1 ≤ NIPS ≤ 20] ∧ [10 ≤ COLT ] [1 ≤ N. Cesa-Bianchi ≤ 2] 0.476 10

(57) [5 ≤ FOCS ] ∧ [2 ≤ STOC ]
∧ [4 ≤ CRYPTO ≤ 28]

[1 ≤ O. Goldreich ]
∧ [1 ≤ S. Micali ]

0.467 14

(70) [1 ≤ PODC ≤ 9] ∧ [2 ≤ CRYPTO ] ( [1 ≤ R. Venkatesan ] 0.455 15
∧[1 ≤ STOC ]∧[2 ≤ EUROCRYPT ] ∨ [1 ≤ R. Gennaro ] ) ∧ [1 ≤ R. Ostrovsky ]

(72) [2 ≤ CRYPTO ] ∧ [2 ≤ STOC ≤ 23]
∧[2 ≤ EUROCRYPT ]∧[2 ≤ FOCS ]

[1 ≤ R. Ostrovsky ]
∧ [1 ≤ R. Canetti ]

0.452 14

(84) [2 ≤ CRYPTO ≤ 10] [1 ≤ R. Gennaro ] 0.435 37
∧ [2 ≤ EUROCRYPT ≤ 12] ∨ [1 ≤ E. F. Brickell ≤ 2] ∨ [1 ≤ V. Rijmen ]

(98) [4 ≤ SEBD ≤ 12] [2 ≤ S. Paraboschi ] 0.431 31
∨ [1 ≤ F. Mandreoli ] ∨ [1 ≤ G. Greco ]
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Table 6.3: Glossary of computer science venues.

Acronym Venue

APWeb Asia-Pacific Web Conference
CCCG Canadian Conference on Computational Geometry
CIKM International Conference on Information and Knowledge Management
COLT Computational Learning Theory

CRYPTO International Cryptology Conference
DASFAA Database Systems for Advanced Applications

ESA European Symposium on Algorithms
EUROCRYPT Int. Conference on the Theory and Applications of Cryptographic Techniques

FOCS IEEE Annual Symposium on Foundations of Computer Science
GD Graph Drawing

ICDE International Conference on Data Engineering
ICDM IEEE International Conference on Data Mining
ICML International Conference on Machine Learning
KDD Knowledge Discovery and Data Mining

LPNMR Logic Programming and Non-Monotonic Reasoning
NIPS Neural Information Processing Systems
PODC ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing
SDM SIAM International Conference on Data Mining
SEBD Sistemi Evoluti per Basi di Dati (Italian Symp. on Advanced DB Systems)
SIGIR Int. Conference on Research and Development in Information Retrieval

SIGMOD ACM SIGMOD Conference
SoCG Symposium on Computational Geometry
SODA Symposium on Discrete Algorithms
STOC Symposium on the Theory of Computing
VLDB Very Large Data Bases Conference
WADS Workshop on Algorithms and Data Structures
WAIM International Conference on Web-Age Information Management

conferences containing information on how many times each author has
published in each venue and with each other author. We denote as DBLPFB
the Boolean version of this dataset, that is, the dataset obtained by turning
every positive value to one.

Results. A sample of redescriptions mined with the ReReMi algorithm
from the Boolean and numerical versions of the DBLP dataset are shown in
Tables 6.1 and 6.2 respectively. A glossary of the venues appearing in the
redescriptions is provided in Table 6.3. In this context, a redescription con-
sists of a pair of queries over venues and coauthors, respectively, obtained
by combining non-negated predicates into linearly parsable queries using
conjunctions and disjunctions. The two settings differ solely in the type of
predicates used, Boolean in the first case, real-valued in the second.

The redescriptions obtained identify subareas of computer science such
as machine learning or cryptology, characterized by prime conferences and
key researchers of the respective fields. For instance, redescription 6.2(33)
characterizes eleven researchers having multiple publications at SoCG and
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CCCG, i.e. contributing to both these major computational geometry con-
ferences, and having collaborated with either Prof. Mark Overmars or Prof.
Erik D. Demaine, two key researchers in that area.

More generally, when analyzing bibliographic data, redescription mining
can shed light on the communities of researchers that make up the field,
arranged by specialty area, complementing other approaches to publication
network and scientific collaboration analysis [New01a, New01b, MBKN13].

Discussion. The redescriptions found with either setting share strong
similarities. The use of actual counts of publications rather than Boolean
indicators allows for finer tuning of the queries. This achieves higher ac-
curacies but also results in multiple redescriptions with support at the
acceptability threshold. In this example, the minimum support threshold
was set to 10. In the real-valued setting we obtained many redescriptions
with support exactly 10, unlike in the Boolean setting. This points to a
greater sensibility of the algorithm to such thresholds, due to its increased
capacity to adjust the queries, which needs to be controlled to prevent the
generation of spurious results.

Because an exhaustive exploration of the space of queries is not feasible,
our algorithms rely on heuristics for finding the top redescriptions. In
Article I, we present experiments with synthetic data showing that the
ReReMi algorithm is able to recover planted redescriptions. However,
despite this empirical evidence, the approach is not guaranteed to find the
strongest patterns in general.

6.3 Bioclimatic Niches

As a second illustration, we consider an application of redescription mining
in the domain of biology, namely, to find bioclimatic envelopes. In biology,
the bioclimatic constraints that must be met for a certain species to survive
constitute that species’ bioclimatic envelope or niche (here restricted only
to environmental variables in the Grinnellian sense of the term [Gri17], not
inter-species competition or such).

Dataset. We consider a dataset, denoted as Bio, characterizing the cli-
mate and fauna of Europe. Our objects consist of spatial areas of Europe,
roughly squares of 50 km sides.2 The data itself is composed from two
publicly available data bases: the European mammal atlas [MJAB+99]
and the Worldclim climate data [HCP+05]. The mammals data contains

2For details of the grid see www.luomus.fi/english/botany/afe/index.html.

www.luomus.fi/english/botany/afe/index.html
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Table 6.4: Sample of redescriptions from Bio mined with ReReMi.
tmin
X , tmax

X , and tavg
X stand for minimum, maximum, and average temperature

of month X in degrees Celsius, and pavg
X stands for average precipitation of

month X in millimeters.

qL qR J |E1,1|
(3) Polar bear [−4.5 ≤ tmax

Oct ≤ − 1.0] 0.973 36

(4) Polar bear [1.0 ≤ tmax
Sep ≤ 3.5] 0.973 36

(7) Wood mouse ∨ Azores Noctule
(

( [3.0 ≤ tmax
Mar ] ∧ [9.8 ≤ tmax

Oct ] ) 0.842 1703
∨ [9.7 ≤ tmax

Jul ≤ 14.0]
)
∧ [0.4765 ≤ tavgOct ≤ 19.5860]

(9) Bank Vole ∨ Steppe Mouse [−9.2 ≤ tmax
Dec ≤ 12.8000] 0.838 1696

∨ Northern Red-backed Vole ∧ [7.1556 ≤ tavgAug ≤ 23.089] ∧ [34.714 ≤ pavgJun]

∨ Harbor Seal ∧ [47.625 ≤ pavgAug]

(14) Wood mouse
(

( [3.0 ≤ tmax
Mar ] ∧ [4.2 ≤ tmax

Nov ] ) 0.828 1685
∨ [9.7 ≤ tmax

Jul ≤ 13.2]
)
∧ [−5.4944 ≤ tavgDec ≤ 13.133]

(23) Cape Hare ∨ European Hare ( [15.208 ≤ tavgJul ≤ 26.36] 0.808 1677
∨ Algerian Mouse ∧ [−12.9 ≤ tmin

Dec ≤ 8.9] ) ∨ [10.4 ≤ tavgSep ≤ 12.187]

∨ [112.75 ≤ pavgApr]

(30) Mountain Hare ( [tavgSep ≤ 12.992] ∧ [7.6 ≤ tmax
Sep ≤ 17.2] 0.782 688

∧ [13.5 ≤ tmax
Jul ≤ 22.5] ) ∨ [81.111 ≤ pavgApr ≤ 81.222]

(39) Balkan Snow Vole ∨ Field Vole [11.5≤ tmax
Jun ≤ 24.5]∧[12.2≤ tmax

Jul ≤ 26.7] 0.751 1343
∨ Azores Noctule ∧ [34.714 ≤ pavgJun ≤ 175.0] ∧ [42.0 ≤ pavgSep ≤ 183.06]

(54) Harvest Mouse ∧ European Mole [−0.3 ≤ tmin
Apr ≤ 8.8]∧[19.4 ≤ tmax

Aug ≤ 27.2] 0.677 774

∧ [45.417 ≤ pavgJun] ∧ [48.75 ≤ pavgAug ≤ 126.56]

(56) ( Daubenton’s Bat ( [tmin
Nov ≤ 6.2] ∧ [14.0 ≤ tmax

May ≤ 20.6] 0.669 870

∧ Eurasian Pygmy Shrew ) ∧ [48.75 ≤ pavgAug ≤ 165.6500] )

∨ Balkan Snow Vole ∨ [1.025 ≤ tavgApr ≤ 1.0917]

presence/absence information of mammal species in Europe, and the ag-
gregated climate data contains minimum, average, and maximum monthly
temperatures as well as average monthly precipitation.

Results. Table 6.4 presents redescriptions mined from this dataset with
the ReReMi algorithm. Since the objects considered in this task corre-
spond to geographic locations, the redescriptions can be naturally plotted
on maps. The maps generated with the Siren interface for these sample
results are shown in Figure 6.1.

These redescriptions accurately characterize areas, often contiguous,
that share similar climatic conditions and constitute the habitat of par-
ticular species. For instance, an area spreading from the Pyrenees to the
Baltic states is described in redescription 6.4(54) as the region where the
harvest mouse and the European mole cohabit and where a conjunction of
temperatures and precipitation conditions is encountered.
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(3) and (4) (7) (9)

(14) (23) (30)

(39) (54) (56)

Figure 6.1: Support of the redescriptions on Bio shown in Table 6.4. For
each redescription, purple, red and blue squares indicate areas where both
queries hold (E1,1), only the left query holds (E1,0) and only the right query
holds (E0,1), respectively.
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Redescriptions of this sort define the bioclimatic niche of species taken
individually or in combination. Finding such niches is an important prob-
lem in biology that, for instance, can help predict the impact of global
warming [PD03]. Redescription mining allows to study more complex com-
binations of species than would be otherwise possible with a laborious semi-
automatic process requiring the manual selection of species.

Discussion. Notice that the mammals data is Boolean while the climate
data is real-valued. Contrarily to the DBLP data, the range of the vari-
ables is not limited to small natural numbers and the amount of distinct
occurring values can be as large as the number of objects. The algorithm
determines the optimal discretization on-the-fly and the bounds are fixed
to the shortest interval optimizing the accuracy. This can result in interval
bounds with many decimals, up to the data precision, making the queries
difficult to read. Therefore, taking into account a criterion that favors sim-
ple interval bounds could be considered, for the benefit of interpretability.

We note a drift towards redescriptions with largest allowed support car-
dinality, with a substantial part of the redescriptions covering large areas of
the map. As with the bibliographic data, this is again partly an effect of the
greater capacity to adjust the queries by tuning the interval bounds. Here,
it manifests as fairly complex climatic queries, paired with disjunctions of
possibly unrelated species. The resulting redescriptions, while fairly accu-
rate, might be of little interest to biologists. This issue is mitigated by the
use of p-values to check the significance of the results, but not adequately
resolved yet.

In addition, if the discretization of a given variable at any step of the
algorithm is not controlled, very similar candidates could be generated,
affecting the diversity of the results.

To summarize, a more complex query language not only increases the
search space but also calls for reinforced selection methods. Adding more
parameters is not a viable solution. Thus, more holistic approaches, based
for example on information theory, need to be explored.

6.4 Political Candidates Profiles

With the third illustration we turn to the field of politics.

Dataset. The dataset, dubbed Elections, consists of information about
the candidates that participated in the 2011 Finnish parliamentary elec-
tions. The data was collected from www.vaalikone.fi, the “election en-

www.vaalikone.fi
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Table 6.5: Sample of redescriptions from Elections mined with ReReMi.

(1) qL = party: National Coalition J= 0.444 |E1,1|= 152
qR = Question: Should authorization be granted for the replacement of the two nuclear

reactors at the Loviisa power plant? Answer : Yes. ∧
Question: Which of the following statements best describes your views regarding Finland’s
financial support to other euro countries in the crisis? Answer : Supporting the euro is in
the interest of Finland itself.

(4) qL = party: Communist Party J= 0.365 |E1,1|= 57
qR = Question: What is your opinion on service outsourcing by local authorities to

private companies? Answer : Outsourced services must be returned to the municipalities. ∧
Question: Should Finland apply for NATO membership? Answer : Never. ∧
Question: What do you think of the current Finnish immigration policy? Answer : Too tight.

(5) qL = Municipal Representative J= 0.352 |E1,1|= 441
qR = Question: Recently, Russia banned property ownership by foreigners. On the other

hand, Russians have bought thousands of properties in Finland. What should be done?
Answer : Aquisition should be limited until there is reciprocity.

(7) qL = county: Uusimaa J= 0.340 |E1,1|= 200
qR = Question: State tax revenue is equalized among municipalities, so that the money is

transferred from the better-off to poorer municipalities. The largest contributors are Helsinki
and Espoo, with approximately 500 million euros transfered to poorer municipalities this
year. How should the system react? Answer : The metropolitan area should be able to keep
a greater percentage of their income tax

(9) qL = gender: female J= 0.321 |E1,1|= 353
qR = Question: In Finland, child benefit is paid for each child until the age of 17,

regardless of parental income. Should the sytem be modified? Importance: High.

(27) qL = county: Lapland J= 0.086 |E1,1|= 22
qR = Question: Which three countries should Finland befriend first if it were on Face-

book? Answer : Sweden, Norway and Russia.

gine” of the Finnish newspaper Helsingin Sanomat and made publicly avail-
able.3 One view contains candidate personal profile attributes, such as
party, age, and education, while the answers provided to 30 multiple-choice
questions and assigned importance form the other view. More precisely,
for each of the thirty questions, the candidates were asked to choose the
answer that best matched their opinion from a set of suggestions. In addi-
tion, they indicated what importance they attach to each question, that is,
whether they consider the issue to be of high, medium or low importance.
Each attribute-value of the profiles and each distinct question-answer and
question-importance pair is represented by a Boolean attribute.

Results. Tables 6.5 and 6.6 present a sample of patterns mined from
this dataset with the ReReMi and Translator algorithms respectively.
In both cases, the queries consist of monotone conjunctions of Boolean
predicates, and we indicate the accuracy and support for each example. In

3Data retrieved from http://blogit.hs.fi/hsnext/hsn-vaalikone-on-nyt-

avointa-tietoa in May 2012.

http://blogit.hs.fi/hsnext/hsn-vaalikone-on-nyt-avointa-tietoa
http://blogit.hs.fi/hsnext/hsn-vaalikone-on-nyt-avointa-tietoa
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Table 6.6: Sample of rules from Elections mined with Translator.

(1) qL = party: National Coalition ↔ J= 0.211 |E1,1|= 48
qR = Question: Taxes have increased quickly in Finland since the second half of the 90’s.

How should this be viewed? Importance: Medium. ∧
Question: Should authorization be granted for the replacement of the two nuclear reactors
at the Loviisa power plant? Answer : Yes. ∧
Question: Which of the following statements best describes your views regarding Finland’s
financial support to other euro countries in the crisis? Answer : Supporting the euro is in
the interest of Finland itself. ∧
Question: Which of the following statements most closely matches your vision regarding
the global Financial Transaction Tax (FTT) proposed by the EU? Answer : The EU should
adopt an FTT, even if the rest of the world does not participate in the system. ∧
Question: Legistlation regarding arms was tightened in the autumn of 2010, raising the age
limit for handgun permits to 20 years. What should be done? Answer : The legislation is
alright now. ∧
Question: What is your opinion on service outsourcing by local authorities to private com-
panies? Answer : Outsourcing may be increased, municipalities should learn to improve the
quality and prices of their services.

(11) qL = county: Uusimaa ← J= 0.340 |E1,1|= 200
qR = Question: State tax revenue is equalized among municipalities, so that the money is

transferred from the better-off to poorer municipalities. The largest contributors are Helsinki
and Espoo, with approximately 500 million euros transfered to poorer municipalities this
year. How should the system react? Answer : The metropolitan area should be able to keep
a greater percentage of their income tax

(24) qL = party: Communist Party → J= 0.249 |E1,1|= 60
qR = Question: Should Finland apply for NATO membership? Answer : Never. ∧

Question: What do you think of the current Finnish immigration policy? Answer : Too tight.

(34) qL = party: Social Democratic Party ∧ Municipal Rep. → J= 0.111 |E1,1|= 53
qR = Question: Should Finland apply for NATO membership? Answer : Yes, but not at

the beginning of the legislature. ∧
Question: Recently, Russia banned property ownership by foreigners. On the other hand,
Russians have bought thousands of properties in Finland. What should be done? Answer :
Aquisition should be limited until there is reciprocity.

addition, we indicate the direction of the rules found by the Translator
algorithm (→, ← or ↔), which are sorted in the order in which they were
mined.

In general, the obtained patterns conform to the common understand-
ing of the Finnish political landscape. Redescription 6.5(4), for instance,
indicates that the Communist Party of Finland is opposed to the country
entering NATO and to the outsourcing of municipal services, while it fa-
vors a more permissive immigration policy, opinions commonly attributed
to that party.

In many countries, this kind of election recommendation engines, known
as Voting Advice Application (VAA), are becoming a common feature at
election times [CG10]. Simultaneously, election results, parliamentary ac-
tivity, or government policies, for example, are made more widely accessible
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under the action of open data movements.4 This offers potential for data
analysis tools to promote political awareness among citizens and foster
democratic participation. While earning increasing interest and recogni-
tion, these initiatives are still in their infancy and present a number of
challenges [WNP09, EC13].

The principles underlying redescription mining are simple and inter-
preting the results requires neither expert training nor extensive domain
knowledge. In contrast to more complex analysis methods, which might
attract instinctive suspicions of opinion manipulation, this makes the ap-
proach suitable for applications targeted at the general public in this field.

Discussion. We observe that the results found by both methods are
rather similar, a query pair found by one method often being a subpattern
of one found by the other method or vice versa. For instance, redescrip-
tion 6.5(1) is contained in rule 6.6(1) and vice versa with 6.5(4) and 6.6(24),
while 6.5(7) and 6.6(11) have identical queries. However, Translator
finds directional rules. For instance, example 6.6(11) indicates that most
candidates favorable to Helsinki and Espoo keeping more income tax come
from the Uusimaa county, to which both municipalities belong, but that
most candidates from that county do not share this opinion. This direc-
tional information is absent from ReReMi’s results.

The selection of patterns is a major difference between the two algo-
rithms. ReReMi focuses on finding redescriptions with high accuracy while
Translator emphasizes the quality of the entire collection of patterns
with respect to compression ability. As a result, individual redescriptions
found by the first method outmatch those found by the second method
with respect to the Jaccard coefficient. The set of translation rules re-
turned by the Translator algorithm includes results that might have a
low accuracy or a large p-value. For instance, the p-value of rule 6.6(34)
equals 0.11 (see pvalO, in Section 5.1.1) and it would be rejected with most
common significance levels. Still, this result set is purportedly more coher-
ent as a whole than the one obtained with ReReMi. In fact, the former
allows to compress the data, although in this case the compression ratio is
a modest 93%, while the latter actually inflates it with redundancies, with
a compression ratio reaching 101%.

As a further advantage, the compression-based method does not require
tuning any parameters other than, possibly, a minimum support threshold.

4See http://openelectiondata.org, http://www.itsyourparliament.eu or
http://opengovernmentdata.org, for example.

http://openelectiondata.org
http://www.itsyourparliament.eu
http://opengovernmentdata.org
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However, it is not as scalable as the greedy search and remains to be adapted
to more general query languages.

6.5 Biomedical Ontology

As the last piece of this exposition, we look at relational redescription
mining in the biomedical domain.

Dataset. The UMLS dataset, obtained from the Alchemy repository,5

characterizes the relations between biomedical concepts in terms of the
Unified Medical Language System ontology. It can be represented as a net-
work of 135 nodes and 4181 edges. In contrast to the previous examples,
this is a relational dataset, containing information about the links between
different objects, here biomedical concepts. This particular dataset does
not contain information about individual nodes, i.e. there are no node at-
tributes. In this setting, our queries characterize pairs of objects in term of
the relations that connect them. The redescriptions we are looking for are
pairs of such queries, expressed over disjoint sets of edge attributes, that
characterize roughly the same object pairs.

Results. Redescriptions from the UMLS dataset mined with the Arrm
algorithm are shown in Table 6.7. Alternatively to the graphical represen-
tation used in that table, the queries can be written in full textual form,
as a conjunction of relational predicates. For instance, redescription 6.7(6)
can be written as the following pair of queries:

qL(#A,#Z) : - εdegree of(#1,#A), εproperty of(#1,#Z) .

qR(#A,#Z) : - εassociated with(#1,#A), εco-occurs with(#2,#1),

εresult of(#2,#1), εpart of(#2,#Z), εaffects(#2,#Z) .

There are 34 pairs of data objects that map to nodes #A and #Z of
query qL, and exactly these pairs also can be substituted for nodes #A and
#Z of query qR. For instance,

{#A/Organism Attribute,#1/Clinical Attribute,#Z/Amphibian}, and

{#A/Organism Attribute,#1/Anatomical Abnormality,

#2/Congenital Abnormality,#Z/Amphibian}
5Data retrieved from http://alchemy.cs.washington.edu/data/umls in Oct. 2012.

http://alchemy.cs.washington.edu/data/umls
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Table 6.7: Sample of redescriptions from UMLS mined with Arrm.

(1) qL(#A,#Z) qR(#A,#Z) J = 1 |E1,1| = 182

#A #1 #Z

evaluation of

manifestation of

evaluation of

manifestation of

#A #1 #Z
is a

affects

process of

result of

is a

affects

process of

result of

(6) qL(#A,#Z) qR(#A,#Z) J = 1 |E1,1| = 34

#1

#A #Z

degree of property of #1 #2 #Z

#Aassociated with

result of

co-occurs with

part of

affects

(12) qL(#A,#Z) qR(#A,#Z) J = 0.833 |E1,1| = 40

#1

#A #Z

interacts with produces #1

#A #Z

is a is a

uses

(15) qL(#A,#Z) qR(#A,#Z) J = 0.649 |E1,1| = 170

#A #Z
part of

#A #2

#1

#3

#Z

issue in

is a

location of

issue in

is a

affects

are substitutions for query qL(#A,#Z) and qR(#A,#Z), respectively,
both corresponding to the object pair (Organism Attribute, Amphibian).
Hence, this pair of queries forms a perfect relational redescription, i.e. a
redescription of accuracy one, with a support of cardinality 34.

Ontologies are structured formal representations of the concepts within
a domain and their relations. Because they define the semantics of the data,
ontologies have an important role in the semantic web. In comparison,
the schema of a database defines a practical representation of the data in
order to allow efficient storage and retrieval, irrespective of meaning. A
common problem in order to share information across sources, is to find
correspondences between the occurring concepts.

Relational redescription mining provides expressive means to cap-
ture nearly equivalent connection patterns between objects in a hetero-
geneous network. This goes beyond current approaches in ontology align-
ment [SAS11] and schema matching [SE05] that typically aim to identify
one-to-one mappings of concepts or relations.
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More generally, relational redescription mining can help explore, un-
derstand and maintain complex relational datasets. For instance, it might
be useful in large knowledge bases that store millions of objects and rela-
tions [ABK+07, CBK+10, SKW07], whose volume makes manual curation
impossible.

Discussion. Compared to the propositional setting, while spurious rede-
scriptions are less likely to arise in the relational setting, especially from
sparse datasets, finding multiple nearly equivalent redescriptions is a more
acute issue. For instance, an added relation or intermediate variable might
respectively reduce or increase the number of satisfying substitutions for a
query without affecting its support. More simply, a query and subqueries
can be satisfied by the same substitutions. For instance, removing relations
is a and process of from the right-hand side query of redescription 6.7(1)
does not modify its support. Selecting and filtering such similar patterns,
in other words identifying the best representative, is necessary to ensure
the quality of the results and requires a tailored solution.

Furthermore, real-world datasets and especially real-world networks are
often incomplete and might contain uncertain data, because of the data col-
lection process or the nature of the information. In particular, some data
can be inexact and the doubts about the actual values might be modelled
as probabilities associated with the data. The problem of handling uncer-
tainties has been considered in relational learning and in other data mining
tasks [RKT07, PGdK09, Agg09]. Adapting such approaches to mine rede-
scriptions in the presence of partial and of probabilistic information is thus
an important direction for further investigations, in order to increase the
practical applicability of the approach.
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Chapter 7

Conclusions

The unifying theme of the present thesis is the data analysis task called
redescription mining. It aims to find objects that admit multiple shared
descriptions and, vice versa, to find distinct common characterizations for
a set of objects.

Redescription mining is a task for exploratory data analysis. It pro-
vides insight into the data by means of pairs of expressive and interpretable
queries, relating different views on the objects. It shares similarities with
other data mining tasks like exceptional model mining and subgroup dis-
covery, but is characterized by its symmetrical approach.

In this thesis, we extended redescription mining beyond propositional
Boolean queries to real-valued attributes and relational queries. We de-
signed the ReReMi algorithm to mine redescriptions over nominal and
real-valued attributes natively and introduced the Arrm relational rede-
scription mining algorithm.

We also proposed two approaches for selecting high quality redescrip-
tions. The Siren interface for mining and visualizing redescriptions, on
one hand, enables the user to interactively adjust the selection criteria.
The Translator algorithm, on the other hand, provides a principled so-
lution to the selection problem. It is a parameter-free compression-based
algorithm that encodes one side of the data using the other side, and vice
versa, thereby capturing the associations across the two sides.

While its underlying principle is simple and intuitive, we showed that
redescription mining constitutes a powerful tool for data exploration, po-
tentially applicable in a large variety of domains.

59
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Further developing the algorithms presented here and integrating them
together should help alleviate current shortcomings such as spurious or
redundant results and the absence of any analytical guarantee on finding
the best redescriptions occurring in the data. The scalability of the algo-
rithms and their generalization to varying numbers of views also demand
investigation.

Specifically, devising methods with sound theoretic foundations and suf-
ficient flexibility to select redescriptions, for instance drawing on recent
advances in significance testing for data mining [Oja11, Han12, Vuo12] or
modelling the information content of redescriptions in the subjective in-
terestingness framework [DB11a], constitutes a major direction for future
research.

Besides, uncertainties are inherent to most real-world scenarios. To
promote its applicability in realistic situations, redescription mining should
thus be enabled to account for uncertainties in the data, possibly by adapt-
ing techniques developed for other data analysis tasks [Agg09].

Finally, the actual value of our proposed methods can only be assessed
by putting them to use, in collaboration with experts and practitioners of
the respective fields.
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Abstract: Redescription mining is a powerful data analysis tool that is used to find multiple descriptions of the same entities.
Consider geographical regions as an example. They can be characterized by the fauna that inhabits them on one hand and
by their meteorological conditions on the other hand. Finding such redescriptors, a task known as niche-finding, is of much
importance in biology. Current redescription mining methods cannot handle other than Boolean data. This restricts the range of
possible applications or makes discretization a pre-requisite, entailing a possibly harmful loss of information. In niche-finding,
while the fauna can be naturally represented using a Boolean presence/absence data, the weather cannot. In this paper, we
extend redescription mining to categorical and real-valued data with possibly missing values using a surprisingly simple and
efficient approach. We provide extensive experimental evaluation to study the behavior of the proposed algorithm. Furthermore,
we show the statistical significance of our results using recent innovations on randomization methods. © 2012 Wiley Periodicals,
Inc. Statistical Analysis and Data Mining 5: 284–303, 2012

Keywords: redescription mining; bioclimatic niche finding; numerical data; missing data; data mining

1. INTRODUCTION

Finding multiple ways to characterize the same entities is
a problem that appears in many areas of science. In medical
sciences, for example, one typically wants to find a subset
of patients sharing similar symptoms and similar genes. In
biology, the bioclimatic constraints that must be met for a
certain species to survive constitute that species’ bioclimatic
envelope (or niche1), and finding such envelopes can help,
e.g. to predict the results of global warming [2].

But this process is only semi-automatic. For instance,
to find the bioclimatic envelopes, an expert first selects a
species and then uses some method to find the envelope

Correspondence to: Esther Galbrun (esther.galbrun@cs.
helsinki.fi)

† A preliminary version of this paper appeared in SDM 2011.
‡ Part of this work was done when the author was with HIIT.

1 The term niche is in this paper used in Grinnellian sense [1],
considering only environmental variables, not inter-species com-
petition or such.

for that particular species. More complex combinations of
species, or even any combinations at all, are rarely studied,
as manually iterating over all possible combinations would
be far too laborious.

It is here where redescription mining comes to help. In
redescription mining the input contains entities with two
sets of characterizing variables. The task is to find a pair
of queries, one query for both sets of variables, such that
both queries describe (almost) the same set of entities. In
niche-finding, the entities would be spatial locations, one
set of variables would be the fauna and the other set would
contain the bioclimatic variables. A very simple example of
a redescription in this setting could say that the area where
polar bears live is the area where March’s mean temperature
is between −16 and −11◦C and May’s mean temperature
is between −3 and −7◦C.

Until now, redescription mining algorithms(see ref.[3–6])
have not been able to handle other than Boolean data. Hence
they have not been able to help in the aforementioned cases,
not at least without some pre-processing.

© 2012 Wiley Periodicals, Inc.
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The rest of this paper is organized as follows. The
next two sections, Sections 2 and 3, present notation and
definitions, and related work, respectively. We explain the
basic structure of our algorithm in Section 4. In Section 5
we present various extensions to the basic algorithm,
including methods for trading some accuracy for speed
and handling missing values. The experimental evaluation
spans Sections 6–8, with focus on studying the properties
of the algorithm and its extensions, comparing it to other
algorithms, and a real-world example of niche finding,
respectively. Section 9 concludes the paper.

Contributions. In this paper, we extend redescription
mining to categorical and real-valued data with an algorithm
that efficiently computes the optimal discretization on-the-
fly. The algorithm can handle missing data. We present
experimental studies with synthetic and real-world data to
verify that our algorithm scales and returns good results.
We also assess the significance of our results by testing
them against different null models. Our primary application
for real-valued redescription mining is niche-finding, to
which we present interesting and intuitive results. The
proposed method is also applicable to other domains, e.g.
medicine.

2. NOTATION AND DEFINITIONS

This paper considers redescriptors over two sets of
variables, VL and VR. The set of entities is denoted by E.
We will represent the data using two matrices, DL and DR.
Both matrices have |E| rows and Di has |Vi | columns. The
value of DL(i, j) is the value of vj ∈ VL for ei ∈ E. If I

is a set of row indices (or a characterizing vector thereof),
D(I, j) is the column j of D restricted to the rows in I .
The data are 5-tuple D = (VL, VR, E,DL,DR). We identify
variables in VL and VR with the corresponding columns in
DL and DR when there is no risk of ambiguity.

We consider three types of variables: Boolean, categor-
ical, and numerical (real-valued). If v ∈ V is Boolean, we
interpret the column corresponding to it as a truth value
assignment for e ∈ E in a natural way. If v ∈ V is real-
valued, we consider an interval [a, b], and the truth value
assignment induced by the relation v ∈ [a, b]. A special
case of this is when v is categorical. Then we consider
the relation v = c, where c is some category. We will
denote these truth value assignments using Iverson nota-
tion: [a ≤ v ≤ b] is the Boolean (column) vector that has
1 in the rows where v ∈ [a, b], and 0 elsewhere; [v = c] is
defined analogously.

These truth assignments and their negations constitute
the set of literals for variables in V . Notice that there
are infinitely many intervals yielding the same truth

value assignment for some real-valued v ∈ V . To avoid
ambiguity, we consider only the shortest interval yielding
some truth value assignment. An exception to this is when
leaving one side of the interval unbounded is equivalent. We
then consider half-lines (−∞, b] or [a,+∞), respectively,
but for the sake of brevity they are also called intervals.
Notice that we can always reconstruct the interval given
the data and the truth value assignment corresponding to
the interval.

Literals can be combined with Boolean operators ∧ (and)
and ∨ (or). A Boolean formula is made by combining
literals with Boolean operators. A query over V is a Boolean
formula with literals of V . A redescription R of D =
(VL, VR, E,DL,DR) is a pair of queries (qL, qR) over VL

and VR, respectively. For a redescription R = (qL, qR), we
use VL(R) to denote the variables of qL; VR(R) is defined
analogously.

The support of a query q on D, suppD(q), is a set
{e ∈ E : q is true for e}. The support of a redescription
R = (qL, qR), suppD(qL, qR), is the intersection of supports
of qL and qR, supp(qL, qR) = supp(qL) ∩ supp(qR). We
will omit the subscripts when they are clear from the
context.

A redescription R = (qL, qR) is exact if and only if
supp(qL) = supp(qR). If a redescription is not exact, it is
approximate. The accuracy of a redescription R = (qL, qR)

is measured using the Jaccard coefficient

J(R) = J(qL, qR) = | supp(qL, qR)|
| supp(qL) ∪ supp(qR)| .

Formally, redescription mining is defined as follows:

Problem 1 (Redescription Mining) Given data D = (VL,

VR, E,DL,DR) and a set of constraints C, find all
redescriptions R1, R2, . . . of D that satisfy constraints in C.

We leave open the exact constraints in C for a while and
will turn back to it in Subsection 5.1.

The formulation of redescription mining above assumes
that the describing variables are partitioned into two sets,
VL and VR, and looks for pairs of queries over these
two sets, respectively. Formulations of redescription mining
exist that do not include this requirement. Typically, they
consider a single set of describing variables and search for
pairs of queries, with the constraint that the two subsets of
variables appearing in the queries of any pair be disjoint.
The methods presented in this paper can be naturally
adapted to that alternative formulation.

Our proposed methods could also be adapted to handle
multiple data sets, i.e. settings with more than two sets of
variables: VA, VB, . . . , VN , where one looks for tuples of
queries (qA, qB, . . . , qN) over the different sets of variables,
respectively.
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3. RELATED WORK

3.1. Rule Discovery

A characterizing property of redescription mining is its
‘many views’ approach, i.e. it deals with entities that can be
explained using different sets of variables. This approach,
however, is not unique to redescription mining.

One of the most traditional ‘many views’ approaches is
classification, though it is not typically considered as such.
There the data gives one characterization of the entities and
the class another. Mining a single query can be considered
as a classification task. Fixing one query at a time gives us
binary class labels and we try to find a good classifier to it.

Logical Analysis of Data [7] is a particular example
among classification approaches in the presence of Boolean
attributes and target. It aims at finding a perfect classifier
of fixed form, e.g. a horn clause, a DNF, a CNF, or linear
or quadratic Boolean formula.

Closer to the idea of redescription mining is Multi-label
Classification [8], where the goal is to learn classifiers
for conjunctions of labels. Perhaps the main difference
to redescription mining is this restriction to conjunctions
of classes. There is also a big difference in the goals:
redescription mining is descriptive while multi-label clas-
sification is predictive.

The common aim of mining Emerging Patterns, Contrast
Set Mining, and Subgroup Discovery is to find queries
whose support is distributed very unevenly with respect
to the target attribute.

Emerging Patterns [9] is targeted at Boolean data and
uses monotone conjunctive queries, i.e. itemsets. The
purpose is to find itemsets whose presence is statistically
dependent on the positive or negative labeling of the
objects. In the extreme case, the itemset would be present
only in the positive example and would form a perfect
classifier for the data at hand. However, this is not generally
the case.

Contrast Set Mining [9] can be used with a nominal
target attribute to identify a monotone conjunctive query
that best discriminates between the objects from one class
and the rest of the objects.

Subgroup Discovery [10] aims in a more general sense at
finding a query such that the objects in the defined subgroup
have atypical values for a target attribute, possibly ordinal
or numerical, compared to other objects. This is extended
to several target attributes in Exceptional Model mining.
In that framework, defined by Leman et al. [11], and in its
recent instance [12], one considers a model defined over the
target attributes and tries to identify a subgroup of objects
where the fitted model differs significantly from the model
fitted to the rest of the data.

A related approach is presented by Garriga, Heikinheimo,
and Seppänen [13]. It uses frequent itemsets on the binary

attributes to form a partition of the original entities such
that for each subset it is possible to construct a specific
model that fits well on the numerical attributes. In other
words, this approach tries to partition the original data into
subgroups.

Redescription mining differs from the above techniques
in that it aims at simultaneously finding multiple descrip-
tions of a subset of entities which is not previously spec-
ified, selecting the few relevant among a potentially large
set of variables. In contrast to these methods, it does not
have a set of describing features and target attributes, but
rather several sets of describing variables. Yet, when there
are two sets of describing attributes and a chosen query
language, we can define a one-directional redescription
problem. Queries can be built over one set of attributes,
defining subgroups whose quality is measured in terms of
how exactly and concisely they can be described by queries
over the other set of attributes. In a sense, this can be
loosely understood as a case of Exceptional Model Mining
where the model is the chosen query language and fitting
the model to a subgroup corresponds to finding as concise
and exact a query for it over the target attributes as possi-
ble. The aim of redescription mining is then to solve this
problem in both directions simultaneously.

Redescription mining was introduced by Ramakrishnan
et al. [5], and has since attained continuous research
interest (e.g. see refs. [3,4,6,14]). The approaches proposed
for redescription mining have been based on various
ideas, including decision trees [5,14], Karnaughmaps [6],
co-clusters [4], and frequent itemsets [3,6].

The CARTwheels algorithm [5] is an alternating
method that uses decision trees. One side of the redescrip-
tion is fixed, giving binary labels for the entities and a
decision tree over the other variables, i.e. a good classifier
with respect to those labels, is constructed. At the next step,
the labeling given by this decision tree is considered as the
target and a new decision tree is built on the other set of
variables. The branches of the two trees that correspond to
positive labels form a pair of queries that can be considered
as a redescription, as well as the pair of queries associated to
the negative branches. This construction based on decision
trees gives the redescriptions an atypical form. Consider the
example of a tree of depth two, with the first level branching
variable A and the second level branching variables B and
C. Then, (A ∧ B) ∨ (¬A ∧ C) is a good example of query
obtained by joining branches of such a tree. The fact that
the same variable occurs multiple times with and without
negation can make the query difficult to interpret.

Gallo et al. [3] propose two approaches to redescription
mining. The first one is based on mining frequent itemsets
from both data sets separately and combining them together.
The second one is a greedy method that forms the basis of
our work. This will be discussed with further details.

Statistical Analysis and Data Mining DOI:10.1002/sam
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A natural extension of redescription mining is story-
telling [4], where the aim is to find consecutive redescrip-
tors. That is, given data D = (VL, VR, E,DL,DR), the goal
is to find queries q1

L, q1
R, q2

L, q2
R, . . .such that consecutive

pairs of queries (q1
L, q1

R), (q1
R, q2

L), (q2
L, q2

R), . . . all form a
valid non-exact redescription. We will not cover storytelling
in this paper.

3.2. Data Discretization

Generalizing algorithms based on Boolean attributes to
real-valued data has been a recurrent problem in data
mining. Most solutions are based on some sort of pre-
processing: typically categorical data is represented using
one variable per category, and quantitative data is turned
into categorical data using some type of bucketing.

When labels are available on the original data, as is the
case for Subgroup Discovery with a single output feature,
a supervised discretization method can be devised for the
problem at hand. In the method proposed by Grosskreutz
and Rüping [15], the discretization happens within the
algorithm and relies on a property of the function measuring
subgroup quality to merge basic intervals in a bottom-
up fashion. Yet, the end points for the basic intervals are
determined as a pre-processing step in a way that is not
necessarily optimal with respect to their later use.

In most settings, though, no labeling of the data is avail-
able and one has to resort to unsupervised discretization.
This approach raises several questions, from the choice of
the number of buckets to the size of the resulting data.
A more elegant approach was provided by Srikant and
Agrawal [16], who presented a machinery that solves most
of the problems automatically. Their method is still based
on a priori bucketing, and moreover, it is very specific to
association rule mining, making it hard (or impossible) to
apply to redescription mining.

The problem of on-the-fly discretization during a classifi-
cation task was studied by Fayyad and Irani [17]. Although
the task is different, the results we obtained for dynamically
choosing the most accurate extension shares similarities
with their result.

Using redescription mining algorithms with non-Boolean
data is not a new idea. Already in ref. [5], the CART
wheels algorithm was used to extract bioinformatics data
that was non-Boolean. As the algorithm requires Boolean
input, the data had to be bucketed as a pre-processing
step. But pre-processing typically requires considerable
domain knowledge and might still be impossible or yield
exponential growth in the number of variables. This is in
contrast to our algorithm, where the optimal discretization is
determined at each iteration within the algorithm, requiring
no pre-processing. Nothing, of course, prevents users to
pre-process their data, should that be needed.

3.3. Niche Finding

In biology, the problem of finding species’ bioclimatic
envelope is a rather new one (see, e.g. ref. [18] and
references therein), but the idea of ecological niches dates
back to the early 20th century [1]. There is also some
level of ambiguity in what exactly is meant by the
term niche [18]. In this paper, we consider a bioclimatic
envelope of a (group of) species to be a set of limits in
climate variables (such as monthly mean temperature) that
defines the region occupied by the species.2

Despite the vague definition, the past 10 years have seen
a number of methods to model the bioclimatic envelopes.
The methods are based, for example, on regression, neural
networks, and genetic algorithms (see [19]). But to the
best of the authors’ knowledge, none of these methods
allows automatically finding both the set of species and
their envelope.

Other niche finding tasks have been formulated, for
example, in a linguistic context [20]. In this paper, we
consider only the biological problem.

4. THE BASIC ALGORITHM

In this section, we present the core of our algorithm.
Various extensions to it, such as handling missing values,
are presented in the next section.

4.1. Motivation and Background

The redescription mining problem is defined for gen-
eral Boolean queries, yet none of the proposed algorithms
explores the full search space (using instead decision trees
of fixed depth [5], monotone CNF and DNF formulae [4],
or only (possibly negated) conjunctions [6]). Such restric-
tions are easy to understand, given the huge search space
formed by all Boolean formulae (22n

distinct formulae can
be defined over n variables). With non-Boolean data the
search space is even more overwhelming. It is therefore
evident that when devising an algorithm usable with real-
world data, the space of all Boolean functions cannot be
considered in its entireness.

4.1.1. Type of Boolean queries mined

How to restrict the search space? This question can
be considered from at least three different perspectives:
the expressive power of the resulting queries, the ease
of finding them, and their interpretability. For example,

2 That is, we consider realized niches using correlative methods
(see ref. [2]).
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monotone conjunctive queries (i.e. frequent item sets) are
easy to interpret and relatively easy to find, given the
monotonicity of the search space, but they lack expressive
power. On the other hand, general Boolean queries have a
high expressivity, but are hard to find. Furthermore, deeply
nested structures and variables appearing multiple times can
lead to difficulties in interpreting them.

Our aim is to restrict the search to queries that provide
a good compromise between the three aforementioned
properties. For this purpose, we follow the approach taken
by Gallo, Miettinen, and Mannila [3]. First, we evaluate
the queries from left to right irrelevant of the operator
precedence. In other words, we only consider queries that
can be parsed in linear order, without trees. For example,
(a ∨ b) ∧ ¬c is such a query, but (a ∧ b) ∨ (c ∧ d) is not.
Second, we allow every variable to appear only once.
Queries of this type are strict generalizations of purely
conjunctive or disjunctive queries, save the tautological
cases a ∧ ¬a and a ∨ ¬a. We consider such queries to be
relatively easy to interpret while still having a satisfying
expressive power. While becoming smaller, the search
space still remains exponential. Therefore, we also employ
a heuristic pruning, as will be explained later.

4.1.2. On-the-fly bucketing vs. pre-processing

Binning the variables into buckets is a standard pre-
processing technique to make non-Boolean data Boolean
(see Section 3.2). But it has its drawbacks. For example,
the resulting data have a special structure, with all
variables corresponding to different buckets of a given non-
Boolean variable being mutually disjoint. The algorithms
are typically not adjusted to this property.

Moreover, the bucketing must be made in a pre-
processing step, and cannot be modified by the algorithm
later on. If the quality of the bucketing was poor, so will be
the results. But the user typically does not know whether
a certain bucketing yields good results before running
the algorithm, so repeated trials and errors are needed to
achieve satisfactory results.

Our approach of doing the bucketing on-the-fly avoids
these problems. The algorithm will select the optimal
bucket for each case when necessary. This removes the
need of pre-processing and repeated trials. Furthermore, our
algorithm can use different buckets for the same variable
in different redescriptions, should that yield better results.

4.2. Outline of the Algorithm

We use a strategy similar to beam-search to explore
the solution space. The basic idea is to construct queries
bottom-up, starting from singleton redescriptions (i.e.
both queries contain only one literal) and progressively

extending them by appending operators and literals. For
example, we could start with a pair (a,¬b), and try to
extend it to (a ∧ c,¬b), (a ∨ c,¬b), (a ∧ ¬c,¬b), etc.
After evaluating all possible one-step extensions, we select
the best candidates and extend them in turn. This process
requires a book-keeping procedure to avoid repeatedly
generating the same queries, as we will explain below.
When no new redescription can be generated, we move
to the next initial pair. The outline of the algorithm, called
ReReMi, is given in Fig. 1.

Our algorithm shares similarities with the Greedy algo-
rithm presented by Gallo et al. [3]. But unlike Gallo et al.,
and following the idea of beam-search, we allow several
extensions to be generated from a given redescription in
each step. In this way we can explore the search space
more extensively. Notice also our algorithm’s resemblance
to bottom-up frequent itemset mining algorithms. Indeed,
finding redescriptions can be seen as a generalization of
association rule mining [6], although without the mono-
tonicity property.

4.3. Efficient Computation of the Accuracy
for Boolean Variables

Given two queries, qA and qB , to decide which of the
possible extensions of qA yields the best redescription, we
need to compute the accuracy (i.e. Jaccard coefficient) for
four different types of extensions for each Boolean variable
v: J(qA ∧ v, qB), J(qA ∧ ¬v, qB), J(qA ∨ v, qB) and J(qA ∨
¬v, qB). Doing this in a straightforward way, determining a
single Jaccard coefficient requires the computation of three
distinct supports over the data. But this is not necessary. To
compute J(qA ∧ v, qB), we need to consider only the rows
in supp(qA)—others will never be in supp(qA ∧ v). On the
other hand, rows in supp(qA) will be in supp(qA ∨ v) in any
case and can be omitted when computing J(qA ∨ v, qB). Let
us formalize this intuition.

Let E1,0 be the set of entities for which only the first
query holds (i.e. E1,0 = supp(qA) − supp(qB)), E0,1 those
for which only the second query holds, E1,1 those for which
both queries hold, and E0,0 those for which neither of the
queries hold. Finally, these sets restricted to supp(v) are
denoted as Ex,y(v) (e.g. E1,0(v) = E1,0 ∩ supp(v)). The
same notation is also used with real-valued variables and
Iverson notation, as in E1,0([λ ≤ v ≤ ρ]).

It is well-known that the Jaccard coefficient J(qA, qB)

can be expressed as

J(qA, qB) = |E1,1|
|E1,0| + |E0,1| + |E1,1| . (1)

Similarly, we can write J(qA ∧ v, qB) = |E1,1(v)|/
(|E1,0(v)| + |E0,1| + |E1,1|). Analogous formulae can be
derived for all different extensions (see Fig. 2).
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Fig. 1 ReReMi: Mine data sets for redescriptions.

Fig. 2 Formulae for computing the Jaccard coefficient for
different extensions.

Notice that E1,0, E0,1, and E1,1 can be computed once
for a given redescription. Then, for each candidate variable,
it is enough to perform three intersection operations to
obtain E1,0(v), E0,1(v), and E1,1(v). Furthermore, E0,0 and
E0,0(v) can be deduced from supp(v) and E, and we do
not have to consider the rows in which neither qA nor
qB hold. This observation can significantly speed up the
algorithm.

4.4. Adding Categorical Variables

Handling the categorical variables is rather straightfor-
ward. We consider only the relation v = c, where c is the
label. The above computation of Jaccard applies, as we can
write, for example,

J(qA ∧ [v = c], qB) = |E1,1([v = c])|
|E1,0([v = c])| + |E0,1| + |E1,1| .

What is different to the Boolean case is that we must
select the class label c. But this we can do easily by trying
all class labels and selecting the one that improves the

Jaccard most. Naturally, we can use the aforementioned
speedup techniques for Jaccard when selecting the label, as
each label just defines different Boolean vector.

4.5. Extension to Real-Valued Variables

With the real-valued data, our approach is to do bucketing
on-the-fly, finding the optimal bucket to add in every step.
Assume that our algorithm tries to extend, say, query qA

of redescription (qA, qB) with a real-valued variable v. The
algorithm considers the extended query qA ∧ [λ ≤ v ≤ ρ]
for different thresholds λ and ρ and selects those that
maximize the accuracy of the extension. Naturally, the
optimal λ and ρ are different for different extensions.
The two thresholds are set simultaneously since setting
one bound first and possibly the other later would prevent
the greedy search from finding some of the most specific
intervals.

How can we find λ and ρ efficiently? To tackle this
question, we adapt our approach from the previous section,
using a result similar to that of Fayyad and Irani [17].

We consider only the shortest interval yielding any truth
value assignment: only values in D(E, v), i.e. values taken
by the variable v, can be interval bounds. We could try
all possibilities, but if the data contains n entities, this can
require n2 time, quickly becoming infeasible since we have
to compute the accuracies for each candidate extension.
However, as for the Boolean case, only two subsets of
entities for each type of extension can impact the Jaccard
coefficient: those in E1,1 and E1,0 for conjunctions and
those in E0,1 and E0,0 for disjunctions. Furthermore, only
values separating entities from the two sets need to be
considered.
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DEFINITION 1: When extending a redescription with
a numerical variable v, we say that value u is a lower
cut point if for any fixed value w larger than u, [u,w] is
the shortest interval yielding a locally optimal support for
the extension. Equivalently, we say that w is an upper cut
point if for any fixed value u smaller than w, [u,w] is
the shortest interval yielding a locally optimal support for
the extension. In addition, −∞ and +∞ can be lower and
upper cut points, respectively.

EXAMPLE: Consider the example of extending a
redescription (qA, qB) by appending a variable v with a
non-negated conjunction. The bins in Fig. 3 represent the
values taken by the variable, sorted in increasing order.
Black circles indicate entities belonging to E1,1, white
circles indicate entities from E1,0. Our aim is to find bounds
λ and ρ that maximize

j (λ, ρ) = |E1,1([λ ≤ v ≤ ρ])|
|E1,0([λ ≤ v ≤ ρ])| + |E0,1| + |E1,1| . (2)

In this example, there is one entity in E1,1 with value
v4, but none in E1,0 with value v3. Therefore, v4 cannot be
an optimal choice for λ since choosing v3 instead would
always increase the accuracy. For the same reason, −∞,
v2, v3, v7, v10, and v11 are lower cut points, as only these
values can be an optimal choice for λ here. Similarly, v1,
v2, v5, and v7 are upper cut points.

To improve the speed of computing optimal extensions,
we need to identify lower and upper cut points efficiently.
To that end, we present succinct characterizations of
the cut points for different types of extensions. We use
(v1, v2, . . . , vk) to denote the values taken by the variable
v for entities in E1,1 or E1,0, that is, values in D(E1,0 ∪
E1,0, v), sorted in increasing order. Similarly, the values
in D(E0,0 ∪ E0,1, v) ordered increasingly are denoted as
(v′

1, v
′
2, . . . , v

′
l ).

PROPOSITION 1: For a non-negated conjunction, a
lower cut point is a value vi such that vi ∈ D(E1,1, v)

and vi−1 ∈ D(E1,0, v), or −∞ if i = 1 and vi ∈ D(E1,1, v).
An upper cut point is a value vj such that vj ∈

Fig. 3 Example of repartition of the entities for one variable.
Each bin represents a value taken by the variable. Black circles
indicate entities belonging to E1,1, white circles indicate entities
from E1,0.

D(E1,1, v) and vj+1 ∈ D(E1,0, v), or +∞ if j = k and
vj ∈ D(E1,1, v).

For a negated conjunction, a lower cut point is a value vi

such that vi ∈ D(E1,0, v) and vi−1 ∈ D(E1,1, v), or −∞ if
i = 1 and vi ∈ D(E1,0, v). An upper cut point is a value vj

such that vj ∈ D(E1,0, v) and vj+1 ∈ D(E1,1, v), or +∞
if j = k and vj ∈ D(E1,0, v).

For a non-negated disjunction, a lower cut point is a
value v′

i such that v′
i ∈ D(E0,1, v) and v′

i−1 ∈ D(E0,0, v),
or −∞ if i = 1 and v′

i ∈ D(E0,1, v). An upper cut point is a
value v′

j such that v′
j ∈ D(E0,1, v) and v′

j+1 ∈ D(E0,0, v),
or +∞ if j = l and v′

j ∈ D(E0,1, v).
For a negated disjunction, a lower cut point is a value v′

i

such that v′
i ∈ D(E0,0, v) and v′

i−1 ∈ D(E0,1, v), or −∞ if
i = 1 and v′

i ∈ D(E0,0, v). An upper cut point is a value v′
j

such that v′
j ∈ D(E0,0, v) and v′

j+1 ∈ D(E0,1, v), or +∞
if j = l and v′

j ∈ D(E0,0, v).

Proof: We concentrate on the case of non-negated con-
junction; other cases are similar. The aim is to maxi-
mize j (λ, ρ) (cf. Eq. 2). We start with the lower bound
λ. First, suppose vi �∈ D(E1,1, v). Then vi must occur
in E1,0 and we have |E1,0([vi ≤ v ≤ ρ])| > |E1,0([vi+1 ≤
v ≤ ρ])| while |E1,1([vi ≤ v ≤ ρ])| = |E1,1([vi+1 ≤ v ≤
ρ])|. Hence, j (vi, ρ) < j (vi+1, ρ). So vi is not an optimal
value for λ. Second, if vi−1 �∈ D(E1,0, v), following a simi-
lar reasoning, we notice that j (vi−1, ρ) > j (vi, ρ) and vi is
not an optimal value for λ. Finally, in case v1 ∈ D(E1,1, v),
setting λ = v1 can be optimal and we simply leave the
lower bound undefined, i.e. we use the half-line (−∞, ρ]
that yields the same support.

The case of the upper bound ρ is analogous. If vi �∈
D(E1,1, v), then vi ∈ D(E1,0, v) and we have |E1,0([λ ≤
v ≤ vi−1])| < |E1,0([λ ≤ v ≤ vi])| while |E1,1([λ ≤ v ≤
vi−1])| = |E1,1([λ ≤ v ≤ vi])|. Hence, j (λ,vi−1) > j (λ,vi)

and vi is not an optimal value for ρ. On the other hand, if
vi+1 �∈ D(E1,0, v) then j (λ, vi−1) > j (λ, vi) and vi is not
an optimal value for ρ. Finally, when vk occurs in E1,1

for the last index k, setting ρ = vk can be optimal and we
use the half-line [λ,+∞) which is equivalent with respect
to the support.

The case of negated conjunctions is the reverse of this.
Again, we only need to consider entities in E1,0 or in E1,1,
but this time we will try to find an interval [λ ≤ v ≤ ρ] such
that the set |E1,0([λ ≤ v ≤ ρ])| is large while |E1,1([λ ≤
v ≤ ρ])| is small, so as to maximize

j (λ, ρ) = |E1,1| − |E1,1([λ ≤ v ≤ ρ])|
|E1,0| − |E1,0([λ ≤ v ≤ ρ])| + |E0,1| + |E1,1| .

(3)

The case of disjunctions is very similar to conjunctions,
but focusing on entities in E0,1 and E0,0 instead of E1,1

and E1,0, respectively.
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For non-negated disjunctions the aim is to maximize

j (λ, ρ) = |E1,1| + |E0,1([λ ≤ v ≤ ρ])|
|E1,0| + |E0,1| + |E1,1| + |E0,0([λ ≤ v ≤ ρ])| ,

(4)

that is, we try to maximize the number of entities in E0,1

while minimizing that in E0,0.
The aim for negated disjunctions is to maximize

j (λ, ρ) = |E1,1| + |E0,1| − |E0,1([λ ≤ v ≤ ρ])|
|E| − |E0,0([λ ≤ v ≤ ρ])| , (5)

the reverse of the non-negated case, similarly to
conjunctions. �

To search for an optimal bucket for variable v, we only
need to consider upper and lower cut points. Denoting
by nλ the number of lower cut points and by nρ the
number of upper cut points, the size of the search space
is (nλ + 1)(nρ + 1). In many cases, this is considerably
smaller than the naïve n2 (but see Section 5.2 for a method
to deal with large (nλ + 1)(nρ + 1)).

4.6. Putting it All Together: The ReReMi Algorithm

As we mentioned previously, the algorithm starts by
evaluating all possible pairs of singleton redescriptions
(i.e. literals) and keeps only the kp best pairs (line 2).
Alternatively, it is possible to extend all pairs with accuracy
higher than some threshold or exhaust all the pairs in order
to discover redescriptions with low first level accuracy. But
after some number of initial pairs, a drop in the accuracy
of the generated redescriptions can typically be observed.
Limiting kp is therefore reasonable.

Generating the initial pairs from real-valued data requires
some extra work. There are two options. First, if one of the
matrices (say DL) is Boolean while the other is real-valued,
we create the initial pairs by considering redescriptions
R = (vL,∅) for each vL ∈ VL, and extending their right-
hand side using the standard on-the-fly bucketing approach.
Second, if both sides are real-valued, an exhaustive search
of all possible intervals needs to be performed. This might
be computationally very expensive, and in Section 5.3 we
present a method to find the initial pairs faster with possible
loss in accuracy.

Each of the initial pairs is extended in turn (lines 3–15),
selecting at each step the ki most promising candidates (line
13). A value of 4 for ki , for example, enables to keep the
candidates for both operators and both sides on the first
step. Two sets of variables, FL(R) ⊂ VL and FR(R) ⊂ VR,
are associated to each redescription R. They contain the
variables that can be used to expand that redescription,
which we call the free variables of R. The free variables are

determined so as to avoid generating several times the same
redescription. The variables leading from R to some already
generated one-step extension, i.e. redescriptions obtained by
appending one literal to it, are not free for R; this includes
the variables that appear in R.

For the purpose of determining free variables, the
algorithm maintains a list of the redescriptions generated
so far. We assign a set of keys to every redescription,
one for each literal involved. The redescriptions can be
indexed using these keys in space bounded by the number
of explored redescriptions multiplied by a factor quadratic
in the maximal allowed query length. Then, given any
redescription containing l literals, we can retrieve the
sets of redescriptions associated to each of its keys in
l accesses to the index. Its one-step extensions are the
redescriptions of length l + 1 in the intersection of these
sets.

In addition, when the query on either side of the
redescription has reached the maximum number of vari-
ables, all remaining free variables for that side are removed.
Among the selected candidates, those that have some free
variables are put into the set E of redescriptions to be
extended during the next iteration (line 14). The loop ends
when E is empty, that is, when there is no extendible
redescription left.

5. EXTENSIONS TO THE ALGORITHM

With the basic algorithm presented in the previous
section, we now turn to study some extensions to it. We
first start by studying the possible constraints one can apply
for the redescriptions, then present two methods that can be
used to speed up the algorithm (possibly trading off some
accuracy) with real-valued data. Finally, we explain how to
extend the algorithm to handle missing values.

5.1. Constraints on the Redescriptions

In this section, we discuss the different constraints one
can apply to redescriptions. The accuracy is a simple
constraint: leave out all redescriptions with accuracy lower
than some threshold. But in addition to being accurate, we
would like the redescriptions to be statistically significant.
That is, the support of a redescription (qL, qR) should carry
some new information, given the support of the queries. To
measure this, we test against the null-model representing the
case in which the two queries would be independent. We
compute a p-value that represents the probability that two
random queries with marginal probabilities (i.e. the fraction
of entities supporting them) equal to those of qL and qR

have an intersection equal to or larger than | supp(qL, qR)|.
This probability uses the binomial distribution and is
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given by

pvalM(qL, qR) =
|E|∑

s=| supp(qL,qR)|

(|E|
s

)
(pR)s(1 − pR)|E|−s,

where pR = | supp(qL)|| supp(qR)|/|E|2. The higher the
p-value, the more likely it is to observe such a support
for independent queries, and the less significant the query.

Similarly, when appending a literal l to a redescription,
we would like it to be as informative as possible. On one
hand, if qA and l have very similar supports, qA ∨ l will
not carry much more information than the original qA, so
we want qA and l to be as uncorrelated as possible and
intersect less than would occur randomly. On the other
hand, when extending qA to qA ∧ l we expect qA and
l to be correlated and intersect more than would occur
randomly. Hence we define pvalE(qs,∧l) = pvalM(qs, l)

and pvalE(qs,∨l) = 1 − pvalM(qs, l).
Also important is the size of the support of the

redescriptions and the number of entities by which each
variable contributes to it, since redescriptions characterizing
too few entities or almost all of them are of no interest.

These constraints on p-value and support can be applied
more or less strictly during the beam search, using thresh-
olds to penalize or simply disqualify candidate redescrip-
tions that do not comply with them. The redescription
p-value and support size can also be used to filter out
uninteresting results a posteriori. Of course, the stricter the
constraints applied within the candidate selection, the faster
the search, but the more likely it becomes to miss candidates
that would expand to acceptable redescriptions.

The type of query can also be selected, for example to
disallow negations or use only disjunctions. Most of the
constraints need not be tuned for good results, but they can
be used to incorporate domain knowledge or to guide the
algorithm to search for special redescriptors.

5.2. Interval Approximation

In cases where the search space of possible intervals
is still too large (i.e. (nλ + 1)(nρ + 1) is too big, cf.
Section 4.5), we use a faster search to find an interval whose
accuracy is a good lower bound to the optimal one.

Let (t0, t1, . . . , tnλ+nρ+1) be the ordered list of cut points
(as per Proposition 1), with the special cases t0 = −∞
and tnλ+nρ+1 = +∞. Let l, i, and u be any indices such
that S1 = [tl , ti], S2 = [ti , ti+1], and S3 = [ti+1, tu] are valid
intervals. Note that we can have ti = ti+1 = w, when the
value w is both a lower and an upper cut point.

On one hand, if the accuracy obtained by merging
intervals S1 and S2 is lower than that of S2 alone, then
merging S1, S2, and S3 yields lower accuracy than S2 alone

or merging S2 and S3, for any interval S3. That is, if
j (tl, ti+1) < j (ti , ti+1), then

j (tl, tu) < max(j (ti , ti+1), j (ti , tu)).

We use this property to find the best interval by upward
aggregation. Starting with the first interval, we construct
at each iteration an interval of the form Ii = [λi, ti].
We go through the possible optimal values in ascending
order, while keeping track of the best accuracy encoun-
tered: λi+1 = ti if j (λi, ti+1) < j (ti , ti+1), and λi+1 = λi

otherwise.
On the other hand, if the accuracy obtained by merging

intervals S1 and S2 is greater than that of S2 alone, there
might still be an interval S3 such that merging S2 and S3

yields a higher accuracy than S1, S2 and S3 together. That
is, even if j (ti , ti+1) < j (tl, ti+1), it does not necessarily
follow that j (ti , tu) < j (tl, tu). Therefore, we also compute
the best interval using downward aggregation, starting with
the last interval and iterating over the possible optimal
values in reverse order. Then we combine the two best
intervals to eliminate possible undesirable values on either
ends. Let Iu and Id denote the best intervals found using
upward and downward aggregations, respectively. The final
interval returned is either Iu, Id , or Iu ∩ Id , depending
on which maximizes j (). Using this method, we can
compute an interval that approximates the optimal accuracy
in O(nλ + nρ). This is especially useful in cases where
the rows in E1,0 and E1,1 (for conjunctions) or E0,1 and
E0,0 (for disjunctions) are not clearly separated, saving
heavy computations when encountering variables that are
intuitively poor extensions.

5.3. Approximating the Initial Pairs for Real-Valued
Data

The approximate search presented in Section 5.2 might
not be sufficient to find the initial pairs in reasonable time.
This is especially the case when the data contain dense
variables with many different values on both sides. We then
resort to unsupervised bucketing to reduce the number of
intervals tested and make the computation tractable.

During the initial pair generation, when the number of
intervals to test for a given pair of variables exceeds a
predefined threshold, different values of the variables are
aggregated together to construct non-overlapping contigu-
ous buckets. Only the intervals corresponding to the bounds
of the buckets are tested. The aggressiveness of the method
can be adapted by tuning the threshold on the original
number of intervals and the number of entities that can
be grouped.

Unlike with usual pre-bucketing approaches, the static
buckets are only used for this special cases of initial
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pair generation; during the later extension steps, the
algorithm determines the intervals dynamically as described
previously.

5.4. Handling Missing Values

Real-world data often contains missing values, i.e. cases
where not all values are known for all entities. In order
to handle such data, we consider the extended truth value
set {True, False, Missing}. Any truth value assignment for
a variable with missing values will lead to Missing as the
value for those entities. When evaluating Boolean queries,
the following new cases emerge: the negation of Missing
is Missing; the value of X ∧ Missing is False if X is False
and Missing otherwise; the value of X ∨ Missing is True if
X is True and Missing otherwise.

With missing values, there are five new groups of entities
given a redescription (qA, qB): either qA or qB can be
Missing while the other is True or False, or they are both
Missing. Following the notation of already-defined sets
E1,0, E0,1, E1,1, and E0,0, we denote these sets by E1,?,
E0,?, E?,1, E?,0, and E?,?.

The presence of missing values requires us to re-define
how we compute the quality of the redescription, i.e.
the Jaccard coefficient. A common approach is to ignore
those entities that have missing values. With relatively few
missing values that are evenly distributed, this should give
a reasonably good estimate of the true accuracy. We call
this method rejective Jaccard, denoted JR, to distinguish
from the cases with no missing values.

The rejective Jaccard has its problems, though. If the
missing values are not evenly distributed, we may have
to reject too much data to be able to obtain reasonable
estimates. Therefore, we also consider two other estimates:
the optimistic Jaccard (JO) and the pessimistic Jaccard (JP),
defined as follows:

JO(qA, qB) = |E1,1| + |E1,?| + |E?,1| + |E?,?|
|E1,0| + |E0,1| + |E1,1| + |E1,?| + |E?,1| + |E?,?|

(6)

JP(qA, qB) = |E1,1|
|E1,0| + |E0,1| + |E1,1| + |E0,?| + |E?,0| + |E?,?| .

(7)

The optimistic Jaccard gives the upper bound and the
pessimistic the lower bound of the Jaccard coefficient when
truth values are assigned to the missing values. In other
words, the optimistic Jaccard corresponds to the accuracy
obtained if one could assign truth values to the missing
values in the most favorable way while the pessimistic
Jaccard is the accuracy that would result from an adversarial
assignment of the missing values.

These three accuracy measures change the way our
algorithm behaves by changing the objective function.

Optimizing JO, for example, means that we try to find a
maximum upper bound, while optimizing JP means we try
to find a maximum lower bound. We study these effects in
Section 6.4.

Other than the different accuracy measures, the missing
values are rather straightforward to implement. We need to
keep track of the new sets, E1,?, E0,?, E?,1, E?,0, and E?,?,
for efficient computation of the different versions of Jaccard
(cf. Section 4.3), but this does not alter the main principle.
Similarly with real-valued data, having missing values only
adds notational complexity—the concepts remain the same.

6. EXPERIMENTAL EVALUATION
OF ALGORITHM’S PROPERTIES

We now turn to the experimental evaluation of our
algorithm. We divide this in three parts. The first part (this
section) studies the various properties of our algorithm with
both synthetic and real-world data. The next two sections
compare our algorithm to other methods and present a real-
world application of our algorithm, namely biological niche
finding.

But before starting with the experiments, we explain a
method for assessing the significance of the results based
on randomizations and explain the data sets used.

An implementation of the ReReMi algorithm and the
synthetic data generator are available online.3

6.1. Assessing the Significance with Randomization
Methods

When mining the redescriptions, we compute various
p-values in order to prune uninteresting rules. But these
p-values are based on assumptions about the distribution
of 0s and 1s in the (bucketed) data. Given the generality
of our algorithm, we cannot assume the distributions to
model exactly the underlying distribution of values. Hence,
we also use property-preserving randomization methods.
Such methods sample random matrices that share some
property with the original matrix. The algorithm is then re-
run using a random matrix as an input, and this process is
repeated multiple times. If the results with random matrices
contain multiple redescriptions that have same or higher
accuracy than some redescription found from the original
data, that redescription is deemed insignificant; otherwise
it is significant (with respect to the property preserved by
the randomization method).

For these experiments, we used two randomization
methods. The first method permutes the matrix, preserving

3 http://www.cs.helsinki.fi/u/galbrun/redescriptors/.
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the values of the matrix. On symmetric matrices, we used a
variation that preserves their symmetry: only the upper-
right triangle was permuted, and the lower-left triangle
was copied from there. The property of a matrix having
the same values is not a very strong one. Hence, we
also used a method to preserve the distribution of values
in columns and rows of the matrix [21]. This method is
called swap-randomization. While swap-randomization is
in many ways stronger than permutation, the latter is used
for two reasons. First, its use was suggested by Ojala et al.
[21]. Second, unlike swap-randomization, permutation can
preserve symmetrical matrices.

6.2. The Real-World Data Sets

For the real-world data, we used two basic data sets:
DBLP and Bio. The former is obtained from the DBLP
database,4 and its entities are authors. The first matrix
defines the conferences in which each of them has
published, while the second defines other authors with
whom each of them has published. The entities of the
latter data set are spatial areas, that is, approximately 50
km2 over Europe.5 The data itself is composed from two
publicly available databases: European mammal atlas [22]
and Worldclim climate data [23]. The mammals data
contain presence/absence information of mammal species
in Europe, and the climate data contain minimum, average,
and maximum monthly temperatures as well as average
monthly precipitation. Notice that the mammals data are
Boolean while the climate data are continuous.

We created variations of these two basic data sets for
specific purposes. From the DBLP data we created three
variations: DBLPF, DBLPN, and DBLPB. The first, DBLPF,
is a big data set with 6455 authors and 304 conferences
containing information on how many times each author has
published in each conference and with each other author.
The second, DBLPN, also contains numerical information
but is restricted to 19 hand-picked conferences6 and 2345
authors. The third, DBLPB, is like DBLPN, but Boolean:
every positive value of DBLPN is replaced with 1. These
data are identical to the one used by Gallo et al. [3].

For the Bio data, we constructed two variations. The
basic Bio data contain the whole data while smaller
Biosmall concentrates only on Northern Europe (specif-
ically, areas between 50 and 71◦North). Also, it does
not include monthly maximum or minimum temperatures,

4 http://www.informatik.uni-trier.de/∼ley/db.
5 Details of the grid can be found in www.fmnh.helsinki.fi/

english/botany/afe/index.html.
6 Namely www, sigmod, vldb, icde, kdd, sdm, pkdd, icdm,

edbt, pods, soda, focs, stoc, stacs, icml, ecml, colt, uai, and
icdt.

leaving only monthly average temperature and average pre-
cipitation.

The statistics of the real-world data sets used in the
experiments are presented in Table 1.

6.3. Finding Planted Redescriptions

To study the behavior of our algorithm we first apply
it to synthetic data. The idea is to generate data with
planted redescriptions and check whether our algorithm is
able to recover the redescriptions. Generating matrices such
that, for example, no subset of the query forms an exact
redescription, is not trivial.

To generate a pair of synthetic Boolean 500 × 10
matrices, we plant on both matrices one Boolean formula,
either conjunction or disjunction over 3 variables with 50
supporting rows, such that the resulting redescription is
exact. Then we add random noise of density between 0.01
and 0.1. The noise can either be conservative or destructive,
leaving the redescription exact or not. A synthetic real-
valued data matrix is then obtained replacing 1s and 0s by
values uniformly sampled from the intervals [0.75, 1] and
[0, 0.25], respectively.

Applied to some 200 synthetic Boolean matrix pairs with
conservative noise the algorithm managed to find all planted
queries. In the case of destructive noise and fully Boolean
data, the algorithm managed to find the planted queries in
only about 40% of the data sets, but always found queries
with higher accuracy than that of the planted redescription.
The algorithm cannot be considered faulty in these cases:
It behaved as assumed, finding the redescriptions with the
highest accuracies.

Applied to synthetic data sets where one matrix is
Boolean and the other real-valued, both with conservative
noise, the algorithm managed to find the planted redescrip-
tions or equivalent in 76 cases out of 80. The planted
redescriptions that were not found had contributions below
the acceptance threshold. Thus, the algorithm again worked
as assumed.

6.4. Experiments with Missing Values

As for the full data, our first experiment with missing
values is on synthetic data. We removed values from
synthetic Boolean matrices with planted redescriptions
(cf. Section 6.3) uniformly at random. We removed 1%,
5%, and 10% of the values (0s or 1s) and replaced them
with markers for missing values. Then we mined them
with our algorithm and checked how well the planted
redescriptions were discovered.

For the planted redescriptions with conservative noise,
the planted redescription was found in 97% of the cases.
With increasing ratio of missing values the algorithm more
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Table 1. Statistics of the real-world data sets used in the experiments.

Data set Description Dimensions Type Density

DBLPF Authors × Conferences 6455 × 304 Integer values 0.033
Authors × Authors 6455 × 6455 Integer values 0.002

DBLPN Authors × Conferences 2345 × 19 Integer values 0.194
Authors × Authors 2345 × 2345 Integer values 0.005

DBLPB Authors × Conferences 2345 × 19 Boolean Indicators 0.194
Authors × Authors 2345 × 2345 Boolean Indicators 0.005

Bio Locations × Mammals 2575 × 194 Boolean Indicators 0.166
Locations × Climate 2575 × 48 Real values —

Biosmall Locations × Mammals 1271 × 119 Boolean indicators 0.259
Locations × Climate 1271 × 24 Real values —
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Fig. 4 Distribution of redescription accuracies with missing values, conservative noise, and different accuracy measures. (a) Rejective
Jaccard. (b) Pessimistic Jaccard. (c) Optimistic Jaccard. The three panels of subplots correspond to, from left to right, 1%, 5%, and 10% of
missing values. In each panel, the left-hand box is the distribution of accuracies with missing data and using the corresponding accuracy
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often did not find the complete planted redescription, but
rather one or several fragments of high accuracies.

We report the distributions of the accuracies in Figs 4
(conservative noise) and 5 (destructive noise). The results
compare the different variations of the Jaccard (rejective,
pessimistic, and optimistic) as well as their estimates to
the true Jaccard computed over the full data (i.e. with no
missing values).

In both figures, it is clear that the rejective Jaccard
is the best. With conservative noise (Fig. 4(a)) missing
values have hardly any effect, and while the destructive
noise reduces the quality (Fig. 5(a)), different levels of
missing values have very small effect and the estimated
Jaccards are close to the true Jaccards. Pessimistic Jaccard
is the second-best option. While its estimates look bad
(Figs 4(b) and 5(b)), the true Jaccards are almost as good
as those with rejective Jaccard. One has to remember that
the estimate of the pessimistic Jaccard is only the lower
bound, and therefore having very low estimate is not bad

in itself. The last option, optimistic Jaccard (Figs 4(c) and
5(c)) has the worst behavior with higher level of missing
values (although with 1% and 5% of missing values the
true Jaccards are slightly better than those of pessimistic
Jaccard).

As the missing values were evenly scattered over the
data, the good behavior of rejective Jaccard was no
surprise.

Next, we experimented with the Biosmall data set,
generating copies with 1% or 5% of randomly chosen
values removed. For each setting, we generated 10 copies
and mined them. We compared the queries found in the
data with missing values to those found in the full data. We
only used rejective Jaccard due to its good performance
with synthetic data.

The results are reported in Fig. 6. With 1% of missing
values the results are almost as good as the results with full
data, but with 5% of missing values the true Jaccards are
somewhat worse, even if the estimates are still high.
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Fig. 6 Results with Biosmall data set having missing values.
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6.5. From Boolean to Numerical: The DBLP Data

The purpose of this experiment is to study the behavior
of our algorithm with two versions of the same data, one
Boolean and one numerical. For this we used the two
variants of the DBLP data: DBLPB and DBLPN.

Some results with DBLPN are presented in Table 2,
while some example results with DBLPB are in Table 3.
In all tables, J stands for the Jaccard, supp is the support

of the redescription, and the p-value is computed as in
Section 5.1.

For these experiments, we disabled negations to allow
later comparison (see Section 7.2). Comparing the two
tables, it is obvious that DBLPN contains more information,
allowing ReReMi to find more accurate redescriptions (the
best Jaccard in Table 2 is 0.625). But the rules are also more
specific than those in Table 3, with small support and often
requiring multiple publications in the same conference,
making them possibly harder to interpret than those of
Table 3. Yet, in both cases the algorithm correctly identifies
subfields of computer science and well-known authors from
those fields.

6.6. Approximating the Initial Pairs

To study the effects of approximating the initial pairs, we
took the climate data of the Biosmall data set and divided
it into two: the monthly average temperatures and monthly
average rainfall. This gave us two real-valued data sets with
12 variables each. We call this data Climate.

This seemingly small data set is already hard for
exhaustive initial pairs selection due to the nature of the
data: almost each data point contains different values.
Consequently, the exhaustive search was not finished in
2 days.

Instead of exhaustive search we used the binning-based
initial-pairs searching method explained in Section 5.3.
We tried different bin sizes, ranging from 10 to 100. We
compared this with fully pre-bucketing approach, bin size
again ranging from 10 to 100.
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Table 2. Example results of ReReMi with DBLPN.

qL qR J supp p-value

(1) [1.0 ≤ STOC ≤ 6.0] ∧ [8.0 ≤ COLT] [1.0 ≤ D.P. Helmbold] ∨ [1.0 ≤ M. Frazier]
∨ [2.0 ≤ N. Cesa-Bianchi ≤ 2.0]

0.625 15 0.000

(2) [1.0 ≤ VLDB ≤ 18.0] ∧ [2.0 ≤ ICDM]
∧ [1.0 ≤ SDM ≤ 5.0]
∧ [3.0 ≤ ICDE]

(([5.0 ≤ W. Wang] ∨ [1.0 ≤ J. Pei])
∧ [2.0 ≤ P.S. Yu]) ∨ [6.0 ≤ G. Das ≤ 6.0]

0.600 12 0.000

(3) [5.0 ≤ COLT] [2.0 ≤ P.L. Bartlett] ∨ [1.0 ≤ M.K. Warmuth]
∨ [1.0 ≤ E.B. Kinber] ∨ [1.0 ≤ S.A. Goldman]

0.472 42 0.000

Table 3. Example results of ReReMi with DBLPB.

qL qR J supp p-value

(1) STOC ∧ COLT ∧ ICML Y. Freund ∨ N. Littlestone ∨ P.M. Long ∨ S. Kwek 0.500 21 0.000
(2) VLDB ∧ ICDM ∧ SDM ∧ SIGMOD (J. Han ∧ P.S. Yu) ∨ C.-R. Lin ∨ S. Lonardi 0.444 16 0.000
(3) ICDM ∧ SDM ∧ KDD J. Lin ∨ I.S. Dhillon ∨ P.S. Yu ∨ V. Kumar 0.338 44 0.000
(4) FOCS ∧ SODA ∧ STOC B. Awerbuch ∨ S. Khanna ∨ R.E. Tarjan ∨ N. Alon 0.324 158 0.000

The results were clear. There was very little variation
between different bin sizes for initial pairs in terms of
accuracy: the smaller bins gave overall slightly better
results, but all sizes had top 20 redescriptions with accuracy
clearly above 0.8 with best above 0.9. Pre-bucketing
approaches, on the other hand, were clearly inferior,
with the best results (obtained with bin size 10) being
below 0.7.

In terms of speed, the pre-bucketed approaches were the
fastest, with even the slowest (bin size 10) taking less than
4 min. The fastest method with initial bins (bin size 100)
took roughly 10 times longer, 38 min. The slowest method
(initial bin size 10) took 1 day and 24 min. In all the
methods with initial bins, the time differences are explained
by the time spent on constructing the initial pairs; after that,
they all took roughly the same time.

The results were as expected. Using binning only for
initial pairs (as opposed to working with pre-bucketed
data) gave much better results, but also took more time. It
is, however, noteworthy that increasing the bin size used
for selecting the initial pairs did not have considerable
effect on the quality. Apparently, the algorithm was able
to overcome the possibly weaker initial pairs in later
phases.

6.7. Running Times

Does our algorithm scale? The data sets we used were not
extremely large (although DBLPF is already of considerable
size), but we feel confident to say that our algorithm is
scaling reasonably well. All experiments were conducted
in a single core of an 8 core Intel Xeon 2.8 GHz processor
and with 32 GB of memory.

The statistics of the running times on the different data
sets are presented in Table 4. There we can see that original

data take much more time to run than randomized data. This
is because with randomized data, there are less potential
redescriptions, and the algorithm can prune the search space
much faster. The longest time required, 1 h with DBLPF,
is still very good, especially when one remembers that
the algorithm needs to be run only once for the original
data.

To evaluate more precisely the evolution of our algo-
rithm’s running time with respect to the size of the data, we
generated synthetic matrices of increasing sizes. As we just
mentioned, the running times on random data is not repre-
sentative. Therefore, we need to insure that some redescrip-
tions are present in the synthetic data. Thus, we constructed
diagonal block matrices, where the blocks on the diago-
nal are matrices obtained as described in Section 6.3 while
off-diagonal blocks are filled with random noise. We used
original matrices of size 500 × 10 for the fully Boolean
setting and of size 250 × 10 for the setting where one side
is Boolean and the other real-valued. We let our algorithm
run on 10 such synthetic data sets for each studied size.
The algorithm consists of two major steps: first, computing
singleton redescriptions by trying out all pairs of variables
and second extending the best pairs in turn. In the case of
fully Boolean data, the computation of initial pairs clearly
dominates as the data grows larger, since it is quadratic in
the number of columns while finding extension is linear.
The running times remain reasonable even for very large
data sets.

When real-valued data are involved, the running times
are much greater, as expected. Therefore, we had to restrict
the experiments to smaller data sets. The running times
for that experiment are displayed in Fig. 7. The increase
in running times is due to the fact that extending a
redescription is no longer linear and the search for initial
pairs also has increased complexity.
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Table 4. Running times for the different data sets. For mean
time, ‘—’ denotes that there was only one data set.

Data set mean max

DBLPF — 60 min
DBLPF permuted 5 min 16 s 6 min 32 s
DBLPF swap 16 min 18 min
DBLPN — 7 min
DBLPB — 1 min
Bio — 10 min
Bio permuted and swap 6 min 48 s 10 min 30 s
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Fig. 7 Running times for mining redescriptions on synthetic data
of increasing sizes with one side Boolean and the other real-
valued. [Color figure can be viewed in the online issue, which
is available at wileyonlinelibrary.com.]

7. EXPERIMENTAL COMPARISON AGAINST
OTHER METHODS

With the previous sections results showing that our
algorithm has solid performance, we can now turn to
comparing our algorithm to other methods.

7.1. Comparison to Association
Rule Mining

The first experiment with real-world data mirrors the
experiments with synthetic data: the task is to study how
well our algorithm finds redescriptions from the data. But
as we cannot know all redescriptions present in the real-
world data, we narrow our scope to monotone conjunctive
redescriptions from Boolean data. These redescriptions are
simply bi-directional association rules, and hence can be
found by mining all frequent itemsets from both data
matrices and using the itemset pairs as redescriptions. This
gives us the ground truth, against which we can compare
our algorithm.

For these experiments we used the DBLPB data
(see Section 6.2). We used the Eclat frequent itemset
miner [24]. The redescriptions were generated as follows:
first, all closed frequent itemsets with support greater than
five were mined for both data sets. The itemsets were then
combined into redescriptions. Only those with accuracy
greater than 0.1, support above 10 but below 100 (inclu-
sive), and p-value higher than 0.01 were retained. The same
parameters were set to ReReMi, and it was only allowed
to find monotone conjunctive redescriptions.

The best four redescriptions found using Eclat had
a Jaccard similarity between 0.366 and 0.333. ReReMi
found exactly the same redescriptions. After these four
redescriptions, the Eclat approach found several redun-
dant redescriptions: they were minor variations of the first
four redescriptions. ReReMi did not report these redundant
redescriptions, which we consider a positive feature—the
user should not be overwhelmed by the quantity of results.

The next non-redundant redescription found by Eclat
approach was also found by ReReMi. The same trend
continued throughout the results: Eclat approach found
several thousands of redescriptions, but most of them were
redundant.

Applying Eclat on swapped and permuted randomized
copies of the original data (500 pairs of matrices for
each method) following the same approach did not return
any redescription. Therefore, all original redescriptions are
considered significant with respect to these null hypotheses.

Although these experiments cannot guarantee that
ReReMi will always find the best redescriptions, they sug-
gest that it is able to find most of the important ones.

7.2. Comparison to the Work of Gallo et al.

As we used the same data set as Gallo et al. [3], DBLPB,
we compared the results obtained with ReReMi to theirs.
Following Gallo et al., we did not allow negations. The
example results are presented in Table 3.

The results obtained by ReReMi had higher Jaccard
similarity than those obtained by Gallo et al.: the highest
accuracy they report is 0.35, while ReReMi returns a
redescription with accuracy 0.5, and 9 redescriptions have
accuracy above 0.35.

An effect of the beam search is illustrated by the
following for example. The results presented by Gallo et al.
contain the following redescription of accuracy 0.30:

SDM ∧ ICDE P. S. Yu ∨ J. Lin ∨ M. Schubert ∨ Y. Ma.

Our results do not contain this redescription, but

SDM ∧ ICDM ∧ KDD P. S. Yu ∨ J. Lin ∨ I. S. Dhillon ∨ V. Kumar,
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instead, with accuracy 0.34. Indeed, when starting from
the initial pair (SDM, P. S. Yu), keeping at each step only the
best candidate does not allow to find this redescription as
it is obtained from a candidate ranked lower during the
extension process.

While allowing for a better exploration of the search
space, our algorithm required only a third of Greedy’s
running time (3 min) with the same data. This shows that
the proposed algorithm is faster yet more exhaustive on
Boolean redescription mining than the Greedy algorithm.

Otherwise, the results are similar; both algorithms iden-
tify sets of conferences from different fields of computer
science together with well-known authors from those fields.
Both algorithms are also able to identify interdisciplinary
researchers, say, theoretical machine learners who publish
in both machine learning and theoretical conferences (row
1 of Table 3).

7.3. Comparison to CARTwheels and Pre-Bucketing
Numerical Data

We now turn to another algorithm for mining redescrip-
tions, CARTwheels [5]. We used the implementation of
CARTwheels provided by the authors. Because of this,
we do not have any control over the results reported by
CARTwheels (e.g. minimum support, type of queries,
p-values).

Boolean Data: First, we tried CARTwheels with
DBLPB. The algorithm returned in total 35 redescriptions
before running out of the available 32 GB of memory.
Of these, only 5 were retained after removing rules with
p-value higher than 0.05. All of the remaining redescrip-
tions had p-values between 0.0111 and 0.02, making them
insignificant on the highest significance level (99%). The
rules also covered almost the whole data, having at least
1567 (of 2345) rows in the support. This high support is a
consequence of using mostly negated variables. Results are
reported in Table 5.

As can be seen from Table 5, the results have high accu-
racy, which is not surprising, given their high support.

Results also have many negations, making them less inter-
esting. We let ReReMi find results with negations, too, and
while we were not able to find results with as high accu-
racy (results omitted), they all had p-values essentially 0.
We conclude that while CARTwheels finds more accu-
rate redescriptions, they are somewhat insignificant, and
less interesting than the ones found by ReReMi.

Pre-Bucketing Numerical Data: In this section, we com-
pare our on-the-fly bucketing approach to CARTwheels
with bucketing as a pre-processing step.

To bucket the data, one has to select the bucketing
method. For a fair comparison, we used three different
methods with a number of buckets per variable varying
between 10 and 150, ran CARTwheels for all of these
configurations, and selected the best results. The three meth-
ods were (i) buckets of equal width, where the range of the
values in a column was divided into equally long buckets;
(ii) buckets of equal height, where each bucket contained
approximately equally many entities; and (iii) segmenta-
tion, where the entities were separated into segments (i.e.
buckets) minimizing the sum-of-square distances to the
segment’s mean (the segmentation was obtained using Bell-
man’s algorithm [25]).

The CARTwheels algorithm was unable to handle the
full Bio data, so we used Biosmall instead.

The results are reported in Table 6. The aim of this
experiment is to study how good accuracies can be obtained
with pre-processed buckets compared to ReReMi.

The first results are the five best (with respect to
the accuracy) from CARTwheels using 10 buckets of
approximately equal number of entities (this method
produced the best overall results, although 10 segments
gave very similar results). The redescriptions have again
very high accuracy, and, again, they cover almost all of
the studied area. Furthermore, two of them are clearly
insignificant and one is not very significant, according to
the p-values. Results of this type are rarely of any interest
for users, as they do not convey any interesting information.

We pruned out results that had too high support
(leaving less than 250 entities uncovered) or too high
p-value. CARTwheels can still return rather accurate

Table 5. Example results of CARTwheels with DBLPB.

qL qR J supp p-value

(1) (STOC ∧ ¬ FOCS) ∨ ¬ STOC B. Dageville ∨ (¬ B. Dageville ∧ ¬ A. Wigderson) 0.736 1673 0.011
(2) (STOC ∧ ¬ FOCS) ∨ ¬ STOC T. Grust ∨ (¬ T. Grust ∧ ¬ A. Wigderson) 0.736 1673 0.011
(3) EDBT ∨ (¬ EDBT ∧ ¬ STOC) (P. Datta ∧ P. Langley) ∨ (¬ P. Datta ∧

¬ A. Wigderson)
0.693 1577 0.021

(4) ICDM ∨ (¬ ICDM ∧ ¬ STOC) (C. Olston ∧ ¬ C. Chekuri) ∨ (¬ C. Olston ∧
¬ A. Wigderson)

0.691 1570 0.017

(5) PKDD ∨ (¬ PKDD ∧ ¬ STOC) T. Grust ∨ (¬ T. Grust ∧ ¬ A. Wigderson) 0.689 1567 0.019
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Table 6. Example redescriptions from Biosmall data: tmin
X , tmax

X , and t
avg
X stand for minimum, maximum, and average temperature of

month X in degrees Celsius, and p
avg
X stands for average precipitation of month X in millimeters.

qL qR J supp p-value

CARTwheels
(1) (European Pine Vole

∧ European Pine Marten)
∨(¬European Pine Vole)

([57.5 ≤ p
avg
Nov ≤ 62.706] ∧ ¬[75.03 ≤ p

avg
Jun ≤

82.6]) ∨ (¬[57.5 ≤ p
avg
Nov ≤ 62.706])

0.980 1244 0.007

(2) (Argali ∧ Hazel Dormouse)
∨(¬Argali)

([78.291 ≤ p
avg
Aug ≤ 82.282] ∧ ¬[0.8245 ≤ t

avg
Nov ≤

2.2357]) ∨ (¬[78.291 ≤ p
avg
Aug ≤ 82.282])

0.974 1237 0.158

(3) (Brown Bear ∧ ¬Arctic Fox)
∨(¬Brown Bear)

([43.163 ≤ p
avg
Dec ≤ 46.92] ∧ ¬[tavg

Jul ≤
10.427]) ∨ (¬[43.163 ≤ p

avg
Dec ≤ 46.92])

0.974 1237 0.074

(4) (Nathusius’ Pipistrelle
∧ ¬Mediterranean Water Shrew)
∨(¬Nathusius’ Pipistrelle)

([40.896 ≤ p
avg
Nov ≤ 46.743] ∧ ¬[16.32 ≤ t

avg
Jul ≤

16.751]) ∨ (¬[40.896 ≤ p
avg
Nov ≤ 46.743])

0.974 1235 0.000

(5) (Brown Bear ∧ ¬Arctic Fox)
∨(¬Brown Bear)

([60.13 ≤ p
avg
Apr ≤ 74.305] ∧ ¬[82.6 ≤

p
avg
Jun ]) ∨ (¬[60.13 ≤ p

avg
Apr ≤ 74.305])

0.964 1224 0.337

CARTwheels pruned
(1) (Eurasian Least Shrew) ∨ (¬Eurasian

Least Shrew ∧¬House mouse)
([75.154 ≤ p

avg
Aug ≤ 78.291] ∧ ¬[1.622 ≤ t

avg
Feb ≤ 3.44]) ∨

(¬[75.154 ≤ p
avg
Aug ≤ 78.291] ∧ ¬[5.488 ≤ t

avg
Mar])

0.832 944 0.000

(2) (Wisent)
∨(¬Wisent ∧ ¬House mouse)

([34.467 ≤ p
avg
Feb ≤ 41.402] ∧ ¬[5.488 ≤

t
avg
Mar]) ∨ (¬[34.467 ≤ p

avg
Feb ≤ 41.402] ∧ ¬[3.15 ≤ t

avg
Jan ])

0.824 940 0.000

(3) (Red-necked
Wallaby) ∨ (¬Red-necked Wallaby ∧
House mouse)

([6.12 ≤ t
avg
Nov] ∧ ¬[14.028 ≤ t

avg
Sep ]) ∨ (¬[6.12 ≤

t
avg
Nov] ∧ [1.622 ≤ t

avg
Feb ≤ 3.44])

0.522 175 0.000

(4) (European Mole ∧ ¬House
mouse) ∨ (¬European Mole ∧ House
mouse)

([5.0439 ≤ t
avg
Nov ≤ 6.12] ∧ ¬[1.691 ≤ t

avg
Mar ≤

2.9013]) ∨ (¬[5.0439 ≤ t
avg
Nov ≤ 6.12] ∧ [6.12 ≤ t

avg
Nov])

0.674 225 0.000

(5) (European Mole ∧ House
mouse) ∨ (¬European Mole ∧¬House
mouse)

([5.0439 ≤ t
avg
Nov ≤ 6.12] ∧ [1.691 ≤ t

avg
Mar ≤

2.9013]) ∨ (¬[5.0439 ≤ t
avg
Nov ≤ 6.12] ∧ ¬[6.12 ≤ t

avg
Nov])

0.896 937 0.000

ReReMi
(1) ¬ House mouse (¬[3.4133 ≤ t

avg
Mar] ∨ [1.790 ≤ t

avg
Aug] ∨ [6.5917 ≤ p

avg
May ≤

6.6083]) ∧ ¬[2.3667 ≤ t
avg
Jan ≤ 3.0667]

0.948065 931 0.000

(2) ¬ House mouse ([tavg
Feb ≤ 2.20] ∧ [tavg

Mar ≤ 3.41]) ∨ [1.790 ≤
t

avg
Aug] ∨ [6.5917 ≤ p

avg
May ≤ 6.6083]

0.947101 931 0.000

(3) ¬ House mouse
∧¬ Eastern gray squirrel

[1.8375 ≤ t
avg
Jan ≤ 1.90] ∨ ¬[0.25 ≤ t

avg
Feb] 0.934359 911 0.000

(4) ¬ House mouse ∧ ¬ Raccoon
∧¬ Eastern gray squirrel

([5.37 ≤ t
avg
Apr ≤ 6.1357] ∨ [5.04 ≤ t

avg
Nov ≤

5.10] ∨ ¬[1.25 ≤ t
avg
Dec]) ∧ [3.775 ≤ t

avg
Mar]

0.925965 888 0.000

(5) ¬ Grey Red-Backed Vole
∧¬ Wolverine ∧¬ Brown Bear
∧¬ Siberian Flying Squirrel

(¬[tavg
Jan ≤ − 6.4615] ∧ [−5.70 ≤ t

avg
Feb ]) ∨ [tavg

Jul ≤
4.6267] ∨ [−4.9133 ≤ p

avg
Dec ≤ − 4.871]

0.923681 823 0.000

ReReMi bucketed
(1) (Striped Field Mouse

∨ House mouse)∧ Wood mouse
[5.925 ≤ t

avg
Apr ≤ 7.0] ∨ [7.0 ≤ t

avg
Apr ≤ 7.9077] ∨ [7.9077 ≤

t
avg
Apr ≤ 8.46] ∨ [8.46 ≤ t

avg
Apr]

0.807 442 0.000

(2) House mouse [−0.21534 ≤ t
avg
Feb ≤ 1.622] ∨ [1.622 ≤ t

avg
Feb ≤

3.44] ∨ [3.44 ≤ t
avg
Feb ]

0.778 308 0.000

(3) European Rabbit [1.691 ≤ t
avg
Mar ≤ 2.9013] ∨ [2.9013 ≤ t

avg
Mar ≤

3.9685] ∨ [3.9685 ≤ t
avg
Mar ≤ 5.488] ∨ [5.488 ≤ t

avg
Mar]

0.774 441 0.000

(4) House mouse [2.9013 ≤ t
avg
Mar ≤ 3.9685] ∨ [3.9685 ≤ t

avg
Mar ≤

5.488] ∨ [5.488 ≤ t
avg
Mar]

0.773 307 0.000

(5) North American Beaver ∧ Reindeer [tavg
Jan ≤ − 11.9] ∧ [14.994 ≤ t

avg
Jul ≤ 15.785] ∧ [7.1073 ≤

t
avg
Sep ≤ 8.5667] ∧ [70.333 ≤ p

avg
Jul ≤ 73.385]

0.700 7 0.000
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redescriptions, but the quality drops quickly after the first
ones.

The last results in this experiment are from ReReMi.
As CARTwheels obtained almost all of its results using
negations, we allowed also ReReMi to use negations. As
can be seen, ReReMi positions itself between non-pruned
and pruned CARTwheels. But unlike the non-pruned
CARTwheels, ReReMi does not return insignificant
results.

We also experimented with bucketed data and Boolean
ReReMi. The results were similar to those with pruned
CARTwheels, but without the quick drop in accuracy.
Also, they were considerably worse than the results with
ReReMi using on-the-fly bucketing.

We conclude that with similar constraints, the on-the-
fly bucketing of ReReMi gives the best results, although in
this application, not allowing negations could be considered
more reasonable an option.

8. REAL-WORLD APPLICATION: FINDING
BIOCLIMATIC ENVELOPES

Our final experiment is a real-world application of finding
bioclimatic envelopes.

ReReMiwas run on full Biodata for a maximum of
100 initial pairs, minimum score for the initial pairs 0.2,
minimum support 15, minimum number of uncovered
entities 500, and minimum contribution 3, disallowing
negated variables. This was done because the negated
variables can lead to counterintuitive redescriptions in this
type of application. The algorithm found 69 redescriptions
within these constraints. Again, we regard it positively that
our algorithm returns only a reasonable amount of results.

The data were randomized using swap-randomization and
permutation. With both methods, 500 random matrices were
generated, and in both cases the best redescription had
lower accuracy than the lowest original accuracy. Hence,

Table 7. Example redescriptions from Bio data: tmin
X , tmax

X , and t
avg
X stand for minimum, maximum, and average temperature of month

X in degrees Celsius, and p
avg
X stands for average precipitation of month X in millimeters.

qL qR J supp p-value

(1) Polar Bear [−7.0727 ≤ t
avg
May ≤ − 3.375] 0.973 36 0.000

(2) Polar Bear [−16.694 ≤ t
avg
Mar ≤ − 11.462] 0.973 36 0.000

(3) Bank Vole
∨ Northern Red-backed Vole
∨ Steppe Mouse ∨ Harbor Seal

(
([11.20 ≤ tmax

Jul ≤ 15.40] ∨ [13.10 ≤ tmax
Aug ≤ 27.40])

∧ [42.5 ≤ p
avg
Jul ]

) ∨ [17.10 ≤ tmax
Apr ≤ 17.50]

0.818 1679 0.000

(4) European Elk ([−9.80 ≤ tmax
Feb ≤ 0.40] ∧ [12.20 ≤ tmax

Jul ≤ 24.60]
∧ [56.852 ≤ p

avg
Aug ≤ 136.46])

∨ [183.27 ≤ p
avg
Sep ≤ 238.78]

0.814 582 0.000

(5) Arctic Fox ∨ Stoat
(
([2.60 ≤ tmax

Jun ≤ 8.50] ∨ [7.20 ≤ tmax
Sep ≤ 22.20])

∧ [36.667 ≤ p
avg
Aug]

) ∨ [21.133 ≤ t
avg
Jul ≤ 21.20]

0.813 1477 0.000

(6) Greater White-toothed Shrew
∧ Egyptian Mongoose

([15.60 ≤ tmin
Aug ≤ 19.00] ∧ [1.625 ≤ p

avg
Aug ≤ 7.4444]

∧ [66.222 ≤ p
avg
Dec ≤ 137.27])

∨ [19.083 ≤ t
avg
Oct ≤ 19.10]

0.790 49 0.000

(7) House Mouse ∨ Caucasian Squirrel
∨ Marbled Polecat

(
([3.50 ≤ tmax

Jan ] ∧ [4.40 ≤ tmax
Feb ])

∨ [3.5071 ≤ t
avg
Mar ≤ 4.1727]

) ∧ [3.30 ≤ tmax
Dec ]

0.765 1034 0.000

(8) Southwestern Water Vole
∨ Azores Noctule
∨ Common Noctule ∨ Blind
Mole

([17.10 ≤ tmax
Mar ] ∨ [19.30 ≤ tmax

Aug ≤ 26.90]
∨ [12.40 ≤ tmax

Nov ≤ 14.50]) ∧ [14.60 ≤ tmax
Sep ]

0.697 1072 0.000

(9) Brown Long-eared Bat ([13.70 ≤ tmax
Sep ≤ 22.70]

∨ [8.4111 ≤ t
avg
Nov ≤ 8.6444])

∧ [17.30 ≤ tmax
Jul ≤ 28.40]

∧ [−8.15 ≤ t
avg
Jan ≤ 6.0083]

0.693 963 0.000

(10) Harvest Mouse ∧ European Mole [−0.30 ≤ tmin
Apr ≤ 8.70] ∧ [19.40 ≤ tmax

Aug ≤ 27.20]

∧ [45.417 ≤ p
avg
Jun ] ∧ [48.75 ≤ p

avg
Aug ≤ 126.33]

0.677 774 0.000

(11) (Serotine Bat ∨ Lesser Mole Rat)
∧ European Mole

[19.70 ≤ tmax
Jul ] ∧ [16.90 ≤ tmax

Sep ≤ 23.70]

∧ [43.111 ≤ p
avg
Jul ≤ 149.5]

∧ [31.875 ≤ p
avg
Oct ≤ 119.5]

0.634 664 0.000

(12) Wood Mouse ∧ Natterer’s Bat
∧ Eurasian Pygmy Shrew

([3.20 ≤ tmax
Mar ≤ 14.50] ∧ [17.30 ≤ tmax

Aug ≤ 25.20]
∧ [14.90 ≤ tmax

Sep ≤ 22.80])

∨ [19.60 ≤ t
avg
Jul ≤ 19.956]

0.623 681 0.000
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all redescriptions were considered significant with respect
to these null hypotheses. The algorithm processed the full
data in about 13 min.

Some of the results are displayed in Table 7. The
redescriptions have varying support sizes: some cover only
a small part of the data, while others cover almost the
whole data. Yet, they all have very high accuracy. The
first two redescriptions cover exactly the same area. They
represent the Svalbard archipelago (see Fig. 8(a)). The
climate in Svalbard is so different from other areas that
it allows multiple ways to define it, causing multiple
redescriptions. The fourth redescription has only European
Elk on the left-hand side, but the right-hand side is more
complex, characterizing very accurately the environment in
Scandinavia and Baltia (Fig. 8(b)), the area occupied by
the European Elk. The remaining redescriptions are more
complex. The fifth redescription (Fig. 8(c)) covers Northern
and Central Europe, while the last covers only Central
Europe (Fig. 8(d)).

We point out that while the results of Garriga et al. [13]
are superficially similar, the differences in the methods used
and the goals pursued make the results incomparable.

9. CONCLUSIONS

We have presented a new algorithm to mine redescrip-
tions from real-valued data. Unlike previous algorithms,
ours does not require any pre-processing when used with
non-Boolean data. It is based on a beam-search type of
method. We have shown with both synthetic and real-world
data sets that our algorithm performs better than its peers. In
particular, the experiments show the benefits of on-the-fly
bucketing against pre-processing.

The non-Boolean redescription mining has many applica-
tions in various fields of science, of which niche-finding is
the one we have studied here. One of the most prominent
future works would be to collaborate with biologists and
ecologists and explore the true value of redescription min-
ing in finding the bioclimate envelopes. Also other fields
should be considered. Medical data describing patients
where the matrices would contain genetic or physiological
characteristics and symptoms, respectively, is one example.

While our algorithm seems to be working fine, it is by
no means the final word. Building better algorithms is,
as always, an important future direction. For a concrete

(a) (b)

(c) (d)

Fig. 8 Support of redescriptions when mining Bio data. (a) Row 1, (b) row 4, (c) row 5, and (d) row 12 in Table 7. Light gray, medium
gray and dark gray respectively indicate areas where only the left query holds, only the right query holds and both queries hold.
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example, the selection of initial pairs seems to have space
for improvements.

Finally, having proofs of the behavior of the algorithms
is important. Is there, for example, an algorithm for real-
valued redescription mining for which one can prove that
it finds a redescription, provided that the redescription is
sufficiently strong?
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Abstract. We present a method for visual and interactive geospatial
redescription mining. The goal of geospatial redescription mining is to
characterize geospatial areas using two different descriptions, such as
their bioclimatic features and fauna. Indeed, one application of geospa-
tial redescription mining is finding bioclimatic niches, i.e. explaining the
distribution of species using their bioclimatic envelope.
Allowing users to find the geospatial redescriptions in an interactive way,
and to see the results in clear visualizations, is fundamental for the ap-
plicability of the method. We present several goals we think a good in-
teractive and visual redescription mining method should fulfil, and we
explain how our proposed method achieves (most of) them. Finally, we
also discuss some open problems in interactive redescription mining.

1 Introduction

Finding multiple ways to characterize the same entities is a problem that appears
in many areas of science. Describing geographical regions in terms of both their
bioclimatic conditions and the fauna that inhabits them is one instance in the
field of biology. A simple example of a redescription in this setting could state
that areas where Moose live are areas where February’s maximum temperature is
between −10 and 0 degrees Celsius and July’s maximum temperature between 12
and 25 degrees Celsius. This is actually the redescription shown in the foreground
panel of Figure 1.

The results of redescription mining, the redescriptions, can be approached
from two points of view. On one hand, by considering the variables and conditions
appearing in the queries, which provide valuable information in themselves; on
the other hand, by studying the support set of the redescriptions, i.e. the subset
of entities where both queries of a redescription hold.

To analyse the redescriptions, the ability to visualize the support sets is very
helpful. When building a tool for mining redescriptions from geospatial data,
plotting the support on a map, as in the foreground panel of Figure 1, is a natural



Fig. 1. The Siren interactive mining and visualization tool. The panel in the back-
ground contains a list of redescriptions while the foreground panel displays the map
of a selected redescription. In this example, left hand side queries are over fauna while
right hand side queries are over monthly bioclimatic conditions, that is, temperatures
and precipitation.

visualization. But a static display of the results is not enough: the user must
also be able to interact with the program. This interaction can be conceptually
divided into two sub-phases: interacting with the data mining algorithm and
interacting with the result visualization. The analysis is an alternation of these
two phases, with the user moving back-and-forth between issuing commands to
find new results and examining obtained ones. We argue that a good interactive
data mining tool should support both types of interaction and facilitate the
alternation between different phases.

In this paper we give a systematic outline of contributive features to ful-
fill that aim, considering the example of mining geospatial redescriptions. We
then present a pair of algorithms, ReReMi and Siren, and explain how they
implement interactivity and visualization for that task. Lastly, we discuss some
possible pitfalls associated with interactive, visual mining. But first, we formally
define the redescription mining problem.

2 Redescription Mining

Redescription mining aims at simultaneously finding multiple descriptions of a
subset of entities which is not previously specified. This is in contrast with other
methods like Emerging Patterns Mining (EPM), Contrast Set Mining (CSM)



and Subgroup Discovery (SD) (see [8] for a unifying survey) or general classifica-
tion methods, where target subsets of entities are specified via labels. Currently,
redescription mining is a purely descriptive approach, its predictive power re-
mains to be explored. Since its introduction in [12] various algorithms have been
proposed for Boolean redescription mining, based on approaches including de-
cision trees [12, 6], co-clusters [9], and frequent itemsets [2]. In [1], we extended
redescription mining to categorical and numerical variables.

More formally, we consider data that contains entities E with two sets of
characterizing variables, e.g. the fauna and the bioclimatic conditions. Boolean
variables can be interpreted as a truth value assignment in a natural way. For
categorical and real-valued variables, truth value assignments are induced by
relations denoted using Iverson bracket [v = c] and [a ≤ v ≤ b], respectively,
where c is some category and [a, b] an interval. For more details about how the
actual optimal categories and intervals are chosen, please refer to [1]. These truth
assignments and their negations constitute literals which can be combined using
the Boolean operators ∧ (and) and ∨ (or) to form queries. The support of a
query q is the subset of entities for which the query holds true, that is supp(q) =
{e ∈ E : q is true for e}. We refer to the two sets of variables informally as left
and right hand side data, and the queries over them as left and right hand side
queries, denoted as qL and qR, respectively. Then, a redescription is simply a
pair of queries over variables from the two sets, R = (qL, qR). Its accuracy is
measured using the Jaccard coefficient

J(R) = J(qL, qR) =
|supp(qL) ∩ supp(qR)|
|supp(qL) ∪ supp(qR)| .

We compute a p-value that represents the probability that two random queries
with marginal probabilities (i.e. the fraction of entities supporting them) equal
to those of qL and qR have an intersection equal to or larger than |supp(qL, qR)|.
This probability uses the binomial distribution and is given by

pvalM(qL, qR) =

|E|∑

s=|supp(qL)∩supp(qR)|

(|E|
s

)
(pR)s(1− pR)|E|−s,

where pR = |supp(qL)| |supp(qR)| / |E|2 . The higher the p-value, the more likely
it is to observe such a support for independent queries, and the less significant
the query.

The task consists in finding significant accurate redescriptions, in other words,
pairs of queries, one query for both sets of variables, such that both queries de-
scribe almost the same set of entities.

When the data is geospatial, that is, the entities are connected to geograph-
ical locations, the task is called geospatial redescription mining. A meaningful
geospatial redescription should define coherent areas using expressive queries.

Niche-finding is a particular instance of geospatial redescription mining —
and a task of great importance for biologists. The bioclimatic constraints that
must be met for a certain species to survive constitute that species’ bioclimatic



envelope, or niche [3]. Finding such envelopes can help, e.g. to predict the re-
sults of global warming [10]. A number of methods, involving regression, neural
networks, and genetic algorithms (see [13]) have been developed over the past
ten years to model the bioclimatic envelope, Maxent [11] and BIOMOD [14],
being good examples of modelling tools used in this domain. The former provides
a graphical user interface while the latter is a text-based tool. But to the best
of our knowledge, none of these methods allows automatically finding both the
set of species and their envelope.

3 Goals for Interactive and Visual Redescription Mining

In this section we discuss our goals for an interactive and visual redescription
mining tool. Some of these goals are general to any interactive and visual data
mining tool (and we spend less time on discussing why they are desirable), some
are specific to redescription mining. We divide the discussion between interaction
and visualization, though we emphasize that these goals are not independent.

3.1 Visualization of Results

As a basis for our discussion, we use the taxonomy of interactions for visual
analytics proposed by Heer and Shneiderman [4]. The bold-face terms correspond
to their taxonomy.

The most fundamental goal when designing a tool for visual data analysis is,
of course, to have a good visualization. With geospatial redescriptions, a map is
the most natural option. Thus our tool should be able to plot the redescriptions
on a map. But in order to effectively select the content of the visualizations, the
user needs means to filter and sort the results mined. In the case of redescription
mining, the user should be able to sort the returned redescriptions based on
different criteria, such as accuracy, support size, statistical significance, or query
length (i.e. number of literals). To some extent, filtering can be regarded as
sorting with a cut-off value. Hence, sorting should naturally use the same criteria
and similar results display as sorting. Additional criteria might affect sorting,
including the described geographical area and redundancy.

During the analysis, the user should be allowed to derive new data. That is,
new variables obtained by aggregating existing variables might better capture the
studied phenomenon. Hence, their introduction during the mining process would
support the analysis. While modifying the way the information is represented,
deriving new variables is also a means to interact with the mining process.

In order to manipulate the views, the user needs to be able to select the
data he wants to visualize. In the present case, he can primarily choose a rede-
scription to plot. Then, he can edit the queries, modifying literals and altering
the bounds of real-valued variables. The user might need to navigate inside
the view, typically looking first at the redescription over the whole area, before
zooming and panning to see more details. On a high level, the user might only
be able to see whether either query hold on a region. Focusing on particular



area, he might obtain more detailed information about the actual state of the
variables and what makes a query hold or not in a particular location, for in-
stance by clicking or hovering over a dot in the map. Several views and the data
might need to be coordinated. Modifications made to a redescription should
be reflected immediately on the map(s). In addition, it could be useful to allow
the user to bind maps together, so that panning and zooming are applied to all
maps simultaneously. In that way, detailed comparison of the support of different
redescriptions would be facilitated. Maps can be opened in detachable tabs, to
be inspected side by side or sequentially and be organized using the system’s
or a dedicated windows tiling.

For any interactive tool, undo and redo are minimal functionalities to al-
low reverting actions, making interaction safe and comfortable. The user should
be able to save the current status of the analysis process, i.e. all current re-
descriptions, opened lists and maps to punctuate the process. Recording the
interaction history and turning it into editable and parameterizable macros pro-
vides a mean to repeat a sequence of actions and automate repetitive tasks.
The tool should support annotation in order to keep track of the thought path
during the analysis. For example, this could be achieved by generating anno-
table screen shots of the current window of interest, and by adding comments
to the interaction history and macros. Organizing the history and macros into
blocks would help to further clarify the logical structure of the analysis. Fur-
thermore, with the ability to link to objects in the current environment, such as
redescriptions, groups of entities or literals, these could be explicitly related to
each other. Data analysis is often a collaborative effort, involving several users.
Then, sharing information becomes crucial. Easy export and import of rede-
scriptions lists, maps and macros, possibly with comments and annotations is
a very important feature towards that aim. Finally, giving clear names to the
actions and providing feedback on their application helps guiding users along
the analysis process. Example macros with detailed explanations, to be replayed
step-by-step, represent a good means to introduce new users to the tool. These
latter goals pertain automating interactions, attaching a meaning to sequences
of interactions, allowing segmented interactivity, e.g. when different users collab-
orate, using the tool in turn. Hence they are also closely tied to the interaction
with the mining process, to which we now turn.

3.2 Interaction with the Mining Process

A desirable behavior for an interactive program is the production of meaningful
results at any time. In other words, if the mining process is stopped, it can
nevertheless return results which are valid, albeit possibly partial. This is related
to the possibility to obtain preliminary results while the mining is still underway.
Such a feature contributes to the ability of the program to respond quickly to
instructions from the users. It is also possible to first run the algorithm allowing
only short queries, say, at most a couple of literals on either side, and let the user
choose the ones that seem promising and should be further extended. Low latency
or even instantaneity is a core quality of an interactive tool and is important



to catch and keep the user’s attention. At least, the tool should provide instant
feedback about what is happening.

The automation level of the whole mining process could be adaptative. From
fully manual, where the users writes down redescriptions and the tools simply
evaluates them, to fully automated where the program mines the list of best
redescriptions using static predefined constraints, it could also be partially au-
tomated, with the tool suggesting best extensions at each step and asking for
approval from the user.

Consider extending an existing redescription with a real-valued literal. In-
stead of a map plot based on their geographical location, a figure where the
areas are represented as colored dots plotted along the x-axis depending on the
value taken by the chosen variable would be useful for determining the optimal
interval for that variable. Indeed, the user could observe which values occur in
locations that belong to different parts of the current redescription. Then, he
could fix the bounds in consequence, for example using sliders. The tool could
even indicate which are the best bounds but also update the best correspond-
ing upper bound when the user moves the lower bound, and vice versa. This
is a prime example of instant interaction with the mining process through apt
visualization.

Proper interactivity with the program also requires allowing the user to spec-
ify constraints for the search. Possible constraints include specifying variables or
geographical areas that should be excluded from the redescriptions or modifying
the minimum acceptable accuracy. For such constraints that constitute filtering
criteria, there can be three different degrees of integration with the algorithm,
that is, depending on how far they are pushed into the mining process instead
of applied a posteriori. The degree zero of integration happens when the user
manually filters the raw output. Instead, the program can automatically filter its
results before reporting. The highest degree of integration implies incorporating
such filtering criteria during the search to avoid generating the unwanted results
in the first place. Still, a compromise needs to be found between supporting deep
integration and accepting a broad range of constraints, e.g. through a flexible
specification framework. Indeed, these are typically two conflicting goals.

More generally, the user should be able to specify interest and lack of it. Se-
lecting a redescription to be edited and extended is a way of expressing curiosity
towards the involved conditions or area. Similarly, he should be able to prevent
the algorithm to search further in directions he deems uninteresting. One way
of doing so is to merely pick out variables or locations that should be ignored.
Another way is to select a redescription and specify that results of this kind are
of no interest.

4 Our Proposed Tool

In this section, we present our proposed tool, which consists of a pair of algo-
rithms, ReReMi and Siren. First, we explain how it implement interactivity
and visualization for redescription mining. Then, we give a concrete illustration



of its usage by means of a use case. The current version of the tool is only able to
achieve part of the goals stated in the previous section. In this section we focus
on presently available features—the others are châteaux en Espagne.

4.1 The Algorithms

Siren is an interactive tool for mining and visualizing geospatial redescriptions.3

At its core is the ReReMi redescription mining algorithm [1].

This greedy algorithm uses an efficient on-the-fly discretization technique to
extend redescription mining to categorical and numerical variables. It considers
queries over such variables that can be parsed in linear order, without trees, with
every variable allowed to appear only once. They constitute a subset of Boolean
formulae that provides a good compromise between expressive power, difficulty
of the search, and interpretability.

Yet, the search space remains exponential and we still resort to heuristic
pruning. We use a strategy similar to beam-search to explore the solution space.
The basic idea is to construct queries bottom-up, starting from singleton rede-
scriptions (i.e. both queries contain only one literal) and progressively extending
them by appending operators and literals. After evaluating all possible one-step
extensions, we select the best candidates and extend them in turn. This process
stops when no new redescription can be generated.

Redescriptions with too high p-value can be filtered out during the search. We
exploit some simple observations to make the computation of accuracy more ef-
ficient. This allows to evaluate candidates faster, which is particularly important
for an interactive tool.

Owing to his beam-search-like behaviour, ReReMi is an any-time algorithm.
The intermediate redescriptions explored during the search are returned at each
step. This way, the user is able to see the candidates present in the beam and
might stop the extension process if he so wishes. The possiblilitty to remove a
candidate from the beam, cutting off a less promising branch from the search,
remains to be implemented.

In Siren, threading is employed to delegate mining tasks to ReReMi in the
background. This preserves the tool’s responsiveness while the communication
is maintained to provide feedback about the ongoing mining, to return results
as they are obtained and to allow the user to directly interact with the process.

Finally, Siren allows automatic filtering of redundant redescriptions. That is,
redescriptions that cover approximately the same area even if they have (some-
what) different sets of variables. The user can select a redescription and ask
Siren either to filter out all redescriptions that are redundant with respect to
the selected one, or to go through the whole list of redescriptions filtering out all
redescriptions that are redundant with respect to some earlier-encountered (i.e.

3 More details about Siren’s features, additional screenshots and a demon-
stration video are available online at http://www.cs.helsinki.fi/u/galbrun/

redescriptors/siren/.



better) redescription. Naturally, the decisions made by Siren can be reverted
whenever the user wishes to.

Siren and ReReMi are implemented in Python. The interface is built with
the wxPython Open Source GUI toolkit, ensuring cross-platform compatibility.
The matplotlib library enables to generate high quality figures, seamlessly in-
tegrated in the interface. Siren allows for simple editing of the redescriptions
thanks to flexible parsing of different representations. It can handle any data
provided in a compatible format.

4.2 Use Case

We exemplify the usage of Siren by going through a generic work-flow of min-
ing geospatial redescriptions, detailing typical steps in the process. This specific
example concerns the application of Siren on the task of bioclimatic niche find-
ing using data that describes spatial areas of Europe, squares of side roughly 50
kilometers. The left hand side data contain information about the mammals that
live in these areas, while the right hand side consists of bioclimatic variables4.
Nonetheless, Siren is a flexible tool that can be used with different datasets
from various application domains.

Initial redescription mining. A natural starting point for the analysis
of any given data is to use a redescription mining algorithm to find an initial
set of redescriptions. This can be done within Siren by running the extension
mechanism on an empty redescription. Following the principle of first providing
an overview of the results then focusing on specific items, the redescriptions
found are presented as a list from which the user can select a redescription of his
choice to examine more closely and plot on the map. Figure 1 shows two panels,
containing an overview of the current results as a list, in the background, and
a single redescription plotted on a map, in the foreground. The list supports
sorting and filtering on various criteria.

Extending a redescription. Sometimes the user wants to focus only on
one of the queries, on some particular variable of interest or on a part of an
existing redescription. Siren allows the user to automatically extend a given
redescription, i.e. let the algorithm add new literals to the queries to make the
redescription as accurate as possible.

In the climatic niche-finding task, for instance, we might select a species, say,
the Southwestern Water Vole and look for best extensions starting from that
single variable. Here, the best found extension has accuracy 0.665 (per Jaccard
coefficient):

Southwestern Water Vole ∨ Gray Dwarf Hamster ∨ Savi’s Pine Vole

∨ Mediterranean Monk Seal

[11.2 ≤ t+3 ] ∧ [0.51 ≤ t=1 ≤ 11.333] ∧ [42.75 ≤ p=10 ≤ 131.81]

∧[50.556 ≤ p=11 ≤ 176.75],

4 The data comes from two publicly available datasets: European mammal atlas [7]
and Worldclim climate data [5].



This redescription indicates that areas where any of the four species lives
correspond to areas where the maximum temperature in March is above 11.2
degrees Celsius, the average temperature in January between 0.51 and 11.333
degrees Celsius and the average precipitations in October and November range
from 42.75 to 131.81 millimeters and from 50.556 to 176.75 millimeters, respec-
tively.

Returned extensions can be plotted on maps opened inside several windows,
so as to be visualized side by side and compared as shown in Figure 2.

Fig. 2. Several map panels. Comparing intermediate extensions automatically gener-
ated for a chosen starting variable. Red, blue and purple represents areas where only
the left hand side query holds, only the right hand side query holds and where both
queries hold, respectively.

Editing a redescription. It is typical that the user wants to edit some of the
obtained redescriptions. For example, some results might be overly complex, or
have exceedingly precise boundaries for numerical variables. The user can easily
select a redescription to modify, open it in a map panel and edit it. Boundaries
can be altered, literals added or removed. Siren instantly updates the map and
important statistics (accuracy, p-value, etc.) of the redescription, allowing the
user to see the effects of the modifications immediately and verify, e.g. whether
the new redescription would still be acceptably accurate.

Continuing with our example above, we might want to reduce the precision
of the climatic constraints to integers. We could edit the query as follows:

[11 ≤ t+3 ] ∧ [0 ≤ t=1 ≤ 12] ∧ [42 ≤ p=10 ≤ 132] ∧ [50 ≤ p=11 ≤ 177],

and obtain a redescription of slightly decreased accuracy.
Using subsets of variables. Siren allows the user to specify variables

to temporarily avoid when extending or mining redescriptions. In our running
example, we might want to force the algorithm to search alternative redescrip-
tions that do not involve any precipitation. For that purpose, we simply unselect



all such variables before running the extension anew. We will obtain the best
extensions containing only temperatures in the bioclimatic query, such as the
following redescription of accuracy 0.653:

Southwestern Water Vole ∨ Cape Hare ∨ Savi’s Pine Vole

∨ Mediterranean Monk Seal

([11.2 ≤ t+3 ] ∧ [20.1 ≤ t+7 ≤ 32.9] ∧ [0.51 ≤ t=1 ≤ 11.333]) ∨ [34.0 ≤ t+8 ].

Note that this redescription was not returned previously since the beam
search focused on better ones involving precipitation variables. In addition to
basic parameter tuning, this feature allows the user to specify additional con-
straints, thereby interacting with the mining process to adjust it according to
his interest and what appears most promising during the analysis.

Filtering redundant redescriptions. The results returned during the ex-
tension mentioned previously may contain many redundant redescriptions found
at different steps. We can easily sort them, e.g. by accuracy, select one of interest
and filter all the following results redundant with respect to it.

Sharing the results. Finally, Siren facilitates distributing the results: re-
descriptions can be exported in easy-to-read format and the maps associated to
redescriptions can be readily converted to publication-ready graphics.

5 Discussion

This paper presents a tool for interactive and visual redescription mining. While
we believe that the goals—and the methods we present to achieve them—are
easy to accept as reasonable, we want to point out that there are still many
open problems, both conceptual and technical, that need to be solved.

In the heart of interactive data mining is the user’s ability to tell the algo-
rithm that he wants more or less certain type of results. In principle, this is not
a problem in Siren: the user simply selects a redescription he wants to remove
from the beam search or extend more. The problem, however, is that there can
be (and usually are) other, similar redescriptions that the user might also want
to remove or extend. He can do that manually, of course, but with larger number
of redescriptions, the process becomes unbearably tedious very soon.

A solution to this problem would be to remove (or extend) all similar rede-
scriptions. But how to define the similarity? To give an example, consider a case
when the user finds a redescription saying that the area where the Polar Bear
lives is the area with January’s mean temperature below −20 degrees Celsius, in
other words, Polar Bear lives in cold. This is hardly a surprising result, and the
user might want to remove it (and other similar results) from the search. But we
can characterize the cold areas using other variables than just January’s mean
temperature, so it is not enough to just stop extending any redescription with
Polar Bear and January’s mean temperature in it. Also, we cannot just remove
all the redescriptions with Polar Bear—that could remove some very interesting
redescriptions, too. Finally, we could consider the area in which the redescription



holds. But even that leaves a lot to be hoped for: if we remove all redescriptions
that contain that area, we probably remove too many redescriptions, but if we
instead remove redescriptions contained in the area, we probably miss most of
the redescriptions we should remove.

The problem of removing and extending similar redescriptions is closely re-
lated to that of redundancy reduction. There are often multiple redescriptions
that represent the same phenomenon (think of the Polar Bears living in the cold
areas), and ideally, we would like to present only one of them to the user. In
other words, we do not want to present to the user any redescriptions that do
not add any (or add only marginally) new information over the redescriptions
he has already seen. But as with deciding which redescription is similar to a se-
lected one, also quantifying the redundancy between redescriptions is a difficult
problem.

When interpreting a redescription, one should always bear in mind the as-
sumptions attached to it. For example, whether some variables were disabled or
whether the focus was put on some area when it was generated. Hence, keeping
track of the constraints used when mining a redescription is essential. However,
if the user is allowed to stop the extension process, modify the constraints and
resume the search, this might be fairly intricate and interpretation of the results
become impossible.

The goal of data mining is to find new and interesting information from the
data. In interactive data mining in general, and with the tools discussed in this
paper in particular, the user can guide the data mining method towards the
results he prefers. This raises new problems. First, we have to control that the
data supports the results the user finds and second, we must be careful that the
user actually finds new information, not just the information he already knew.

The first problem, making sure that the obtained results are supported by the
data, is ages old in sciences. In short, it is the question of testing the significance
of a hypothesis, and there is a vast body of statistical literature about it. Our
proposed algorithms mitigate the problem by computing a p-value, but as it is
based on a fixed null hypothesis, it is not adequate in every case.

The second problem is more conceptual: taken to an extreme, the interactiv-
ity removes the data mining from the interactive data mining. If the user more
or less directly tells the algorithm the redescription he wants to see, the Siren
program turns into a mere plotting interface. Even on the less extreme case, the
user can easily (an unwittingly) guide the algorithm towards the kind of results
he wanted to see. Together with the fact that we can only check against a fixed
null hypothesis, this causes a considerable risk of false findings. The onus is on
the user to make sure he does not misuse the algorithm.
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Abstract We introduce relational redescription mining, that is, the task of finding two struc-
turally different patterns that describe nearly the same set of object pairs in a relational
dataset. By extending redescription mining beyond propositional and real-valued attributes,
it provides a powerful tool to match different relational descriptions of the same concept.

We propose an alternating scheme for solving this problem. Its core consists of a novel
relational query miner that efficiently identifies discriminative connection patterns between
pairs of objects. Compared to a baseline Inductive Logic Programming (ILP) approach, our
query miner is able to mine more complex queries, much faster. We performed extensive
experiments on three real world relational datasets, and present examples of redescriptions
found, exhibiting the power of the method to expressively capture relations present in these
networks.

Keywords Redescription mining · Relational query mining · Inductive Logic
Programming · Graph mining · Relational data mining

1 Introduction

With the increasing amount of data available from heterogenous sources nowadays, estab-
lishing links between different perspectives on the same concept becomes ever more im-
portant, as recognized, for instance, in schema matching and ontology alignment for the
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Fig. 1 Example of redescription
from the Kinship dataset: (a)
kinship relation Awaadya
between (#A,#Z) and (b)
corresponding genealogical
connection. The description
formalism is introduced in Sect. 2

semantic web (Shvaiko and Euzenat 2005) and can contribute to the discovery of patterns
in knowledge bases (Galárraga et al. 2013). One way of creating such links is to find sets of
objects together with their descriptions in different terminologies, as done in redescription
mining (Ramakrishnan et al. 2004; Galbrun and Miettinen 2012). However, this technique
has so far only considered propositional or real valued attributes. In this paper, we extend
redescription mining to the relational or network-based setting. In other words, we con-
sider the task of finding two structurally different patterns that describe nearly the same
set of object pairs in a relational dataset. We focus on a restricted language (binary rela-
tions with object identity) amenable to efficient graph mining techniques, resulting in an
exploratory method that relies primarily on occurrence information and requires no exten-
sive background knowledge such as a declarative bias.

Consider the following example from the Kinship dataset, which provides information
about kinship terminology and family relationships within an Australian indigenous com-
munity (cf. Sect. 6). In Fig. 1, graph (a) represents the kinship relation Awaadya between
the speaker #A and another person #Z, corresponding to the relation between a child and
his older brother, as given by graph (b). These two graphs are alternative ways to describe
the same pairs of individuals (#A,#Z) and hence form a redescription.

Given a dataset and a query language, the underlying principle of redescription mining is
to find pairs of queries, i.e. descriptions, that are structurally different yet describe (nearly)
the same entities. Propositional redescription mining considers as its entities single objects
characterized by their individual properties. Instead, in this novel relational setting, enti-
ties consist of pairs of objects characterized by both relations linking them and individual
properties.

To find pairs of descriptions, redescription mining can adopt an alternating approach:
one description is fixed, the other one is updated, and roles are swapped in the next itera-
tion (Ramakrishnan et al. 2004). Following this approach, we present ARRM, an algorithm
for Alternating Relational Redescription Mining.

Our alternating scheme relies on an approach to finding relational descriptions, such as
relational query mining (Dehaspe and Toivonen 1999; De Raedt and Ramon 2004). How-
ever, the generate-and-test approach of query mining systems requires large numbers of
expensive coverage tests based on subgraph isomorphism. More importantly, they typically
do not ensure that patterns connect the nodes of interest, thus producing many patterns that
do not correspond to redescriptions. Hence, we propose an efficient algorithm, which we
call FPQM, that finds descriptions for a given set of example pairs. It first mines for path
patterns that connect many example pairs, then combines those into more expressive graph
patterns. This reduces the number of coverage tests needed by constructing queries based on
the data.

A comparison of FPQM to a baseline ILP tool on real world data shows that our approach
can identify complex descriptions matching known ones, and is much faster. Examples of re-
sults obtained with ARRM illustrate the power of the method to capture the relations present
in a network. Compared to individual relational queries, the added expressivity brought by
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redescriptions permits to better elucidate different uses of the same predicate and find more
accurate patterns.

This paper extends upon our previous work (Galbrun and Kimmig 2012). As our main
contributions, we define relational redescription mining, present novel algorithms to solve
this task and provide an experimental evaluation of the proposed approach. Compared to the
earlier version, we improved the combination and selection procedures of the query min-
ing algorithm and realized an alternating scheme to address the full relational redescription
mining problem. Also, we considered two additional datasets in our experiments and per-
formed an extensive evaluation of the alternating scheme, including comparisons to several
baselines.

We proceed as follows. Section 2 introduces relational redescription mining, Section 3
discusses related work, Sections 4 and 5 present the proposed path-based relational query
miner and alternating scheme for relational redescription mining, respectively. Both are then
experimentally evaluated in Sect. 6, before we conclude in Sect. 7.

2 Definitions and notations

This paper introduces relational redescription mining, the task of finding two structurally
different queries that describe nearly the same set of object pairs in a relational dataset.
Informally, we view descriptions as connected graphs expressed in terms of attributes of the
data. For instance, graph (b) in Fig. 1 is an example of such descriptions for the objects of
interest #A and #Z in terms of relations and attributes spouse, parent, male, female
and age<. We now introduce the concepts required for a more formal definition of the
problem. We focus on binary relations, as these can be represented in the form of graphs,
allowing us to base our algorithms on graph concepts.

We view relational data as a directed graph (O,R), where nodes correspond to the ob-
jects O, and edges to relations R between them. Two families of functions, N and E , label
nodes and edges with their attributes, respectively.

For instance, in the kinship domain, O is the set of individuals from the community. Node
attributes are N = {sex,age} and edge attributes E = {kin,gen}, where kin maps into
the set of kinship terms and the values of gen are the genealogical relations parent and
spouse.

From node and edge attributes, we obtain three types of Boolean functions, or predicates,
that serve as basic building blocks of queries. The first type, a node predicate νv

Ni
(o), is true

for an object o if and only if the node label Ni(o) is defined and takes value v. The second
type, an edge predicate εu

Ei
(o1, o2), is true for a pair of objects (o1, o2) if and only if the

edge label Ei(o1, o2) is defined and takes value u. The third type, a comparison predicate

φrel
Ni

(o1, o2) for a binary relation rel over the range of node labeling function Ni is true for
a pair of objects (o1, o2) if and only if both node labels Ni(o1) and Ni(o2) are defined and
rel(Ni(o1),Ni(o2)) holds.

As an example, graph (b) in Fig. 1 uses, among others, node predicates νmalesex (#1) and
νfemalesex (#2), edge predicates εparentgen (#A,#1) and εspousegen (#1,#2), and comparison predi-
cate φ<

age(#A,#Z).
For an object o, the set FN(o) of its node features contains the node predicates that

hold true for that object. For a pair of objects (o1, o2), the sets FE(o1, o2) and FC(o1, o2)

of edge and comparison features contain the edge and comparison predicates that hold true
for that pair, respectively. Note that the data, or network, is fully specified by the features
of all objects, which implicitly provide all relevant information about the objects and their
relations and attributes.
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A graph query is a definite clause of the form q(X,Y ) : - b1, . . . , bn, where the body
elements bi are node, edge or comparison predicates, q is a special predicate denoting the
pattern and the query variables X and Y in the head also occur in the body. Instantiations
of query variables are the object pairs of interest. We require graph queries to be linked,
meaning that the set of edge predicates in the body connects the query variables. That is, a
query is linked if there exists a sequence of variables Z0, . . . ,Zk with Z0 = X, Zk = Y , such
that for all i = 1, . . . , k, there is an index j such that bj ∈ FE(Zi−1,Zi) ∪ FE(Zi,Zi−1).
A path query is a graph query whose query variables are connected by an acyclic path
consisting of all edge predicates in the body. We denote the set of attributes for which the
body of query q contains predicates by att(q).

In the remainder of this paper, we use #A and #Z to denote the query variables and #1,
#2, et cetera to denote any other intermediate variables. Node attributes are indicated inside
the node under the identifier, using lowercase, as for the edge attributes also. For instance,
graph (b) in Fig. 1 corresponds to the graph query

qb(#A,#Z) : - εparentgen (#A,#1), εparentgen (#A,#2), νmalesex (#1),

εspousegen (#1,#2), εspousegen (#2,#1), νfemalesex (#2),

εparentgen (#Z,#1), φ<
age(#A,#Z), νmalesex (#Z).

This query has attribute set att(qb) = {sex,gen,age} and is linked due to the spouse and
parent edges. Note that the age< edge in the graphical representation corresponds to a
comparison predicate and is thus not considered for linkage and represented with a dotted
line.

As common in graph mining, we use subgraph isomorphism or, in terms of logic,
θOI -subsumption (Esposito et al. 1994), to match queries against the data graph. That is,
each variable in the query has to be matched to a different node in the graph, respecting the
predicates in the query body. This choice is motivated by the intuitiveness and interpretabil-
ity of the resulting queries and the ease of search. We denote such a match of variables Vj to
objects oij by the corresponding substitution θ = {V1/oi1 , . . . , Vn/oin}; θ reduced to query
variables is called answer substitution. The set of all (distinct) answer substitutions of query
q on the given network is its support, supp(q). For instance, for query qb above, the support
contains all pairs of nodes (na, nz) such that when matching #A to na and #Z to nz, there is
at least one match of #1 and #2 to other nodes that satisfies the query body.

For simplicity, we use the closed world assumption throughout this work. In other words,
given a set of positive example pairs, all remaining pairs are considered to be negative ex-
amples. Altering the functions for scoring and filtering the queries presented in Sect. 4.3
allows to modify this assumption.

For a given set of example pairs E+ and query q , we denote the sets of true positives
(example pairs covered), false positives (other pairs covered) and false negatives (example
pairs not covered) by E1,1 = supp(q)∩E+, E0,1 = supp(q) \E+, and E1,0 = E+ \ supp(q),
respectively.

A redescription is a pair of queries R = (qL, qR). Extending the previous notation, let
E1,0 be the set of entities (i.e. object pairs) which support only the first query (i.e. E1,0 =
supp(qL) \ supp(qR)), E0,1 those which support only the second query and E1,1 those which
support both queries. The accuracy of a redescription is commonly measured using the
Jaccard coefficient, that is,

J(qL, qR) = |supp(qL) ∩ supp(qR)|
|supp(qL) ∪ supp(qR)| = |E1,1|

|E1,0 + E0,1 + E1,1| .
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This measure takes values in the unit interval without using the number of all existing pairs
of nodes for scaling, which would result in practically undistinguishable values. Further-
more, E1,0 and E0,1 are weighted equally, in agreement with the symmetric view of re-
description mining.

In order to avoid trivial redescriptions in the form of queries that are small variants of
each other, we impose a syntactic requirement on the queries, which need to have disjoint
attribute sets. While it would also be possible to require the use of attributes from two dis-
joint vocabularies, such a fixed split may not always be easily specified upfront. If available,
such a split can be incorporated into the disjointness condition.

Given this background, we define relational redescription mining as follows:

Problem 1 (Relational redescription mining) Given a relational dataset in the form of node,
edge and comparison features {FN,FE,FC} and an accuracy threshold j , find redescrip-
tions (qL, qR) such that att(qL) ∩ att(qR) = ∅ and J(qL, qR) ≥ j .

For simplicity of exposition, we restricted our discussion to queries of arity two. How-
ever, the definitions extend naturally to queries of higher arity, that is, queries whose body
consists of binary predicates but with more than two variables occuring in their head.

3 Related work

Redescription mining emphasizes the insights obtained from expressive, interpretable pat-
terns and their instances in the given data rather than prediction over unseen data. Rela-
tional pattern languages are thus a natural candidate for redescriptions, but existing ap-
proaches have focused on propositional features (Ramakrishnan et al. 2004) and real-valued
attributes (Galbrun and Miettinen 2012). They operate on matrices with a row for every ob-
ject in the data and a column for every attribute or feature. Our ARRM algorithm follows an
alternating scheme similarly to the former method.

These approaches have been shown to find simple redescriptions of single nodes in a bib-
liographic network, describing a researcher either in terms of the conferences he publishes
at, or in terms of his co-authors, that is, using only attributes in the form of the labels of
neighboring nodes (Gallo et al. 2008; Galbrun and Miettinen 2012). However, as we illus-
trate in Sect. 6, considering pairs of objects and features based on their connections in terms
of complex longer distance relations would inflate the size of the matrix and thus the search
space of the algorithm. In contrast, our relational approach dynamically adapts the feature
space to the subtask at hand, allowing for more focused exploration of connection patterns.

Learning relational queries is a key goal in Inductive Logic Programming (ILP) and
multi-relational data-mining, and a central component of our relational redescription min-
ing scheme. Multi-relational query miners often use a refinement operator to extend fre-
quent queries found at the previous level, typically by adding a literal with at least
one already used variable to the end of the clause body (Dehaspe and Toivonen 1999;
De Raedt and Ramon 2004). While this principle results in connected clauses for unary pat-
terns, patterns of higher arity are likely to ignore some of the query variables, or to contain
disconnected components around individual query variables, and thus fail to provide insight
into the relations between them. This connectivity problem has been addressed by relational
pathfinding (Richards and Mooney 1992; Ong et al. 2005) and function learning (Santos
et al. 2009). Pathfinding refines clauses by adding a sequence of literals if no single lit-
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eral is able to connect query variables, where candidate sequences are generated based on
connections of a single example’s query variables in the data rather than by enumerating
abstract paths. Function learning avoids evaluating unconnected queries by generating can-
didate queries from individual examples. The queries in our method are similarly anchored
in the data, but are directly selected based on their frequency across all examples, in an ap-
proach inspired by graph mining techniques (Yan and Han 2002). Furthermore, to reduce
the search-space, logic-based methods typically make heavy use of declarative bias, which
needs to be provided by the user. This is not the case with our method, where the search
space is pruned using solely occurrence information computed on the dataset.

Relational patterns play an important role in various techniques that explore and an-
alyze relational datasets. For instance, the aim of subgroup discovery (Wrobel 1997;
Lavrac et al. 2002) is to identify groups of objects that differ from the overall population
in an interesting way. There, individual objects are described in terms of the relations they
participate in. In contrast, relational redescription mining is interested in finding pairs of
queries that describe different connection patterns between two objects. In the context of
making predictions based on relational patterns, query mining has also been extended to
learn association rules with conjunctive heads (Goethals and Van den Bussche 2002), which
can be seen as associations between conjunctive redescriptions, and to flexible numbers
of query variables (Goethals et al. 2005). Yet, the type of rules mined is fairly restric-
tive compared to the descriptions considered in our approach. These complex association
rules are similar to the tuple-generating dependencies used in schema mapping and data
exchange. The CLIO system learns such mappings by exploiting relational dependencies
in the two schemata, where the user indicates some correspondences between attributes,
as input (Miller et al. 2000). Our work uses shared objects to determine attribute corre-
spondences, and does not rely on explicit information on how relations can be combined.
Aligning or mapping objects can also be considered part of the overall discovery process,
as for instance in the PARIS approach to ontology alignment (Suchanek et al. 2011), which
discovers correspondences on the level of both instances and schemas. But as most other
approaches to schema matching (Shvaiko and Euzenat 2005), PARIS focuses on one-to-one
mappings of relations and does not consider more complex queries. A recent exception is
the work of Zhang et al. (2012), who nevertheless only consider paths up to length four
and rely on approximation schemes for Markov Logic inference to keep the approach feasi-
ble.

Recently, there is increasing interest in large knowledge bases like DBpedia (Auer et al.
2007), NELL (Carlson et al. 2010) or YAGO (Suchanek et al. 2007), which store binary
relations between millions of objects. Such massive amounts of incomplete and often noisy
information are a challenge for most existing relational learning approaches, and call for
adapted representations and learning methods (Rettinger et al. 2012), such as the graph based
techniques used in our redescription miner. Nebot and Llavori (2012) propose to extract rela-
tional association rules from a medical ontology by applying frequent itemset mining. Their
method, however, requires extensive expert knowledge. In the context of NELL, weighted
combinations of path patterns, learnt based on random walks, have been used for retrieval
tasks (Lao et al. 2011; Lao and Cohen 2010). In contrast to our approach, paths are not
combined into graphs, but are instead weighted by their importance. Galárraga et al. (2013)
introduce a fast association rule mining approach that, as our work, is inspired by ILP tech-
niques, but tailored towards binary relations, in this case using a database with aggressive
indexing to speed up querying.
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4 The frequent-paths based relational query miner

Before introducing the alternating relational redescription mining algorithm in Sect. 5, we
now discuss its core component, FPQM, a novel relational query miner based on frequent
paths. Given a network, FPQM aims to find the best graph queries with respect to quality
criteria Γ that discriminate a set of positive object pairs E+. The specific criteria in Γ are
discussed in Sect. 4.3.

An outline of the FPQM algorithm is presented in Fig. 2. The three-phase approach con-
siders only linked queries and limits the number of costly subgraph isomorphism-based
coverage tests. First, the path queries that cover at least a given number of positive exam-
ples are mined (line 2). Second, such path queries are combined to construct graph queries
(lines 3–9). Finally, the best describing among these graph queries are selected and returned
(lines 10–13). We now discuss each of these steps in turn.

4.1 Mining frequent path queries

The first phase of FPQM (line 2) finds the set of linked path queries that are frequent among
the example pairs, as any frequent graph query connecting pairs of interest has to be a com-
bination of such paths. It is similar in spirit to relational pathfinding, but using frequency,
that is, the number of positive examples covered, as a selection criterion. The key idea be-
hind this phase of the algorithm is to transform the problem into a sequence of constrained
frequent itemset mining tasks, which can be solved efficiently using an off-the-shelf tool.
More specifically, these subtasks are defined as follows:

Given a set of transactions T , each representing all features of a path of length k connecting
a positive example pair, and a frequency threshold γ ,

find all itemsets that (a) cover transactions for at least γ different example pairs, and (b) cor-
respond to a path query, that is, contain an edge feature for every pair of neighboring
nodes on the path.

Fig. 2 FPQM: Frequent-paths
based relational query miner.
Details on FREQUENTPQ are
provided in Figure 3 and
discussed in Sect. 4.1;
TOTRANSACTION is discussed
in Sect. 4.1,
ALIGNEDBOTTOMCLAUSE,
FIMGRAPHS and
COMPUTEQUERY in Sect. 4.2

Input: A network with a set of positive examples E+,
a frequency threshold γ , an extension threshold κ ,
a contribution threshold δ and a set of quality criteria Γ .
Output: A set of relational queries Q.

1: Q ← ∅; D ← ∅; S ← ∅; T ← ∅
2: C ← FREQUENTPQ(E+, γ, κ)

3: for e ∈ E+ do
4: a ← ALIGNEDBOTTOMCLAUSE(e,C)

5: T ← T ∪ {(e, TOTRANSACTION(a))}
6: for f ∈ FIMGRAPHS(T , γ ) do
7: q ← COMPUTEQUERY(f )

8: if q is acceptable according to Γ then
9: D ← D ∪ {q}

10: for q ∈ D ordered according to Γ do
11: if |E1,1(q) \ S| ≥ δ then
12: Q ← Q ∪ {q}
13: S ← S ∪ E1,1(q)

14: return Q
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Input: A network with a set of positive example object pairs E+, a frequency thresh-
old γ , and an extension threshold κ .
Output: A set of frequent paths queries C.

1: k ← 0
2: Pk ← paths of length 0, i.e. starting nodes in E+
3: while Pk �= ∅ do
4: k ← k + 1; Pk ← ∅; T ← ∅
5: for each P ′ ∈ Pk−1 do 
 P [i] is node at position i in path P

6: for each n ∈ neighbors(P ′[k − 1]) do
7: P ← P ′
8: if n /∈ P then
9: P [k] ← n

10: Pk ← Pk ∪ {P }
11: if (P [0],P [k]) ∈ E+ then 
 example pair connected
12: T ← T ∪ {((P [0],P [k]), TOTRANSACTION(P ))}
13: F ← FIMPATHS(T , γ )

14: C ← C ∪ F

15: Ek ← Ek−1 ∪ ⋃
f ∈F E1,1(f )

16: if k > κ and Ek−κ = Ek then 
 no new example pair covered for κ steps
17: Pk ← ∅
18: return C

Fig. 3 FREQUENTPQ: Mining frequent path queries from a network. Details on TOTRANSACTION and
FIMPATHS are provided as part of the discussion in Sect. 4.1

Algorithm FREQUENTPQ, detailed in Fig. 3, extracts linked paths of increasing length
that connect example pairs in the network, for each length creating and solving the corre-
sponding frequent itemset mining task. We use the set of all starting nodes in the examples
(line 2) as seed paths for the main loop that processes paths of increasing length. The algo-
rithm terminates if no example pair has been covered for the first time in the last κ iterations.
In the kth iteration, the nested loop in lines 5–12 extends paths in Pk−1 to paths of length k,
discards cyclic paths, and stores the resulting paths in Pk . For each path connecting an exam-
ple pair, TOTRANSACTION produces the corresponding transaction, and adds it along with
the connected example pair to T (line 12). Next, frequent path queries for a given frequency
threshold γ are mined from T (line 13) and added to the set C of queries to be returned. We
keep track of the set Ek of covered examples for the termination criterion.

For a given path, TOTRANSACTION creates a transaction based on the following encod-
ing. An item is a tuple (i, f ), where i is either a single node or a pair of nodes, and f a
feature. We refer to pairs of nodes adjacent on a path as backbone edges, and to all other
pairs of nodes appearing in the path as crossing edges. Given a path of length k, its first
and last nodes receive identifiers #A and #Z, respectively, and intermediate nodes along the
path #1 to #(k−2). The corresponding transaction created by TOTRANSACTION contains an
item (n, a) for each node feature a of a node n on the path, an item ((n,m), e) for each edge
feature e of a backbone edge (n,m), and an item ((n,m), c) for each comparison feature c

of a backbone or crossing edge (n,m). For example, the path of length three (#A,#1,#Z)

from Fig. 1(b) is represented by the following itemset:

{(
(#A,#1),parent

)
, (#1,male),

(
(#Z,#1),parent

)
,
(
(#A,#Z),age<

)
, (#Z,male)

}
.
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Note that this encoding is reversible, that is, given any transaction, we can extract the corre-
sponding path query, replacing each identifier by a unique variable.

The transactions for all paths of the current length form the input for the corresponding
frequent itemset mining task (line 13). Any algorithm that solves this mining task could
be used here. Our solution exploits a declarative approach to mining patterns under con-
straints (Guns et al. 2011), as the corresponding system allows for user-defined constraints
on frequent itemset mining tasks. This is important for our approach, as the definition of
support employed when mining for frequent path queries in T differs from the usual: the
support of an itemset is not the number of transactions that contain it, but instead the number
of distinct corresponding example pairs. In other words, we count the number of answer sub-
stitutions rather than the number of instantiations and are interested in finding path queries
that connect many different example pairs rather than path queries having many instances for
a given pair. Furthermore, in order to maintain connectivity, we require that some item cor-
responding to an edge constraint must be present for each backbone edge. More specifically,
the approach of Guns et al. (2011) combines a declarative task specification language with a
generic constraint programming solver. The user provides the transactions to mine itemsets
from and specifies the desired constraints on itemsets in this language. The system inter-
prets the task as a constraint program, to which it finds all solutions by calling the constraint
solver. Algorithm FIMPATHS thus simply combines the transactions T with a specification
of our support and connectivity constraints, passes them to the system of Guns et al. (2011)
to obtain the result, and transforms each itemset in the result into the corresponding path
query as discussed above.

4.2 Combining path queries into graph queries

The second phase of FPQM obtains more expressive graph queries by combining frequent
path queries. Again, we use a reduction to frequent itemset mining to obtain frequent queries.
For each positive example pair, we combine the frequent paths covering it into a graph and
represent it as a transaction (Fig. 2, lines 3–5). Frequent graph queries are then mined from
these transactions and further filtered based on user-defined acceptance criteria (lines 6–9).

As an illustration of graph queries, Fig. 4 depicts two path queries p1 and p2 as well as
three example graph queries that are obtained by merging query variables, and potentially
other nodes as well, of one or more copies of these paths. Clearly, allowing multiple copies
of a path permits an infinite number of combinations. However, merging intermediate nodes
that assign conflicting values to attributes results in invalid queries, and only finitely many
among the valid queries are supported by the data. Therefore, we merge paths based on their

Fig. 4 Example of three graph queries (q3-q5) combining path queries p1 and p2
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Fig. 5 Example of construction of an aligned bottom clause; see Sect. 4.2 for details

instantiations in the data rather than based on their query representation. This ensures that
we only construct valid queries with non-empty support.

More specifically, given a set C of path queries with query variables (#A,#Z) and a
positive example (o1, o2), we call bottom clause the union of all possible instantiations of
bodies of queries in C that map (#A,#Z) to (o1, o2). This is similar to the bottom clause
obtained in some ILP approaches, but consists only of features from frequent path queries.

In order to represent such a bottom clause as a transaction, we need to assign identifiers
to its intermediate nodes. This is done by ALIGNEDBOTTOMCLAUSE (line 4), which itera-
tively labels nodes based on the identifiers of nodes they instantiate in the paths queries as
well as their neighboring nodes. This identifies groups of nodes occurring in the same con-
text. Figure 5 illustrates the alignment of the bottom clause for positive example (13,82)

and two path queries p1 and p3. The graph with rectangular nodes and numerical identifiers
represents the relevant part of the data network. In this example, node 44 and node 81 both
are instantiated by identifier #1 in p3 only, with identical neighbors, and therefore receive
the same new identifier #2. While such duplicate variables are interesting from an expres-
sivity point of view (as under θOI -subsumption they implement counting), they also result
in multiple query instantiations for the same pair of answer nodes, which can be undesirable
from an efficiency point of view. In this paper, we do not exploit the extra expressivity. Such
duplicate variables receive the same label and will not be distinguished later on. Note that
multiple copies do not necessarily generate duplicate nodes. For instance, in Fig. 4, nodes
#3 and #2 of query q3 both correspond to node #2 of p1 in two copies, yet are no duplicates
because one is combined with node #1 of p2 and the other is not.

Once the bottom clauses have been aligned via the new identifers, all their features are
collected into transactions using TOTRANSACTION (line 5) as in Sect. 4.1. Given these
transactions T and the frequency threshold γ , the next step consists in finding all itemsets
that are frequent among T . As each example has at most one associated transaction, the
support of an itemset here is simply the number of distinct transactions containing it, that
is, a frequent itemset covers at least γ transactions. Similarly to FIMPATHS, FIMGRAPHS

(line 6) combines the transactions T with a specification of this frequency constraint and
passes them to the system of Guns et al. (2011) to obtain the result. We do not include con-
nectivity constraints, as those cannot be enforced at the time of mining here. As its last step,
FIMGRAPHS therefore filters out unconnected queries. For each frequent itemset returned
by FIMGRAPHS, COMPUTEQUERY recovers the corresponding query as discussed for path
queries above, maps it onto the data to determine all instances and computes the support
(line 7). Note that only graphs that are frequent among positive examples are generated as a
result of this procedure. Queries satisfying the user provided criteria Γ (discussed next) are
collected in D.
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4.3 Selecting a subset of queries

The final phase of FPQM (lines 10–13) greedily selects a subset of best queries with limited
overlap among the ones stored in D. The queries are processed in turn, from best to worst
according to the ranking criterion in Γ . If the part of the support of the current query that
has not yet been covered, called its contribution, is sufficiently large (larger than δ), it is
accepted and supported positive examples are marked as covered. Otherwise it is rejected.
All accepted queries are returned as the output of FPQM.

More specifically, Γ offers a number of parameters that can (but need not) be used to
orient the search toward queries with preferred characteristics and to rank queries. First,
thresholds can be imposed on the coverage of queries, including the following:

cover diff. = |E1,1| − |E0,1| support = |E1,1| + |E0,1| precision = |E1,1|
|E1,1| + |E0,1|

cover ratio = |E1,1|
|E0,1| accuracy = |E1,1|

|E1,0| + |E1,1| + |E0,1| recall = |E1,1|
|E1,0| + |E1,1| .

Second, additional constraints can be imposed on the form of queries. For instance, one
can restrict the number of nodes or edges to limit the complexity of the patterns and facilitate
interpretation, or require intermediate nodes to have a minimum number of instantiations in
order to exclude queries that only apply in the neighborhood of a specific node.

The frequency threshold γ used in the two frequent itemset mining steps can be auto-
matically determined from the minimum support as well as from the accuracy or the recall,
given the number of positive examples.

4.4 An efficient relational query miner

To summarize, FPQM mines frequent path queries, combines them into graph queries, and
finally selects a good subset of queries.

As discussed above, we filter out duplicate variables when constructing graph clauses
to avoid a combinatorial explosion of the number of instances. To reduce the amount of
filtering necessary, the frequent path mining step drops paths with high multiplicity, that is,
with a number of instances a factor greater than the number of supporting pairs, as these
will likely create duplicate variables. Also, when mapping the queries onto the data, we fix
a limit on the number of instances that can be generated. For each query edge, the number
of instances that will be obtained after mapping it is estimated from the current number of
instances and the number of matching data edges. Query edges with lowest estimates are
processed first and if the current estimate crosses the chosen threshold, remaining edges are
dropped from the query.

To further improve efficiency, the computationally costly operation of finding graph in-
stances is shared between queries. Indeed, if an itemset I is a subset of another itemset J ,
the query represented by J will be a refinement of that corresponding to I . Hence, the in-
stances of I ’s query are a superset of those of J ’s query and can be used to initialize its
mapping. Only the extra predicates will have to be added to the mapping.

5 An alternating scheme for relational redescription mining

We now turn to the alternating scheme for finding relational redescriptions, ARRM, sketched
in Fig. 6. Given an initial set of queries, the algorithm first grows a forest of queries by
repeatedly running FPQM to find the best descriptions of each query, which it adds as the
query’s children. The second phase then extracts redescriptions from this forest.
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Input: A network, a set of initial queries I and quality criteria Γ .
Output: A set of relational redescriptions R.

1: S ← ∅; M ← ∅; K ← ∅;
2: for i ∈ I do
3: K.query ← i; K.parent ← ∅; K.generation ← 0
4: K ← K ∪ {K}; M ← M ∪ {K}
5: while ∃K ∈ K do
6: K ← K \ {K}
7: for q ∈ FPQM(supp(K.query),Γ ) do
8: L.query ← q; L.parent ← K ; L.generation ← K.generation + 1
9: E ← {S ∈ M, supp(S) = supp(L) ∧ att(S) = att(L)}

10: M ← M ∪ {L}
11: if L.generation ≤ τ ∧ E = ∅ then
12: K ← K ∪ {L}
13: U ← {(M,N) ∈ M2, (M.parent = N)∨ (supp(M) = supp(N)∧ att(M)∩ att(N) = ∅)}
14: for R ∈ U ordered according to Γ do
15: if |E1,1(R) \ S| ≥ δ then
16: R ← R ∪ {R}
17: S ← S ∪ E1,1(R)

18: return R
Fig. 6 ARRM: Alternating Relational Redescription Mining

5.1 Initialization

The algorithm expects an input set I of queries, based on which its two key data structures,
the candidate list K and the set of explored descriptions M are initialized (lines 2–4). The
simplest means to generate this input set is to consider the queries obtained from each edge
predicate taken individually, that is, for each value v of each edge predicate a

c(#A,#Z) : - εv
a (#A,#Z).

In addition, one might consider simple combinations such as

c(#A,#Z) : - εv
a (#1,#A), εv

a (#1,#Z). or

c(#A,#Z) : - εv
a (#A,#1), εv

a (#Z,#1).

In particular, this might be useful in cases where the nodes that appear in the first (respec-
tively second) position of edges supporting εv

a do not appear in any other predicate. The user
may also specify a set of initial queries manually.

5.2 Growing a forest of queries

Given the current candidate list K, each query K in K is processed in turn, using the FPQM

algorithm presented above to find new queries describing the same set of examples, but
using different attributes (lines 5–12).

That is, the supporting pairs of the current candidate K constitute the positive exam-
ples, and the network for that round is obtained from the original network by removing all
predicates based on attributes used in K . Given this input, FPQM is used to find the best
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describing children queries (line 7), which are added to the set of explored descriptions M,
linked to the candidate in the query forest, and, if they meet the criteria discussed below,
appended to the list of candidates K. This process is repeated until K is empty.

The algorithm thus grows a forest of queries breadth first, branching from the initial can-
didates. A branch might be interrupted for one of three reasons. First, if no child is returned
by the query mining procedure the expansion stops naturally. Second, if a child has a sup-
port (modulo symmetry) and attributes set identical to some query found previously (non
empty E , line 11), it is not added to the candidates for expansion. Indeed, since the algo-
rithm is entirely deterministic this would not generate new queries but practically introduce
a loop in the exploration. Third, a maximum exploration depth τ can be fixed as part of Γ

and branches that reach this length will not be expanded further (line 11).
The shape of the forest is affected primarily by the quality criteria Γ (cf. Sect. 4.3).

Strict criteria limit the fertility of queries, i.e. the number of results returned by FPQM, and
thus the branching factor of the forest. With high fertility, only shallow exploration will be
manageable. On the other hand, stricter selection of the children, provided that some degree
of diversity is maintained, allows one to explore more generations. To direct the exploration
towards more accurate queries, the accuracy of the current query can be applied as a filtering
criterion for its children queries.

5.3 Retrieving redescriptions

Once the candidate list K has been exhausted, the next step consists in retrieving good
redescriptions from the forest of queries. We gather into U all pairs of adjacent queries
along the forest. By construction, such pairs have overlapping supports and disjoint attribute
sets. Also, we scan the forest for pairs of queries that are not adjacent but have identical
support and disjoint attribute sets. These form extra candidate redescriptions that are added
to U (line 13).

Finally, the same greedy procedure as in FPQM, but considering redescriptions instead
of individual queries, is applied to U to select the final set of redescriptions (lines 14–17).

6 Experiments

We now turn to the experimental evaluation of our approach. In the first experiment, we
focus on FPQM alone. We explore the influence of its parameters and compare the approach
to an existing relational query miner, which we use as a baseline for both pattern quality and
running time. The second set of experiments concerns the full alternating scheme. It again
explores algorithm parameters, compares to a propositional approach, and also provides a
qualitative assessment of redescriptions discovered.

Our algorithm was implemented in Python, using FIM CP (Guns et al. 2011) to mine
path and graph queries (FIMPATHS and FIMGRAPHS). In all experiments, it was run on a
single core of an 8 core Intel Xeon 2.8 GHz processor and with 32 GB of memory. In all
runs, we limited the number of trials for mining paths to κ = 2, the number of instances
when mapping queries to 20000, the mining time per FIM CP call to 1 min and the absolute
minimum support of any query to 3.

The implementation of our algorithms and the prepared datasets are available online.1

1http://www.cs.helsinki.fi/u/galbrun/redescriptors/.
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Table 1 Datasets statistics: number of nodes, edges, node predicates, edge predicates and comparison pred-
icates

Dataset #nodes #edges #node pred. #edge pred. #comp. pred.

Kinship 381 24053 3 31 1

UMLS 135 4181 – 46 –

UWCSE 1042 1674 6 7 5

6.1 Datasets

Three relational datasets are used throughout the experiments. The first dataset, Kinship,
was extracted from the Alyawarra Ethnographic Database.2 The other two datasets, UWCSE
and UMLS, were obtained from the Alchemy repository.3 Table 1 summarizes the character-
istics of the datasets.

Kinship provides personal and genealogical information about individual members of
an indigenous community of Australia, the Alyawarra, as well as the kinship terms they use
for their relationships to other persons. A glossary of kinship terms is available, to which
we can compare our findings. To simplify the notation, we use the indices of kinship terms
from the glossary, rather than the terms themselves. For instance, awaadya is later de-
noted as kin10. Kinship information is not available for all living individuals; we mark as
relevant those for whom it is complete.

UMLS characterizes the relations between biomedical concepts in terms of the Unified
Medical Language System ontology.

UWCSE contains information about relationships between persons and courses within the
computer science department of the university of Washington. It includes two predicates of
arity three, namely taught by(Course,Person,Time) and ta(Course,Person,
Time), which our algorithm cannot handle natively. We therefore split those into binary
predicates linked together by a newly introduced course identifier.

6.2 Mining relational queries

The first series of experiments focuses on our proposed path-based relational query mining
algorithm, FPQM. After reporting general observations about the behaviour of the algorithm,
it is compared to a baseline relational query miner.

Algorithm behaviour As expected, the minimum support γ strongly affects the number
of path queries found in the first step of FPQM (for instance, from 2 when γ = 0.30 up to
368 when γ = 0.05, on average for Kinship). Raising γ can actually result in increased
running times because in the absence of frequent short queries, paths will be extended to
greater lengths, possibly at high computational expenses and without success. On the other
hand, the algorithm will be overwhelmed by the quantity of patterns when γ is set too low.
Clearly, it is advisable to set γ as low as possible according to the size and density of the
dataset.

2http://habc.eu/csac/wiki/knsrc/KinSources/AU01Alyawarra1971.
3http://alchemy.cs.washington.edu/.
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Raising the extension threshold κ can lead to the generation of numerous variations of
shorter connecting paths. This potential for enriching the queries typically comes at a high
computational cost and κ should thus be kept low.

We also studied the effect of the greedy selection of queries on the cover of positive ex-
amples. The aim of this phase is mainly to reduce the high redundancy of the results. Indeed,
we observed that before greedy selection, we easily obtained hundreds of queries, but a very
limited number of queries (1–3) is generally sufficient to obtain almost the same cover.
Hence, this pruning phase is crucial for limiting the fertility of clauses while maintaining
the coverage quality.

Relational query miner comparison Next, we compare our proposed path-based algorithm
FPQM to a baseline relational query miner on the three datasets. For each edge predicate in
turn, we take the supporting pairs of nodes as positive examples and mine queries over
the remaining attributes. We do not consider cases with less than four positive examples.
Furthermore, with Kinship we only consider pairs of nodes that are both relevant.

As a baseline, we use a modified version of C-ARMR (De Raedt and Ramon 2004)
(implemented in Prolog) that mines top-k queries with respect to the difference in sup-
port on positive and negative examples. Given a set of positive examples and consid-
ering all remaining pairs of nodes as negative examples, we allowed C-ARMR to mine
for top-5 queries with positive score. As discussed in Sect. 3, the implementation does
not ensure that query variables are linked. To address this problem, we refine unlinked
queries if they cover at least one positive example, but never include them in the result.
This is similar in spirit to generating candidates based on the data as common in rela-
tional pathfinding and function learning (Richards and Mooney 1992; Ong et al. 2005;
Santos et al. 2009), but avoids the need to adapt the canonical refinement operator used
in our implementation. Experiments with C-ARMR have been performed on a single core of
a C2Q machine (2.4 GHz 4 GB for Kinship, 2.83 GHz 8 GB for UMLS and UWCSE).

In order to obtain results comparable to C-ARMR’s, we also use the cover difference
to select queries with FPQM (cf. Sect. 4.3). Similarly, only positively scoring queries are
output. In addition, we require the accuracy of the queries to exceed j = 0.05, so as to
obtain a minimum frequency threshold for mining paths and graphs.

Tables 2–4 present quantitative results and running times for the three datasets respec-
tively. For C-ARMR, which only scores individual patterns, we use the disjunction of top-5
patterns with positive scores. As C-ARMR returns all equally scoring patterns in case of ties,
these disjunctions can have more than five elements. For each case, we report the total num-
ber of positive examples |E+|, as well as the number of queries returned |Q|, the number of
true and false positives |E1,1| and |E0,1|, the aggregated accuracy J (i.e. the Jaccard coeffi-
cient between the set of example pairs and the union of the supports of output queries) and
the running times T for both C-ARMR and FPQM.

On Kinship, cf. Table 2, we restrict the number of body literals in C-ARMR’s queries
to at most five, as running times become prohibitive for longer queries due to large numbers
of unlinked or non-discriminative queries. Under this restriction, we observe comparable
or better accuracies for patterns found by FPQM, which moreover is at least one order of
magnitude faster. On average, FPQM returns fewer queries than C-ARMR because it includes
a selection procedure to remove redundant queries, which is not the case with C-ARMR.

Furthermore, as a direct consequence of this restriction, no pattern with positive score
was found for six of the kinship terms, whereas FPQM is able to identify more complex
patterns for these cases. For four predicates, C-ARMR found queries where FPQM did not
return any. In three of these cases, the positive support of individual queries is lower than 3 or
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Table 2 Comparison of C-ARMR and FPQM on Kinship: number of positive examples |E+|, number of
true and false positives |E1,1| and |E0,1|, aggregated accuracy J, number of queries |Q|, and running time
(T) in seconds

Predicate C-ARMR FPQM

|E+| |E1,1| |E0,1| J |Q| T (s) |E1,1| |E0,1| J |Q| T (s)

kin1 228 16 50 0.06 12 531 12 7 0.05 1 5

kin2 489 38 29 0.07 5 532 154 74 0.27 4 40

kin3 231 36 102 0.11 14 423 78 40 0.29 5 41

kin4 379 24 31 0.06 179 663 0 0 0.00 0 7

kin5 493 11 9 0.02 12 564 0 0 0.00 0 2

kin6 508 87 2 0.17 20 433 148 33 0.27 4 19

kin7 453 50 7 0.11 6 462 209 93 0.38 8 20

kin8 817 56 1 0.07 21 502 92 1 0.11 2 2

kin9 805 64 203 0.06 6 513 166 33 0.20 3 19

kin10 462 41 3 0.09 7 413 49 41 0.10 2 1

kin11 505 38 4 0.07 6 442 42 34 0.08 2 0

kin12 739 75 11 0.10 23 598 81 61 0.10 2 1

kin13 299 0 0 0.00 0 396 159 123 0.38 14 46

kin14 447 0 0 0.00 0 449 87 17 0.19 2 14

kin15 43 0 0 0.00 0 445 20 6 0.41 3 10

kin16 943 130 148 0.12 15 551 203 53 0.20 3 85

kin17 1256 157 127 0.11 11 582 0 0 0.00 0 93

kin18 392 61 3 0.15 9 466 61 3 0.15 1 3

kin19 569 36 24 0.06 16 507 0 0 0.00 0 88

kin20 13 0 0 0.00 0 338 7 0 0.54 2 5

kin21 272 43 13 0.15 6 437 109 38 0.35 4 48

kin22 142 20 132 0.07 9 453 49 32 0.28 6 8

kin23 193 0 0 0.00 0 343 53 29 0.24 5 15

kin26 6 0 0 0.00 0 219 0 0 0.00 0 3

their accuracy lower than 0.05. These values are below the thresholds used in FPQM hence
they did not qualify as good quality queries. For the remaining predicate, kin17, FPQM

was overwhelmed by the quantity of frequent queries, an issue easily solved by raising the
accuracy threshold.

On inspection, the obtained queries correspond to definitions provided in the glossary.
Some deviations are observed, such as an intermediate genealogical level or a difference in
gender of some individual.

On UMLS, the difference in running time gets even more pronounced. Here, C-ARMR

could not identify the top-5 patterns up to four body literals within two hours for any term,
and failed to do so for up to three literals for twelve predicates, taking between 9 and 95
minutes for the remaining ones. Table 3 therefore reports results with up to two body literals.
FPQM, on the other hand, takes seconds or at most up to a few minutes per predicate, and
often finds more accurate queries, as it does not suffer from the restricted expressiveness of
short queries.

On UWCSE, no queries could be found for most predicates. Contrarily to C-ARMR, FPQM

did not return any query for taught by due to individual queries having insufficient accu-
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Table 3 Comparison of C-ARMR and FPQM on UMLS. Legend as in Table 2

Predicate C-ARMR FPQM

|E+| |E1,1| |E0,1| J |Q| T (s) |E1,1| |E0,1| J |Q| T (s)

adjacent to 7 5 4 0.45 11 38 3 1 0.38 1 2

affects 1022 437 0 0.43 7 129 635 124 0.55 5 65

analyzes 52 50 15 0.75 7 38 52 14 0.79 2 1

ass. eff. of 65 50 2 0.75 29 55 65 15 0.81 1 9

associated with 239 110 46 0.39 5 102 187 122 0.52 11 107

carries out 38 36 36 0.49 5 46 36 0 0.95 1 2

causes 360 280 116 0.59 5 72 354 82 0.80 5 164

complicates 263 189 95 0.53 5 71 263 29 0.90 4 171

concep. part of 18 0 0 0.00 0 283 3 1 0.16 1 2

connected to 4 4 8 0.33 82 45 0 0 0.00 0 2

consists of 9 9 8 0.53 18 38 8 0 0.89 1 6

contains 11 6 2 0.46 5 50 5 0 0.45 1 1

co-occurs with 67 42 24 0.46 16 66 61 34 0.60 5 190

degree of 34 30 6 0.75 43 52 30 0 0.88 1 90

dev. form of 4 4 2 0.67 15 58 3 0 0.75 1 5

diagnoses 48 20 4 0.38 9 66 48 0 1.00 4 61

disrupts 154 112 68 0.50 5 74 125 77 0.54 4 24

evaluation of 63 28 8 0.39 7 52 46 6 0.67 2 33

exhibits 45 18 0 0.40 6 34 45 24 0.65 1 1

indicates 27 18 4 0.58 5 189 18 0 0.67 1 10

ingredient of 28 0 0 0.00 0 203 0 0 0.00 0 2

interacts with 451 155 137 0.26 5 73 451 451 0.50 6 9

isa 500 7 1 0.01 10 188 0 0 0.00 0 22

issue in 268 68 0 0.25 6 94 256 0 0.96 4 3

location of 319 159 117 0.36 5 94 269 97 0.65 9 21

manages 6 0 0 0.00 0 152 4 0 0.67 1 3

manif. of 194 138 82 0.50 5 69 193 92 0.67 9 154

measurement of 64 31 1 0.48 5 80 62 9 0.85 5 95

measures 180 65 0 0.36 18 56 164 86 0.62 3 203

method of 25 18 16 0.44 7 39 22 15 0.55 2 0

occurs in 90 60 18 0.56 5 79 87 8 0.89 4 36

part of 200 176 122 0.55 5 63 102 0 0.51 3 4

performs 90 18 0 0.20 7 47 90 0 1.00 5 83

precedes 73 72 13 0.84 62 60 72 0 0.99 3 268

prevents 32 30 0 0.94 13 59 30 0 0.94 1 9

process of 437 437 165 0.73 5 64 0 0 0.00 0 97

produces 276 140 65 0.41 5 86 254 47 0.79 6 61

property of 44 34 0 0.77 1 156 34 0 0.77 1 18

result of 586 306 63 0.47 5 95 361 137 0.50 10 63

surrounds 8 8 9 0.47 84 51 4 0 0.50 1 0

treats 56 50 0 0.89 21 68 50 10 0.76 3 25

uses 65 48 0 0.74 6 81 50 6 0.70 2 2
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Table 4 Comparison of C-ARMR and FPQM on UWCSE. Legend as in Table 2

Predicate C-ARMR FPQM

|E+| |E1,1| |E0,1| J |Q| T (s) |E1,1| |E0,1| J |Q| T (s)

advised by 113 11 14 0.09 8 646 9 4 0.08 1 0

ta 195 0 0 0 0 257 0 0 0 0 0

taught by 286 21 30 0.07 8 446 0 0 0 0 4

tempAdvised by 37 0 0 0 0 392 0 0 0 0 0

racy. We observe that in the absence of good connecting queries, C-ARMR still takes several
minutes to complete the search, while FPQM returns within a few seconds.

These experiments thus indicate that the FPQM algorithm can find more complex queries
much faster, compared to a standard query mining approach.

6.3 Finding relational redescriptions

We now turn to the full relational redescription mining algorithm, ARRM. First, we study its
behaviour, particularly the impact of queries selection. Next, we compare it to three alter-
native approaches, namely using C-ARMR instead of FPQM within the alternating scheme,
using propositionalization followed by a propositional redescription miner, and restricting
ARRM to path queries rather than graph queries. Finally, we provide concrete illustrative
examples of redescriptions found by ARRM.

Algorithm behaviour The criterion for ranking queries is the major lever in the selection
procedure, directly impacting the exploration. We investigate this aspect by letting ARRM

mine redescriptions from all three datasets with varying parameters. More specifically, we
considered positive support (s), cover ratio (r) and accuracy (j ) as options for descending
ranking of the queries. We used various maximum exploration depths (τx ), from a single
round up to the number of alternations after which the algorithm stopped with no candi-
dates left, or at most 15. In addition, as an alternative to graph queries (G), we limited the
algorithm to paths queries (P ) by shortcutting the combining phase.

Looser selection methods that yield more outputs per candidate query (upwards of 5 on
average) were also studied. They result in very broad query trees whose dimensions become
unmanageable already after the first round. They showed no improvements in the quality of
redescriptions after uncomplete runs lasting over a day and hence were abandoned.

The remaining criteria in Γ control the complexity of the queries, avoiding the generation
of patterns that are unduly specific or contain overly many constraints. Such patterns have
a very limited explanatory power and are considered worthless. These criteria were fixed
as follows for each dataset in all runs. We required any node to be instantiated by at least
3 distinct data nodes. For Kinship, we limited the number of nodes and of edges in a
query to n = 7 and e = 10, respectively. The minimum contribution of a clause was set to
d = 0.66 of its support and the minimum accuracy for the first turn was set to j = 0.05.
For subsequent turns the Jaccard coefficient of the parent query was used as a minimum
threshold. For UMLS, we set these thresholds to n = 5, e = 10, d = 0.25 and j = 0.33. For
UWCSE, we set j = 0.33 and the absolute minimum contribution to 3 but did not limit the
number of nodes and edges.

Table 5 presents statistics of the results obtained for each run as well as running times.
We observe important variations in the support and accuracy across datasets, reflecting the
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Table 5 Quantitative results and running times (T) for mining redescriptions under different parameteriza-
tions (cf. Sect. 6.3 for details). |R| and |M| are the number of redescriptions returned and of queries explored,
respectively. Fert. is the average clause fertility

Dataset |R| |E1,1| J |M| Fert. Tot. T T/clause

Parameters min max avg min max avg max avg

Kinship
Gj τ1 39 4 784 141 0.05 0.18 0.10 31 1.90 32 min 4 min 62 s
Gj τ5 62 5 784 91 0.05 0.50 0.20 228 1.13 3 h 14 min 10 min 51 s
Gj τ8 64 5 784 88 0.05 0.53 0.22 263 1.05 3 h 58 min 10 min 54 s
Gr τ1 59 4 283 84 0.05 0.11 0.07 31 2.77 33 min 4 min 64 s
Gr τ5 177 4 753 31 0.05 0.61 0.25 744 1.36 8 h 14 min 10 min 39 s
Gr τ10 205 4 753 27 0.06 0.66 0.27 1190 1.08 14 h 37 min 10 min 44 s
Gr τ12 203 4 753 27 0.06 0.66 0.27 1203 1.08 14 h 45 min 10 min 44 s
Gs τ1 37 4 784 153 0.05 0.17 0.08 31 1.77 32 min 4 min 62 s
Gs τ5 57 4 784 110 0.05 0.28 0.11 202 1.46 2 h 41 min 8 min 48 s
Gs τ10 65 8 784 101 0.05 0.28 0.12 320 1.32 4 h 47 min 9 min 53 s
Gs τ15 69 8 784 98 0.05 0.28 0.13 350 1.29 5 h 20 min 10 min 55 s
Pj τ1 34 4 784 155 0.05 0.18 0.10 31 1.55 23 min 2 min 44 s
Pj τ5 57 4 784 102 0.05 0.43 0.15 178 1.17 1 h 11 min 2 min 24 s
Pj τ7 56 4 784 102 0.05 0.43 0.15 207 1.06 1 h 28 min 2 min 25 s
Pr τ1 43 4 466 108 0.05 0.16 0.08 31 2.06 23 min 2 min 46 s
Pr τ5 117 4 732 43 0.05 0.43 0.16 374 1.36 2 h 10 min 2 min 20 s
Pr τ10 139 4 732 36 0.05 0.66 0.19 601 1.13 3 h 47 min 2 min 22 s
Ps τ1 34 4 784 163 0.05 0.17 0.09 31 1.52 23 min 2 min 44 s
Ps τ5 49 4 784 123 0.05 0.28 0.12 169 1.33 1 h 6 min 2 min 23 s
Ps τ11 57 4 784 111 0.05 0.35 0.13 222 1.23 1 h 21 min 2 min 21 s

UMLS
Gj τ1 19 5 404 100 0.35 0.94 0.65 42 0.71 9 min 31 s 76 s 13 s
Gj τ3 20 6 552 118 0.35 1.00 0.79 87 0.68 13 min 59 s 76 s 9 s
Gr τ1 19 5 374 99 0.35 0.94 0.64 42 0.83 9 min 30 s 77 s 13 s
Gr τ4 20 6 374 106 0.35 1.00 0.80 111 0.80 14 min 51 s 77 s 8 s
Gs τ1 18 5 437 107 0.33 0.75 0.51 42 0.67 9 min 24 s 76 s 13 s
Gs τ4 19 6 552 130 0.35 1.00 0.64 86 0.65 16 min 51 s 76 s 11 s
Pj τ1 16 5 404 103 0.36 0.94 0.63 42 0.62 8 min 2 s 77 s 11 s
Pj τ4 17 6 552 124 0.38 1.00 0.78 80 0.62 11 min 21 s 77 s 8 s
Pr τ1 16 5 404 104 0.36 0.94 0.62 42 0.76 8 min 1 s 77 s 11 s
Pr τ4 18 6 404 107 0.38 1.00 0.79 101 0.78 11 min 26 s 77 s 6 s
Ps τ1 15 5 437 110 0.33 0.75 0.48 42 0.57 8 min 4 s 77 s 11 s
Ps τ4 16 6 552 138 0.35 1.00 0.63 78 0.62 13 min 49 s 77 s 10 s

UWCSE
Gj τ1 15 5 278 53 0.02 0.24 0.07 8 2.50 5 s 2 s <1 s
Gj τ3 19 5 278 49 0.02 0.28 0.10 35 0.94 24 s 10 s <1 s
Gr τ1 16 5 278 53 0.02 0.24 0.07 8 3.75 5 s 2 s <1 s
Gr τ4 21 5 278 47 0.02 0.28 0.10 50 1.16 31 s 9 s <1 s
Gs τ1 14 5 278 42 0.02 0.24 0.06 8 2.00 6 s 2 s <1 s
Gs τ3 17 5 278 41 0.02 0.24 0.06 28 0.89 23 s 10 s <1 s
Pj τ1 15 5 278 53 0.02 0.24 0.07 8 2.50 4 s 2 s <1 s
Pj τ3 19 5 278 49 0.02 0.28 0.10 35 0.94 21 s 9 s <1 s
Pr τ1 16 5 278 53 0.02 0.24 0.07 8 3.50 5 s 2 s <1 s
Pr τ4 21 5 278 47 0.02 0.28 0.10 48 1.17 26 s 8 s <1 s
Ps τ1 14 5 278 42 0.02 0.24 0.06 8 2.00 3 s 1 s <1 s
Ps τ3 17 5 278 41 0.02 0.24 0.06 28 0.89 18 s 9 s <1 s
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Table 6 Quantitative results and running times (T) for mining redescriptions with C-ARMR as the query
miner (cf. Sect. 6.3 for details). Legend as in Table 5

Dataset |R| |E1,1| J |M| Fert. Tot. T T/clause

Parameters min max avg min max avg max avg

Kinship τ3 8 4 75 34 0.07 0.15 0.11 53 2.04 19 h 59 min 2 h 22 min

UMLS τ8 49 4 437 76 0.08 1.00 0.72 178 1.35 3 h 3 min 61 s

UWCSE τ2 3 40 61 52 0.07 0.15 0.10 32 2.67 4 min 16 s 51 s 8 s

variety of the redescriptions found. First, alternating for a few turns does allow one to find
more accurate patterns than simply matching isolated predicates (τ1). Note that contrarily to
Tables 2–4, accuracies here are not aggregated over multiple patterns but obtained from in-
dividual redescriptions. Running times per query vary from less than a second up to several
minutes. Of course, the total running time needed for the full exploration depends heavily
on the number of queries explored, |M|. As mentioned previously, an important factor im-
pacting the running times is the presence of symmetries which results in duplicate variables,
leading to numerous instances and hence more costly mapping.

The effects of different parameterizations are limited with UMLS and UWCSE, where the
algorithm consistently mined a small number of relatively simple queries. Parameterization
is more critical with Kinship, where more complex queries are needed to capture the
various meanings of kinship terms. In particular, with the former two datasets, the algorithm
stops after a few alternations upon finding only redundant queries. Therefore, further raising
τ does not affect the outcome. In all datasets, ranking queries by cover ratio allowed to find
the best redescriptions while ranking by support appears suboptimal.

Alternative query miner As the alternating scheme is independent of the query mining
algorithm used (line 7 in Fig. 6), we created a modified version of ARRM, where we replace
FPQM by C-ARMR. We use the same parameterizations of C-ARMR as in the experiments
above, with the exception of the number of body literals for Kinship, which we had to
restrict to at most three (rather than five) here to keep running times feasible. This is due to
the much larger search space over kinship terms compared to that over genealogical terms.
We rank queries by cover ratio, as this was the best setting in the previous experiment.

Table 6 presents quantitative results and running times for mining redescriptions from
the three datasets under this replacement. In all three cases, the algorithm stopped after a
few alternations (3 for Kinship, 8 for UMLS and 2 for UWCSE) without candidates for
further expansion. In the case of UMLS and UWCSE the obtained redescriptions are almost
on par with those found using FPQM, albeit somewhat less accurate, while the redescriptions
found for Kinship have clearly lower accuracy. This can be explained as an effect of the
length restriction required to keep C-ARMR running times feasible. As UMLS and UWCSE
contain simple redescriptions, the length limit of two only moderately affects the quality of
the outcome. With Kinship, however, restricting query length to at most three prevents
the algorithm from finding the more complex redescriptions of higher accuracy the original
ARRM identifies. Together with the significantly higher running times of the C-ARMR-based
variant, these results show that we can find more accurate redescriptions more quickly by
using our new FPQM method rather than C-ARMR within the alternating scheme.

A propositional approach We next compare to an existing propositional redescription
mining algorithm, following ideas from propositionalization (Kuzelka and Zelezný 2009;
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Table 7 Quantitative results and running times for mining redescriptions by applying the REREMI algorithm
on the propositionalized dataset (cf. Sect. 6.3 for details). |D|, |F |, T prop. and T mining are the number
of rows and columns in the propositionalized dataset and the running time for propositionalization and for
mining, respectively

Dataset |R| |E1,1| J |D| |F | T prop. T mining

Parameters min max avg min max avg

Kinship 66 3 1489 178 0.00 0.17 0.07 49074 13169 3 min 42 s 34 min 19 s

UMLS 100 6 182 36 0.04 1.00 0.74 18088 4998 23 s 13 min 13 s

UWCSE 58 3 41 19 0.01 0.24 0.09 55882 2048 15 s 1 min 45 s

Dinh et al. 2012) to suitably transform the data. Specifically, we extracted features from the
dataset by enumerating paths up to a given length joining each pair of objects and ran the
REREMI propositional redescription mining algorithm (Galbrun and Miettinen 2012) on the
resulting propositional dataset. We considered paths of length one and two for all datasets.
In addition we also extracted paths over genealogical attributes of length up to five for the
Kinship dataset.

As can be seen from Table 7, this method is able to find comparable redescriptions in
competitive running times when applied to UMLS and UWCSE, where paths of length at
most two suffice to capture the relations in the network. However, it fails with Kinship,
where longer paths and more complex combinations are needed.

Especially in the latter case, our relational approach to redescription mining has clear
advantages over the propositional approach. First, it can easily explore longer paths, whose
inclusion results in feature matrices too large to handle with the propositional miner. Second,
it bases the selection of paths considered on the current set of positive examples, rather than
on all possible pairs as necessary when performing propositionalization once before mining.
Third, it explicitly combines paths into more expressive graph queries.

The second point could be addressed by repeated propositionalization during mining,
which would require to modify the propositional approach. To simulate this setting, we
performed experiments where we restricted our algorithm to path queries. Results are re-
ported in Table 5. Once more, we observe that results are often comparable for the simpler
cases of UMLS and UWCSE, but our fully relational method finds substantially more accu-
rate redescriptions on Kinship, with an average accuracy of 0.27 when using graphs (Gr)
compared to 0.19 when using paths only (Pr).

Examples of redescriptions We now provide a few example redescriptions found by ARRM

on the three datasets. Figure 7 shows an example of redescription found from the Kinship
dataset. Graph (1b) represents the genealogical link between a female individual and the
daughter of her paternal aunt, which is one of the meanings of kin14 found in the glossary.
Kinship terms often have several meanings and may also be used in broader senses. In such
cases, a configuration of several terms, as in graph (1a), better captures one of the senses
than a term taken in isolation. For instance, this redescription has an accuracy of 0.59, a
significant improvement over the best match found for edge predicate kin14 alone, of
accuracy 0.06 or the best pair of path queries similarly involving this predicate, of accuracy
0.17.

Figure 8 shows two examples of redescriptions found for UMLS: a perfect redescription,
i.e. with accuracy 1, and a pair of symmetrical queries.

Finally, three redescriptions from UWCSE are displayed in Fig. 9. Graphs (4a) and (6a)
both represent the advisee–advisor relationship, with different matching queries. One states
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Fig. 7 Example redescription found from Kinship. Node predicates are male (m), female (f), living
(l) and relevant (r). Negated Boolean attributes are denoted with ¬

Fig. 8 Example redescriptions found from UMLS

that they share a common publication (4b), the other that the advisee is a teaching assistant
for the course taught by his supervisor (6b), forming two redescriptions of accuracy 0.24
and 0.10, respectively. The other redescription involves a coauthorship relation again, this
time between faculty members (5a) and the matching query indicates that the persons of
interest have taught different sessions of a same course (5b).

To summarize, we observe that our alternating scheme is able to find redescriptions that
capture the relations existing in a network. It can exploit the added expressivity compared to
individual queries to better elucidate the different uses of the same predicate and find more
accurate patterns.

7 Conclusions

We have introduced the problem of relational redescription mining. As a solution, we pro-
posed an alternating scheme with a novel efficient relational query miner based on frequent
paths as its core.

We demonstrated that our query miner can find more complex queries than a baseline
ILP approach, much faster. The proposed alternating scheme is able to capture the relations
existing in a network with expressive redescriptions, as shown in experiments with three
relational datasets.
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Fig. 9 Example redescriptions found from UWCSE. Node predicates are professor, student and fac-
ulty

The power of relational redescription mining should be investigated further on other
datasets and application domains. On the algorithmic side, extending the approach to prob-
abilistic networks and considering queries of higher arity provide essential directions for
future work.
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Compression-based Association Discovery in Two-View Data

Matthijs van Leeuwen∗ Esther Galbrun†

Abstract
Two-view datasets are datasets whose attributes are natu-
rally split into two sets, each providing a different view on
the same set of objects. We introduce the task of finding
small and non-redundant sets of associations that provide
insight in how the two views are related. To achieve this,
we propose a novel approach based on the Minimum De-
scription Length principle, in which sets of rules are used to
translate one view to the other and vice versa. These sets of
rules form our models and are dubbed translation tables.

We introduce three Translator algorithms to find
models that compress the data well if there is structure
across the two views on the data. The first algorithm is
parameter-free and iteratively adds the rule that improves
compression most, the other two algorithms use heuristics to
achieve better trade-offs between runtime and compression.
The empirical evaluation on real-world data shows that only
modest numbers of associations are needed to characterize
two-view structure that is present in the datasets, while
the obtained translation rules are easily interpretable and
provide valuable insight in the data.

1 Introduction

Two-view datasets are datasets whose attributes are
split into two sets, providing two alternative views on
the same set of objects. Two-view data is a form of
multi-view data, in which an arbitrary number of views
can occur. In practice, a data analyst is often given
different sets of information over the same set of objects,
and asked to analyze associations across these views.

In the medical domain, for example, persons could
be the objects of interest, and one could have both
demographic and medical data. In this case, the two
views represent clearly different types of information.
Alternatively, one could have data for the same persons
over two different periods in time, e.g. before and
after treatment. Retailers could also have sets of data
collected in different time periods, or else they might be
interested in analyzing sales data concerning the same
set of products from different locations.

In all these examples, there are two views that con-
vey different information concerning the same objects.
An apparent question to a data analyst would be: what
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associations are present across the two views? In gen-
eral, it is of interest to investigate how much information
one view provides about the other, and vice versa.

In particular, we are interested in associations that
span both views, e.g. a medical condition that frequently
occurs before treatment might imply certain symptoms
after treatment with high probability. The association
might even hold in both directions, in which case both
observations occur mostly together. As another ex-
ample, for music tracks we could have both machine-
extracted audio features and manually curated infor-
mation on evoked emotions. A question could then be
which emotions are evoked by which type of audio fea-
tures; how are audio features associated to emotions?

Redescription Mining [10] provides a partial answer
to these questions by finding pairs of queries, one for
each view, that are satisfied by almost the same set
of objects. Such query pairs are called redescriptions,
and quality is usually measured with the Jaccard coeffi-
cient of the queried object sets. A substantial limitation
is that associations are required to hold in both direc-
tions, i.e. a redescription can be interpreted as a bidi-
rectional high confidence association rule. Furthermore,
redescriptions are judged individually and the complete
set of redescriptions is therefore likely to be redundant.

The obvious alternative would be to mine associ-
ation rules [1] across the two views. Unfortunately,
this approach only considers unidirectional rules and
has other disadvantages [13], the most important being
the so-called pattern explosion: humongous amounts of
highly similar rules are found and, consequently, sup-
port and confidence thresholds are hard to tune.

A recent trend that addresses these problems is the
development of pattern-based models using the Mini-
mum Description Length (MDL) principle [6]. Exam-
ples include methods for Boolean [11] and uncertain
data [2]. Advantages of this approach are 1) that small
pattern-based models are interpretable and hence pro-
vide insight in the data, and 2) that compression allows
the models to be used for other tasks [4].

Approach and contributions. We introduce
a compression-based framework for the induction of
pattern-based models that describe the associations
across two views of a dataset, providing insight in how
the two sides are related. To achieve this goal, we use



both bidirectional and unidirectional rules as translation
patterns. This allows us to construct succinct models
that allow for easy interpretation.

Our models, dubbed translation tables, consist of
sets of rules that span the two views. Without loss of
generality, we will refer to the two views as left-hand side
and right-hand side of the data and denote these by DL

and DR respectively. A translation rule X → Y implies
that if X occurs in a transaction in DL, then Y is likely
to occur in the corresponding transaction of DR. Vice
versa for X ← Y , and X ↔ Y implies the combination
of both. When strong associations across the two views
are present in the data, a ‘good’ model should accurately
map, or translate, DR to DL and vice versa. Hence,
a good set of rules establishes a descriptive mapping
between the two views and effectively translates one
view into the other and vice versa.

The MDL principle is the induction principle for
descriptions and is therefore a good choice for quanti-
fying how good a certain set of rules (i.e. a translation
table) is. It essentially states that given a set of models,
the best model is the one resulting in the smallest total
compressed size. Here, total compressed size includes
both the size of the data and the model itself, so that
data and model complexity are appropriately balanced.
Given this, the task at hand becomes that of finding
the translation table that best compresses the mapping
between the two sides of a given two-view dataset.

This task is substantially different from existing
ones and requires a novel approach: instead of directly
compressing the data, which would not give the desired
results, we instead compress the mapping across the
two views. Thus, we obtain a succinct summary of the
relevant associations that span the two views, in the
form of a set of both uni- and bidirectional rules. After
discussing related work in Section 2, we elaborate on
this problem and formalize it in Section 3.

Exhaustive search for the globally optimal trans-
lation table is practically unfeasible, but it is possi-
ble to find the single rule that gives the largest gain
in compression given a dataset and current translation
table. Hence, in Section 4 we propose the anytime and
parameter-free Translator algorithm for finding good
translation tables on datasets with a moderate number
of attributes. It starts with an empty model and iter-
atively adds the best rule until no rule that improves
compression can be found. Then, we also introduce
two variants that select rules from a fixed candidate
set, making the approach applicable on larger datasets.

The proposed model and algorithms are empirically
evaluated in Section 5. The obtained compression
ratios indicate how much two-view structure is present
in the datasets. Comparisons to existing methods

unambiguously show that those do not provide adequate
solutions to the problem that we consider. Finally, we
show by means of examples that the found translation
rules are expressive and intelligible.

2 Related Work

Both Exceptional Model Mining (EMM) [7] and Rede-
scription Mining (RM) [10, 5] are concerned with finding
patterns in two-view data. EMM aims at finding sub-
sets of the data that stand out with respect to a desig-
nated ‘target’ view. As such, EMM is highly asymmet-
ric, with one side used for descriptions and the other as
target, as is the case with multilabel classification [12].
RM treats both sides equally but discovers individual
high-confidence bidirectional rules, whereas we aim for
a non-redundant set of both unidirectional and bidirec-
tional rules.

Association rules have been widely studied since
their introduction [1]. Acknowledging the problem of
large result sets, methods have been proposed to select
subsets of the rules, for example via statistical test-
ing [13]. Supervised pattern set mining methods [3]
approach the problem mostly from a classification per-
spective, that assumes the existence of a single property
of interest, i.e. the class label or target. Our proposed
method is different as it aims at inducing compact mod-
els that describe structure across two-view data and also
allows for bidirectional rules.

As mentioned previously, the MDL principle [6]
has been used for the induction of pattern-based mod-
els before. Consequently, our approach is related to
Krimp [11] and its counterparts, for instance for uncer-
tain data [2]. However, it differs from existing meth-
ods for several reasons. First, we consider two-view
datasets; concatenating the two sides of the data and
applying Krimp yields very different results. Krimp
uses itemsets, whereas we consider rules. Second, our
framework compresses the mapping across two views
rather than the data directly, to ensure that we (only)
find associations across the two sides of the data.

3 Compression for Two-View Associations

We consider Boolean data over a set of objects denoted
by O. Each object is characterized by a transaction over
two sets of items, IL and IR (L for left, R for right).
That is, each transaction t can be regarded as a pair of
itemsets t = (tL, tR) concerning the same object o ∈ O,
such that tL ⊆ IL and tR ⊆ IR. A two-view dataset
D is a bag of transactions. Let |D| denote its size, i.e.
|{t ∈ D}|. We use DL (resp. DR) to denote dataset D
projected onto IL (resp. IR). An itemset X is said to
occur in a transaction t iff X ⊆ tL ∪ tR. The support of
an itemset X in dataset D is the bag of transactions in



which X occurs, i.e. suppD(X) = {t ∈ D | X ⊆ tL∪tR}.
We typically omit the index when D is unambiguous
from the context. The confidence of a rule X → Y is
defined as

conf(X → Y ) =
|supp(X ∪ Y )|
|supp(X)| .

To be able to compare rule sets consisting of both uni-
directional and bidirectional rules to redescriptions, we
propose the following. For all rules and redescriptions,
confidence can be expected to be high in at least one
direction. We therefore use the maximum confidence in
either direction, and define conf+ as

conf+(X � Y ) = max{conf(X → Y ), conf(X ← Y )}.

This slightly resembles all-confidence [9], which also
combines confidences for different ‘rule instantiations’.

3.1 MDL for translations. The Minimum Descrip-
tion Length principle [6] states that given a set of mod-
els M and a dataset D, the best model is that model
M ∈M that minimizes

L(D |M) + L(M),

where L(D | M) is the length, in bits, of the data
encoded with M and L(M) is the length, in bits, of
the model. Simply put, the best model is the one that
gives the best compression of data and model combined.

Thus, to formally define our problem we need to
specify 1) the space of possible modelsM and how they
compress the data, and 2) how to compute encoded
lengths of both model and data. In the standard
situation, such as with Krimp [11], encoding the data
is straightforward: each transaction is encoded by the
model. However, the current problem is different and
we are not interested in encoding the data directly.
Instead, we are interested in encoding the translation
that connects the two sides of a two-view dataset, to
capture any cross-view associations. By using the MDL
principle we automatically balance the complexity of
our model with the complexity of the translation.

Making this more precise, a translation is an exact
mapping from one view of a multi-view dataset to
another view. In two-view data, we have two such
mappings: one from left to right and one from right to
left, which we denote by DL→R and DL←R respectively.
In other words, DL→R can be regarded as a function
that translates tL to tR for each t ∈ D.

It is these translations that we want to summarize
by compression. Combining the left-to-right and right-
to-left translations to make the problem symmetric, the

total encoded length of a bidirectional translation given
a model, denoted by L(DL↔R |M), is defined as

L(DL↔R |M) = L(DL→R |M) + L(DL←R |M).

Since translation is fully symmetric, for ease of
presentation we introduce all definitions and methods
for DL→R only, but assume the reverse direction to be
defined analogously. Our model class M is defined as
the set of possible translation tables for a given dataset.

Definition 1. (Translation Rule) Let IL and IR
be two sets of items. A translation rule, denoted X �Y ,
consists of a left-hand side itemset X ⊆ IL, a direction
� ∈ {→,←,↔}, and a right-hand side itemset Y ⊆ IR.

Definition 2. (Translation Table) A translation
table T is a three-column table where each row contains
a translation rule X � Y ; one column for each of X, �,
and Y .

Given this, we need to specify how to translate the
data with a translation table. Because transactions in
D are assumed to be independent from one another,
translation can be done individually for each of them.
To translate tL into tR, we initialize t′R = ∅ and consider
each X � Y ∈ T in turn. For each X → Y and X ↔ Y ,
we check whether the antecedent occurs in the left-hand
side, i.e. whether X ⊆ tL. If this is the case, we add Y to
t′R. This translation scheme is presented as Algorithm 1;
it takes tL and T as input and returns a translated
transaction t′R, i.e. t′R = TranslateL→R(tL, T ). Note
that with this scheme, the order of the rules in T does
not influence translation.

3.2 Encoding translations. Ideally, we would have
t′R = tR for each transaction. Unfortunately, for
any realistic dataset D it will be impossible to find a
translation table T that achieves this. Therefore, to
ensure lossless encoding of DL→R, as required by the
MDL principle, we introduce a correction table CR. For
each transaction t, ctR ∈ CR is the difference between
tR and the translated itemset t′R, i.e. ctR = tR ⊕ t′R,
where ⊕ denotes exclusive or.

Algorithm 1 The TranslateL→R algorithm

Input: Transaction tL, translation table T
Output: Translated transaction t′R

1: t′R ← ∅
2: for all X � Y ∈ T do
3: if � ∈ {→,↔} ∧X ⊆ tL then
4: t′R ← t′R ∪ Y
5: return t′R
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Figure 1: Translation example on a toy dataset, includ-
ing the two views of the dataset DL and DR, the trans-
lated datasets D′L and D′R, the correction tables CL and
CR, and the translation table T in the centre.

We can perfectly translate DL into DR using T
and correction table CR: for each tR ∈ DR we have
tR = TranslateL→R(tL, T )⊕ ctR. Hence, the encoded
length of the left-to-right translation given T becomes

L(DL→R | T ) = L(CR | T ),

and what remains is to determine how to compute the
encoded lengths of the translation and correction tables.

To illustrate the translation scheme, Figure 1 shows
example translations in both directions on a toy dataset.
Starting from DL, the first rule in T is matched and
applied in the first, fourth and fifth rows (indicated
with red circles). This results in items L and U in
the corresponding transactions in D′R. After all rules
have been applied using the Translate algorithm,
corrections in CR are applied using exclusive or. This
both adds and removes items, and results in DR.

3.3 Computing encoded lengths. To encode a
translation table, we need to specify how to encode the
itemsets it contains. The simplest solution is to encode
each item independently, assigning a code with length
based on its empirical probability of occurring in the
data. For each I ∈ IL this probability is given by

P (I | DL) =
|{t ∈ DL | I ∈ t}|

|D| .

From information theory, we have that the optimal code
length corresponding to probability distribution P is
L(I | DL) = − log2 P (I | DL). The encoded length

of an itemset X is now given by

L(X | DL) =
∑

I∈X
L(I | DL) = −

∑

I∈X
log2 P (I | DL).

We use this encoding for the itemsets in the first column
of a translation table, and similarly for itemsets over
IR in the third column. For the directions, i.e. the
second column of the table, a first bit indicates whether
a rule is unidirectional or bidirectional, and a second bit
represents the direction in case of a unidirectional rule.
The length of a direction � is thus

L(�) =

{
1 if � =↔
2 otherwise

Summing up, the encoded length of a translation table
T is given by

L(T ) =
∑

X�Y ∈T
L(X � Y ), with

L(X � Y ) = L(X | DL) + L(�) + L(Y | DR).

For the encoding of the correction tables, note
that we are only interested in the discovery of cross-
view associations. This implies that we should not
exploit any structure within one of the two views
for compression, because that would prevent us from
finding all cross-view structure. That is, we assume that
we can capture all relevant structure in the translation
table, and the contents of the correction table should be
regarded as residue. Under this assumption, we can use
the same ‘independent’ encoding for the itemsets in the
correction tables as for the translation table, giving

L(CR | T ) =
∑

c∈CR

L(c | DR).

One could argue that using the empirical item distribu-
tions of the individual views for encoding the correction
tables results in suboptimal codes, and that the actual
code usage distributions should be used instead. By so
doing, however, we avoid introducing additional codes
and hence additional tables that map items to these
codes. Furthermore, this choice makes it possible to de-
vise an exact algorithm for finding the best rule given
a current translation table, which would otherwise be
practically unfeasible.

This completes the encoding, and the problem of
finding a good set of associations can now be formally
defined as finding the translation table that minimizes
the total encoded length:

Problem 1. Given a two-view dataset D = (DL,DR)
with corresponding translation DL↔R, find

arg min
T∈T

L(DL↔R, T ) = L(T ) + L(CL | T ) + L(CR | T ),



where T is the set of possible translation tables for D,
and CR and CL are the correction tables for DL→R

given T and DR→L given T , respectively.

4 The Translator algorithms

We now introduce three different Translator algo-
rithms, which take a two-view dataset D as input and
induce a good translation table T by starting from an
empty table and iteratively adding rules.

Given a dataset D, there are 2|IL| (resp. 2|IR|)
possible itemsets for the left-hand side (resp. right-
hand side). Since each pair of itemsets can form three
different rules (→,←,↔), there are |R| = 3 × 2|IL| ×
2|IR| possible rules. Without further assumptions on
the number of rules in a translation table, each possible
subset of R needs to be considered. Since there is no
structure that can be used to prune the search space, we
resort to a greedy method, as is usual with MDL [11].

Before presenting our algorithms, we investigate
how to efficiently compute the gain in compression that
can be attained by adding a rule to a translation table.

Each item in a correction table C occurs for one of
two reasons: either an item is missing after translation
and needs to be added, or it is introduced erroneously
and needs to be removed. Hence, we can split C into
two separate tables U and E, as follows. Let UR, for
Uncovered, be a table such that U t

R = tR \ t′R for
each t ∈ D, where t′R =Translate(tL, T ) as before.
Similarly, let ER, for Errors, be a table such that
Et

R = t′R \ tR for each t ∈ D. From this it follows
that U ∩ E = ∅ and C = U ∪ E.

In practice, U initially equals D; T is empty, and
all items are uncovered. By adding rules to T , more
items become covered, U becomes smaller, and thus the
encoded length of C decreases. On the other hand, E is
empty when we start and can only become larger (but
to a lesser extent than the decrease of C, or rules would
not be added). Once an error is inserted into E it cannot
be removed by adding rules.

Now, let ∆D,T (X � Y ) denote the decrease in total
compressed size obtained by adding a rule r = X �Y to
a translation table T , i.e. ∆D,T (X�Y ) = L(DL↔R, T )−
L(DL↔R, T ∪ {r}). Given the previous, this can be
defined as the reduction in length of the correction table
minus the length of the rule itself, as follows:

∆D,T (X � Y ) = ∆D|T (X � Y )− L(X � Y ),(4.1)

∆D|T (X → Y ) =
∑

t∈D∧X⊆tL
L(Y ∩ U t

R | DR)(4.2)

−L(Y \ (tR ∪ Et
R) | DR).

These equations follow directly from the definitions
given so far. ∆D|T (X ← Y ) is defined analogously with

Algorithm 2 The Translator-Exact algorithm

Input: Two-view dataset D
1: T ← ∅
2: repeat
3: r∗ ← arg maxr∈R∆D,T (r)
4: if L(D, T ∪ {r∗}) < L(D, T ) then
5: T ← T ∪ {r∗}
6: until no rule added to T
7: return T

L and R reversed, and ∆D|T (X ↔ Y ) is simply the sum
of the two unidirectional variants. Given this, the best
candidate rule is the one that maximizes ∆D,T (X � Y ).

4.1 Iteratively finding the best rule. The idea
of the Translator-Exact algorithm, presented in
Algorithm 2, is to iteratively add the optimal rule
to the current translation table. The greedy scheme
starts from an empty translation table, and iteratively
adds the rule that improves compression most, until no
further improvement can be achieved. Note that the
order of the rules in the table does not matter, and that
provisional results can be inspected at any time.

To find the optimal rule r∗ that maximizes the gain
in compression, we use a search based on the Eclat
algorithm [15], traversing the pattern space depth-first
while maintaining transaction sets for both X and
Y and pruning where possible. Without additional
pruning, all non-empty itemset pairs X and Y that
occur in the data would be enumerated. For each such
pair, all three possible rules are evaluated, i.e. one for
each possible direction. To find r∗ we only need to keep
track of the best solution found so far.

To make search efficient, it is essential to find good
solutions as early as possible, and to prune the search
space based on the best solution so far. Unfortunately,
∆D,T (X � Y ) is not (anti)monotonic. However, each
XY should occur in the data and therefore all XY
that do not occur in D are pruned (we do not consider
rules for which either X = ∅ or Y = ∅, as these are
not cross-view associations). Furthermore, from the
definition of the gain of a rule in Equation 4.2, we
observe that any positive gain must come from covering
items that are currently uncovered. We can exploit
this with a pruning technique similar to those used in
high-utility itemset mining [14]. We trivially have that
L(Y ∩ U t

R | DR) ≤ L(U t
R | DR) for any Y and U t

R, and
will use it to derive an upper-bound.

That is, for each tR ∈ D the gain for that transac-
tion is upper-bounded by the encoded size of its uncov-
ered items. Let tub(tR) denote this transaction-based
upper-bound, defined as tub(tR) = L(U t

R | DR). Since



for any transaction tub(tR) is constant during search for
a single rule, these values are computed once prior to
search. We can now check in which rows of the database
a rule would be applied and sum the transaction-based
bounds. For any rule X → Y , this gives the following:

∆D,T (X → Y ) ≤
∑

t∈D s.t. tL⊇X
tub(tR).

For a given X �Y , the bidirectional instantiation always
has the highest potential gain, meaning that we should
sum the bounds for the two directions. Finally, we
should take the size of the rule into account: extensions
of the current rule will be at least as large as the
current rule. We thus define the rule-based upper-
bound, denoted rub, as

rub(X � Y ) =
∑

t∈D s.t. tL⊇X
tub(tR) +

∑

t∈D s.t. tR⊇Y
tub(tL)− L(X ↔ Y ).

This bound is based on the supports of itemsets X
and Y and decreases monotonically with either support
cardinality. Therefore, X � Y and all its possible
extensions can be safely pruned when the potential
gain given by this bound is lower than the gain of the
current best rule. That is, the pruning condition is
rub(X � Y ) ≤ ∆D,T (r∗).

Prior to search, all I ∈ I are ordered descending by
tub({I}), which determines the order of the depth-first
search. This helps find rules with high compression gain
as quickly as possible and thus increases the amount of
pruning that can be performed.

Finally, the gain for any rule X � Y can be quickly
bounded by an upper-bound on the bidirectional rule:

qub(X � Y ) = |supp(X)|L(Y | DR) +

|supp(Y )|L(X | DL)− L(X ↔ Y ).

Although this gives no guarantee for rule extensions
and thus cannot be used to prune the search space,
it is useful to quickly determine whether computing
∆D,T (X → Y ) is needed; this computation can be
skipped when qub(X � Y ) ≤ ∆D,T (r∗).

Depending on the dataset and current translation
table, exhaustive search for the best rule may still
be computationally too intensive. Therefore, we also
propose two faster, approximate methods.

4.2 Iteratively finding good rules. The second
algorithm, dubbed Translator-Select, strongly re-
sembles its exact counterpart: it also greedily adds rules
to the table, but does not guarantee to find the best pos-
sible rule in each iteration. Instead of generating candi-
date rules on-the-fly, it selects them from a fixed set of

Algorithm 3 The Translator-Select algorithm

Input: Two-view dataset D, integer k, candidates C
1: T ← ∅
2: repeat
3: R← select k rules with highest ∆D,T (r) from C
4: used← ∅
5: for i = 1 . . . k do
6: consider Ri as X � Y
7: if X ∩ used = ∅ ∧ Y ∩ used = ∅ then
8: if L(D, T ∪ {X � Y }) < L(D, T ) then
9: T ← T ∪ {X � Y }

10: used← used ∪X ∪ Y
11: until no rule added to T
12: return T

candidates. This set consists of two-view frequent item-
sets, i.e. all itemsets Z for which | supp(Z)| > minsup,
Z ∩IL 6= ∅ and Z ∩IR 6= ∅. These candidates are given
as input, and can be mined using any standard frequent
itemset mining algorithm that is modified to ensure that
each itemset contains items from both views.

Translator-Select(k), presented in Algo-
rithm 3, selects the top-k rules with regard to
compression gain ∆D,T among all possible rules that
can be constructed from the candidate itemsets. Three
rules can be constructed for each candidate itemset:
one for each direction. When k is set to 1, this implies
that the single best rule among the candidates is chosen
in each iteration, similar to Algorithm 2. To further
speed-up the process, it is possible to choose a larger
k, so that multiple rules are selected in each iteration.
The selected rules are added to the translation table
one by one, but rules that contain an itemset that
overlaps with an itemset of a rule previously added in
the current iteration are discarded (to this aim, the set
of used items is maintained). The reason for this is
that the compression gain of such a rule has decreased,
and it can therefore no longer be assumed to be part of
the top-k for the current round.

4.3 Greedily finding good rules. Our third
method, called Translator-Greedy, employs single-
pass filtering: given a dataset and a candidate set of
frequent itemsets (ordered descendingly first by length,
then by support in case of equality), it iteratively con-
siders all itemsets one by one. For each itemset that
is considered, compression gain is computed for each of
the three possible rules, one for each direction. The
corresponding rule with the largest gain is added if that
gain is strictly positive. If there is no such rule for an
itemset, it is discarded and never considered again. This
extremely greedy procedure strongly resembles the se-



lection mechanism of Krimp.

5 Experiments

In this section we empirically evaluate our proposed
formalization and algorithms. We analyze the perfor-
mance of the three methods, compare them to existing
methods, and present examples of obtained rules. Due
to space limitations, part of our detailed experimental
evaluation is provided as an appendix.1

Datasets. Except for Mammals and Elections, all
datasets were obtained from the LUCS/KDD,2 UCI,3

and MULAN4 repositories. Mammals contains presence
records of mammal species in Europe and is a natively
Boolean real-world dataset [8], Elections contains
information about the candidates that participated in
the 2011 Finnish parliamentary elections.5 It is a good
example of a natural two-view dataset, where one looks
for associations between candidate profiles and their
political views. Basic properties of the datasets are
given in Table 1, further details on pre-processing can
be found in Appendix A.1.

Implementation. We implemented Translator in
C++. The source code, datasets and the splits required
to be able to reproduce the results will be made publicly
available upon publication of this manuscript.

5.1 Comparison of search strategies. We first
compare the three different variants of the Translator
algorithm. As candidate sets for both Translator-
Select and Translator-Greedy we use all closed
frequent two-view itemsets up to a given minimum sup-
port threshold. Furthermore, Select(k) is evaluated
for both k = 1 and k = 25.

For the first batch of experiments we set the lowest
possible minimum support threshold, i.e. minsup = 1
(threshold not used by Exact). Consequently, for
these experiments we use only datasets with a moderate
numbers of items. The results, presented in the top half
of Table 1, show large variations in both compression
ratio and runtime, which both heavily depend on the
characteristics of the dataset. We observe that using
compression as stopping criterion results in relatively
few rules: in all cases, there are much fewer rules than
there are transactions in the dataset. Together with
the observation that compression ratios up to 54% are
attained, this implies that rules that generalize well can

1See supplementary material.
2http://cgi.csc.liv.ac.uk/~frans/KDD/Software/

LUCS-KDD-DN/DataSets/dataSets.html
3http://archive.ics.uci.edu/ml/
4http://mulan.sourceforge.net/
5http://blogit.hs.fi/hsnext/hsn-vaalikone-on-nyt-

avointa-tietoa

be found. On the other hand, some datasets can hardly
be compressed, indicating that there only few cross-view
associations and/or that they do not cover large areas
of the data. This is an advantage of the compression-
based translation approach that we advocate: if there is
little or no structure connecting the two views, this will
be reflected in the attained compression ratios. Note,
however, that also other properties of the data influence
compression. For example, dense data generally results
in better compression than sparse data.

The four method instances all yield similar com-
pression ratios and numbers of rules. However,
Translator-Exact needs to dynamically construct
and explore large parts of the search space in each iter-
ation, and this results in relatively long runtimes. The
main problem is that the pruning strategies are only ef-
fective in the first few iterations. After that, the gain
in compression that a single rule can achieve decreases
significantly, so that a much larger part of the search
space needs to be explored. This is demonstrated by
taking a closer at the construction of translation tables
(see Appendix A.2).

Select and Greedy do not suffer from the afore-
mentioned problem, as they generate a candidate set
once and only perform candidate testing. Select tests
all candidates in each iteration, Greedy tests each can-
didate exactly once. Translator-Greedy is clearly
the fastest, and often approximates the best solution
quite well. However, there are exceptions to this. For
Wine, for example, the compression ratios obtained by
Exact and Select are 10% lower (= better) than that
obtained by Greedy.

We now shift our focus to the bottom half of Table 1,
which presents results obtained on the larger datasets.
We do not have results for the exact method because it
takes too long to finish on these datasets. Moreover, we
fix minsup such that the number of candidates remains
manageable (between 10K and 200K).

We again observe strongly varying results depen-
dent on the data. Unsurprisingly, the Greedy method
is much faster than the Select alternatives, but in
some cases this also results in poor compression. For
example, on House it only achieves a compression ratio
of 71.45%, compared to 49.26% obtained by Select(1).

As expected, there is a trade-off between runtime
and solution quality. Translator-Exact attains the
best compression rates, but can only be used on small
datasets. Translator-Select provides a good trade-
off between compression and runtime. Depending on
the dataset, choosing a larger k can be useful to speed-
up the search. For example, on Crime compression
remains practically the same while runtime decreases
from 5h15m to 1h27m. When the dataset is very large,



Table 1: Datasets and comparison of Translator-Exact, Translator-Select, and Translator-Greedy.
The densities of DL and DR are denoted as dL and dR, respectively. For each experiment, we report the number
of obtained rules |T |, the compression ratio L%=L(D, T )/L(D, ∅), and the runtime t.

Dataset Exact Select(1) Select(25) Greedy

minsup |D| |IL| |IR| dL dR |T | L% t |T | L% t |T | L% t |T | L% t

Abalone3 1 4 177 27 31 0.19 0.13 88 54.81 3h22m 86 54.86 28m 86 54.95 10m51s 114 57.75 19s
Car2 1 1 728 15 10 0.27 0.30 12 94.18 1m13s 9 94.67 28s 9 94.67 20s 12 95.27 3s

ChessKRvK2 1 28 056 24 34 0.17 0.09 320 94.89 2d 311 94.94 17h19m 315 94.95 6h22m 314 95.60 3m21s

Nursery2 1 12 960 19 13 0.26 0.31 28 98.36 3h19m 27 98.36 1h47m 27 98.36 1h15m 19 98.83 4m46s
Tictactoe2 1 958 15 14 0.33 0.36 61 85.18 35m 64 85.20 8m16s 66 84.86 3m31s 73 90.97 7s

Wine2 1 178 35 33 0.20 0.21 38 67.99 1h22m 27 69.15 15s 30 69.10 8s 48 79.98 < 1s

Yeast3 1 1 484 24 26 0.17 0.19 49 81.99 46m 32 82.73 2m16s 32 82.73 2m15s 38 83.00 4s

Adult2 4885 48 842 44 53 0.18 0.13 — 8 54.29 50m 8 54.29 29m 19 55.50 7m
CAL5004 20 502 78 97 0.24 0.07 — 59 86.45 36m 60 86.48 13m 92 88.88 40s

Crime2 200 2 215 244 294 0.20 0.19 — 144 87.45 5h15m 146 87.47 1h27m 183 88.51 2m7s

Elections 47 1 846 82 867 0.06 0.03 — 80 93.28 36m 83 93.27 12m 132 94.49 28s
Emotions4 40 593 430 12 0.17 0.50 — 22 97.35 20m 24 97.34 14m 37 97.54 54s

House3 8 435 26 24 0.35 0.33 — 37 49.26 14m 37 49.27 8m 50 71.45 23s

Mammals 773 2 575 95 94 0.17 0.17 — 55 68.23 58m 56 68.31 29m 39 85.85 1m3s

Translator-Greedy may be the best choice, but this
may come at the expense of good compression.

5.2 Comparison with other approaches. Al-
though association rule mining, redescription mining,
and Krimp are all related to our work, they also all
consider rather different problems. We confirm these
differences by means of an extensive empirical compar-
isons that we present in Appendix A.3; here we provide
a summary of the results.

Using a standard association rule mining [1] method
to obtain unidirectional, cross-view rules results in
thousands of rules (up to 153 609 for House). In
contrast, our algorithm identifies only small rule sets
(containing at most 256 rules, for ChessKRvK) and also
finds bidirectional rules; these ‘summaries’ are much
easier to interpret by a domain expert.

Turning the redescriptions found by the ReReMi
algorithm [5] into translation rules results in very
poor compression and even inflation (compression ra-
tios above 100% for eight datasets), despite comparable
average maximum confidences. This is a result of re-
dundancy within the results, but also of not exploiting
unidirectional associations.

Finally, directly turning the itemsets mined by
Krimp into bidirectional translation rules generally re-
sults in a strong increase of the total encoded size (typ-
ically doubling or tripling the original size of the trans-
lations). Considering these itemsets as candidates for
Translator-Greedy still results in poor compression
rates. This demonstrates that the identification of cross-
view associations requires a different formalization than

that of within-view associations.
From the experimental comparison of our approach

to these three techniques, we conclude that translation
tables have very different properties from the results of
related methods. Translator provides better results
to the problem considered: smaller sets of rules that
provide a better characterization of the associations
across the two data views.

5.3 Example rules. We now turn to a qualitative
assessment of the rules found by our algorithm, for
which we present examples from Elections in Figure 2.

The four rules shown clearly conform to the com-
mon understanding of the Finnish political landscape.
The first rule highlights views on defense, finance, devel-
opment aid and nuclear energy that are commonly as-
cribed to the Green party. The second rule conveys that
candidates for Change 2011, a Finnish party known for
being critical towards immigration, think that current
immigration policy is too loose. Observe, however, that
the rule is not bidirectional, implying that there are also
candidates for other parties that have this opinion. This
shows that having both bidirectional and unidirectional
rules is useful. Furthermore, the rules are generally easy
to interpret by domain experts.

6 Conclusions

We introduced the task of finding small and non-
redundant sets of associations that provide insight in
how the two sides of two-view datasets are related. To
this end, we proposed a novel, compression-based ap-
proach that uses rules to translate one view into the



(3) party = ‘Green League’ ↔
Question: A government may decide to cut government spend-

ing. Which would be your first choice for cuts? Answer: De-
fense. ∧
Q: Which of the following statements best describes your views

regarding Finland financial support to other euro countries in
the crisis? A: Supporting the euro is in the interest of Finland

itself. ∧
Q: Which of the following statements most closely matches your

vision regarding the global Financial Transaction Tax (FTT)

proposed by the EU? A: The EU should adopt an FTT, even if
the rest of the world does not participate in the system. ∧
Q: Which of the following statements best describes your views

regarding development aid? A: Finland must increase its
commitment to the development to 0.7 percent during the next

legislature. ∧
Q: Should authorization be granted for the replacement of the
two nuclear reactors at the Loviisa power plant? Importance:

high

(17) party = ‘Change 2011’ →
Q: What do you think of the current Finnish immigration

policy? A: Too loose.

(21) gender = ‘female’ ←
Q: Arms Act was tightened in the autumn of 2010. What should
the new parliament do in that domain? A: Keeping small arms

in the home should be banned. ∧
Q: Child Benefit is paid for each child living in Finland until
the age of 17. What should be done about Child Benefit?

Importance: high

(26) party = ‘National Coalition’ ∧ education level = ‘higher
education’ ←
Q: Which of the following statements best describes your views

regarding Finland financial support to other euro countries in
the crisis? A: Supporting the euro is in the interest of Finland

itself. ∧
Q: Should Finland apply for NATO membership? A: Yes, but
not at the beginning of the legislature.

Figure 2: Example rules mined from Elections with
Translator-Select(1). The numbers, (#), indicate
the iterations in which the rules were selected.

other and vice versa. These translation rules can be
either unidirectional or bidirectional, and a set of rules
together forms a translation table. Our approach gener-
alizes existing methods such as association rule mining
and redescription mining, but also avoids redundancy
by mining a set of patterns rather than individual pat-
terns. For this we use a formalization based on the
Minimum Description Length principle.

We presented three Translator algorithms for
inducing translation tables. The exact variant is
parameter-free and iteratively adds the optimal rule to
the table, while the second variant iteratively selects the
best rule from a fixed set of candidates and is therefore
substantially faster. Nevertheless, in practice it approx-
imates the best possible compression ratio very well.

The third variant greedily selects rules in a single pass
over a set of candidates and is the fastest of the three,
but does not always find a good solution.

The experiments demonstrate that only modest
numbers of rules are needed to characterize any cross-
view associations in the two-view data. In general, hav-
ing both bidirectional and unidirectional rules proves
useful; the obtained rules are easy to inspect, non-
redundant, and provide valuable insight in the data.
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A Experiments complement

A.1 Data pre-processing. The LUCS/KDD repos-
itory provides Boolean datasets, the datasets from the
other two repositories were pre-processed to make them
Boolean: numerical attributes were discretized using
five equal-height bins and each categorical attribute-
value was converted into an item. For CAL500, the genre,
instruments and vocals attributes are used as right-hand
side, the rest as left-hand side. In Emotions, all audio
features form the left-hand side, while the right-hand
side consists of the different emotion labels. For the
other repository datasets, the attributes were split such
that the items were evenly distributed over two views
of similar density.

The Mammals dataset contains presence records of
mammal species in Europe and is a natively Boolean
real-world dataset [8]. We vertically split the dataset
into two views of similar sizes and densities.

The Elections dataset contains information about
the candidates that participated in the 2011 Finnish
parliamentary elections. This dataset was collected
from www.vaalikone.fi, the “election engine” of the
Finnish newspaper Helsingin Sanomat. The left-hand
side contains candidate properties such as party, age,
and education, while the answers provided to 30
multiple-choice questions and the assigned importances
form the right-hand side. We created an item for each
attribute-value. Those items that occurred in more than
half of the transactions were discarded because they
would result in many rules of little interest.

A.2 Construction of a translation table. Here
we zoom in on Translator-Select(1), the search
strategy that provides the best trade-off in terms of
compression and runtime, and the House dataset. For
this combination we examine the changes in encoded
lengths and coverage while rules are iteratively added
to the translation table. Figure 3 (left) shows how the
numbers of uncovered ones (|U |) and errors (|E|) evolve,
for both sides. Figure 3 (right) shows how the encoded
lengths evolve, i.e. the encoded length of the left-to-right
translation L(DL→R | T ), the encoded length of the
right-to-left translation L(DL←R | T ), the length of the
translation table L(T ), and the total encoded length of
the bidirectional translation L(DL↔R, T ), which is the
sum of the three parts.

As expected, the number of uncovered items quickly
drops as rules are added to the translation table, while
the number of errors slowly rises. As new rules are
added to the translation table, the encoded lengths of
both sides decrease accordingly. We note as a general
trend, that compression gain per rule decreases quite
quickly. This is also what we observed with the exact
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Figure 3: Evolution of the number of uncovered and
erroneous items (top), and encoded lengths (bottom)
during the construction of a translation table for House
with Translator-Select(1).

search strategy, and what severely limited the power of
the pruning scheme. As a consequence, the exact search
strategy is most attractive when one is only interested
in few rules.

A.3 Comparison with other approaches. Al-
though association rule mining, redescription mining,
and Krimp are all clearly related to our work, they also
all solve rather different problems. To emphasize these
differences, we will now empirically demonstrate that
translation tables are indeed an answer to a substan-
tially different question than each of the aforementioned
methods.

First, we consider association rule mining [1], for
which we need to choose minimum confidence and
support thresholds before we can start mining. To
ensure that we can find similar cross-view associations
as with our methods, we use the lowest conf+ and supp
values for any rules found in our translation tables as
respective thresholds (per dataset). Using these tuned
thresholds, we mined all cross-view association rules of
either direction using an adapted miner that only mines
rules spanning the two views. As shown in Table 2, this



Table 2: Comparing Translator to Association rules, ReReMi and Krimp. We report the number of rules
|T |, maximum confidences conf+ averaged over the pattern set, and compression ratio L%.

Translator-Select(1) Asso. rules ReReMi Krimp Krimp+Greedy

Dataset |T | conf+ L% |T | conf+ |T | conf+ L% |T | L% |T | L%

Abalone 86 0.602 54.86 42 755 0.356 35 0.730 76.16 352 330.46 113 60.93

Adult 8 0.790 54.29 9 360 0.766 12 0.765 102.58 312 86.59 84 55.90

CAL500 59 0.630 86.45 116 306 0.605 25 0.610 104.40 204 272.73 28 92.58
Car 9 0.595 94.67 1 978 0.401 5 0.677 115.28 109 271.91 7 99.68

ChessKRvK 256 0.688 95.05 5 054 0.421 14 0.340 134.18 1 619 816.34 245 96.83
Crime 145 0.734 87.45 67 530 0.775 41 0.750 93.66 742 307.33 102 89.99

Elections 80 0.577 93.28 30 096 0.462 19 0.619 101.51 792 445.90 31 97.16

Emotions 22 0.726 97.35 69 866 0.884 30 0.663 101.26 524 342.93 25 98.33
House 37 0.718 49.26 153 609 0.615 26 0.814 59.64 95 200.03 31 56.25

Mammals 55 0.863 68.28 32 825 0.860 43 0.833 72.95 157 97.25 67 72.79

Nursery 27 0.566 98.36 3 504 0.508 4 0.430 105.15 232 265.48 3 99.88
Tictactoe 64 0.491 85.20 31 717 0.335 14 0.568 99.08 165 212.74 49 93.76

Wine 27 0.793 69.15 8 434 0.719 20 0.764 81.28 57 165.24 21 75.82

Yeast 32 0.737 82.73 4 347 0.679 15 0.557 121.16 127 395.80 36 90.83

resulted in several thousands of association rules per
dataset, i.e. up to several orders of magnitude more than
are selected for the translation tables. Also, average
conf+ is generally higher for the rules that Translator
selects. The large advantage of our approach is that
we obtain small, non-redundant sets of rules, that are
consequently easier to interpret by a domain expert.
On top of that, we win expressiveness by using both
unidirectional and bidirectional rules.

Second, we mined redescriptions with the ReReMi
algorithm [5], restricted to monotone conjunctions. This
algorithm selects (bidirectional) redescriptions based on
ad-hoc pruning, driven primarily by accuracy. Table 2
shows that ReReMi finds rules with average conf+ val-
ues that are on par to those of Translator. Trans-
lator is slightly better, with 0.68±0.1 over all datasets,
versus 0.65±0.13 for ReReMi. Furthermore, the identi-
fied redescriptions yield poor compression ratios, some-
times even inflating the data as a result of redundancy
within the result set. Again, the purpose of the method
is different from ours: Redescription Mining aims to find
individual bidirectional rules of high accuracy, but these
are likely to be redundant and do not explain all asso-
ciations across the two views of the data (and certainly
not unidirectional ones).

Third, we perform an indirect comparison to
Krimp. Since Krimp uses itemsets and we use rules, a
direct comparison is impossible. However, we can still
show that the itemsets found by Krimp do not capture
the same associations as the rules discovered by Trans-
lator. For this we devise two ways to transform a set
of itemsets into a translation table. Note that this nec-
essarily implies that we use the task and problem as
formalized in Section 3 for this comparison.

For the first variant, Krimp code tables mined

from the joint two-view datasets are directly interpreted
as bidirectional rules and put in a translation table.
Then, compression is computed using the translation
scheme introduced in this paper. For the second variant,
denoted Krimp+Greedy, the itemsets obtained with
Krimp were considered as candidates and used as input
for the Translator-Greedy method. Krimp was
used with pruning enabled, and closed frequent itemsets
were used as candidates, with minsup set to the values
mentioned in Table 1. Table 2 shows the results
obtained with both variants.

The results clearly demonstrate that Krimp aims
at finding associations that are very different from
those that Translator identifies. Krimp finds many
more associations, and when treated as translation
table the complete set of associations results in ex-
tremely bad compression: compression rates range up
to 816.34%, implying that the translation is inflated to
more than eight times its original encoded size. The
rightmost columns show that even when the Krimp
itemsets are considered as candidates and fed to the
Translator-Greedy method, the resulting transla-
tion tables are generally larger and yield worse com-
pression ratios. This demonstrates that the associations
found by Krimp are not a good solution to the task con-
sidered in this paper.

Overall, we conclude that translation tables have
substantially different properties from the results of
the related methods considered in this paper, and that
Translator provides better results to the problem
considered: smaller sets of rules that provide a better
characterization of the associations across the two data
views.
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