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Abstract—Redescription mining aims at finding pairs of
queries over data variables that describe roughly the same set of
observations. These redescriptions can be used to obtain different
views on the same set of entities. So far, redescription mining
methods have aimed at listing all redescriptions supported by
the data. Such an approach can result in many redundant
redescriptions and hinder the user’s ability to understand the
overall characteristics of the data.

In this work, we present an approach to find a good set of
redescriptions, instead of finding a set of good redescriptions.
That is, we present a way to remove the redundant redescriptions
from a given set of redescriptions. We measure the redundancy
using a framework inspired by the subjective interestingness
based on maximum-entropy distributions as proposed by De Bie
in 2011. Redescriptions, however, raise their unique requirements
on the framework, and our solution differs significantly from the
existing ones. Notably, our approach can handle disjunctions and
conjunctions in the queries, whereas the existing approaches are
limited only to conjunctive queries. The framework also reduces
the redundancy in the redescription mining results, as we show
in our empirical evaluation.

I. INTRODUCTION

Redescription mining is a data mining task that aims at
finding alternative characterizations of (roughly) the same
objects. The motivation behind this is simple and intuitive:
If some objects can be described in alternative ways, then they
form a particularly coherent group. Furthermore, identifying
such alternative descriptions tells us something about the
properties appearing in such synonymic characterizations.

Take for instance the case of areas of the globe, for which
climatic information as well as records of observed animal
species are available. Areas that share a particular climatic
profile and host particular species form a coherent group,
closely related to the concept of an environmental niche
in ecology. As another example, in medicine, identifying
groups of patients who share similar profiles might help relate
genetic traits, disease symptoms, and treatment outcomes. The
same idea can also be of interest in other fields, including
ethnography, sociology, or chemistry, for instance.

Like many other data mining tasks, redescription mining
is subject to the issue of pattern explosion, whereby a large
number of results are returned by the mining algorithm — many
of them slight variations of one another — and we face the
challenge of identifying an interesting non-redundant subset
for further inspection.
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Thus, the problem we address in this paper is one of pattern
selection. Considering a dataset that consists of a pair of
matrices over the same objects, and given a collection of
redescriptions that has been mined from this dataset, we want to
select a redescription set that is informative and non-redundant.
Note that we are not introducing any new pattern formalism
nor any new algorithm for mining redescriptions. Instead, we
focus on the problem of ranking and filtering redescriptions as
a post-process.

One approach to evaluating the interestingness of patterns,
which we adopt here, is to use them to construct a statistical
model of the data. A pattern can be seen as an observation
from the data and can be evaluated against the current model.
If the current model already accounts for the observation, i.e.
the pattern does not provide any new information about the
data, it is considered to be redundant and can be discarded.
Otherwise, the pattern is deemed interesting and is integrated
into the model, increasing its quality.

Our approach is iterative: at each step the candidate redescrip-
tions are evaluated against the model that encapsulates the
current knowledge available about the data, i.e. the information
about the dataset acquired through the redescriptions selected so
far. We can compute a score for each candidate indicating how
much novel information it contains with respect to the current
state, allowing us to rank the redescriptions. We then select
the most informative one and incorporate it into the model.
Next, we proceed with updating the scores of the candidates
and selecting the best one, until no additional information can
be incorporated into the model; that is, until only redundant
candidate redescriptions are left.

Our modeling techniques rely on the Maximum Entropy
distribution and the framework of subjective interestingness,
as proposed by De Bie [6]. In brief, we keep up a maximum
entropy distribution conditioned on all of the already-seen
redescriptions to model what is already known, and consider
redundant all redescriptions that have a high likelihood under
this distribution. We emphasize, however, that our model differs
from that of [6] and subsequent work (e.g. [21]) in significant
ways, as the patterns we are studying — namely redescriptions
— are more intricate than the patterns studied in prior work.

The approach presented here rests on two main lines of work.
Redescription mining, on one hand, provides us with a rich
pattern language, while maximum entropy modeling, on the



other hand, provides us with well-grounded selection principles.
The next section where we cover the related research, is divided
between these two domains upon which we build.

II. RELATED WORK

A. Redescription Mining

Since the introduction of redescription mining by Ramakrish-
nan et al. in 2004 [31], a few problem variants [8], [28], [36],
several algorithms [9], [13], [31], [37], as well as an interactive
mining tool [11], [12] have been introduced. Redescription
mining is a descriptive approach, tailored towards exploratory
data analysis. Redescriptions are local patterns in the sense
that they characterize subsets of the data, rather than capturing
properties of the dataset as a whole. Redescription mining
is related to rule mining techniques that aim at discovering
association rules [2] or subgroups [27], for instance, and to
classification and clustering techniques including subspace
clustering [1], [22] and multi-view clustering [5], among others.
However, its goal of finding descriptive, interpretable patterns
across several datasets is a distinguishing feature.

B. Maximum Entropy modeling

The maximum entropy principle, formalized by Jaynes [7],
allows to build a probability distribution over possible datasets
under constraints, with the advantage of not adding extra bias
beyond what is assumed from the constraints.

It is a versatile principle which has been applied to ecological
modeling [30] as well as to natural language processing
(NLP) [4], and has been used to construct a condensed repre-
sentation of the dataset to be used for query approximation [25],
[29] or to compute degrees of belief [14].

De Bie [6] proposed to use maximum entropy models to
evaluate subjective interestingness and in the present work
we follow his general idea. Importantly, unlike the previous
work (e.g. [6], [21], [32]), we need to also handle disjunctions,
rather than just conjunctions of the variables. On the other
hand, similarly to most existing approaches [16], [32], we apply
ranking and filtering as a post-processing, meaning that we
require as an input a collection of candidate patterns. Mampaey
et al. [24] proposed a method for finding interesting itemsets
which mines candidates on the fly.

A further distinction is between approaches which model
rows of the dataset [24], [32] versus those which consider the
dataset as a whole [6], handling increasingly complex priors and
pattern types [18]-[20]. Related modeling approaches include
the use of Markov Random Fields [35] and the minimum
description length (MDL) principle [33], [34], but do not offer
a similar flexibility and modeling power.

III. BACKGROUND

A. Maximum Entropy modeling

The maximum entropy distribution p subject to the con-
straints C = {(f.,7.)} is defined as the solution to the

following program:

max—/p(a:)logp(a:)dw (1)
%

peEP

such that / p(x) fe(x)dx = 7, YeeC. (2)
v

The optimisation is over the set P of distributions p over V
(i.e. such that p(z) > 0 and [, p(x)dz = 1).

The solution to this optimisation problem can be computed
using standard tools from constrained variational optimisation
in order to obtain

pa(r) = % exp (Z Acfc(r)> )

ceC

3)

where ). are the Lagrange multipliers for the constraints and
Z, 1s the partition function

Zy, = /Vexp <Z )\Cfc(:c)> dx .

ceC

4)

The Lagrange multipliers A in Eq. (4) can be computed as the
solution of the convex dual

q(A) =log Zx — Y _ Aeme,
ceC
which can be shown to be equivalent to the conditions

E, [f.(r)] = 7. Vee C.
B. Redescription Mining

&)

In the formulation of redescription mining considered here,
the input data consist of entities with two sets of characterizing
variables, thus forming a dataset with two sides. We generally
refer to these two sides as the left and right-hand sides, and
represent them using two matrices Dy, and Dy over two sets of
variables V1, and VR, respectively. The domains of the variables
are denoted by Vi, and Vg, respectively, and they can be either
continuous or discrete. The set of entities characterized by the
two sides is denoted by F, thus both matrices have |E| rows.
The value of D(i, j) is the value of variable v; € V for entity
d; € E.

The output of redescription mining consists of a collection
of query pairs, the redescriptions, of the form R = (¢, qr),
where the queries g, and gr are logical statements over the
variables in Dy, and Dy, respectively.

Truth assignments are then defined over the variables by
requiring them to take values within a subset of their domain.
We denote these truth assignments using Iverson notation, e.g.
[a < v < b, except for Boolean variables where the truth
assignment [v = True] is denoted simply as v. These truth
assignments and their negations are combined into logical
statements using the Boolean operators A (and) and V (or).

The support of a query g is the subset of entities for which the
query holds true, that is supp(q) = {d; : ¢ is true for d; € D}.
The support of a redescription R is the set of entities that satisfy
both logical statements supp(R) = supp(qr,) Nsupp(gr ). The
set of variables over which ¢ is expressed is denoted as vars(q).



To measure the accuracy of a redescription R, we use the
Jaccard coefficient of the supports of the queries

_ |supp(qr) N supp(gr)|
|supp(qr) U supp(qr)|

J(R) = J(qL, qr) )
being at once a simple, symmetric, and intuitive measure.

Accuracy, however, is a local feature of the redescription
and does not help in finding a good set of redescriptions.
Therefore, we need to look at the variables and values at play
in the logical statements of the redescriptions. We will use these
logical statements to constrain a maximum entropy distribution
over possible datasets, allowing us to evaluate the probability
of observing a certain redescription given those we already
know to be present.

Most interesting in a redescription is the association between
the two queries, and the entities that satisfy both of them.
For this reason, our main objective here is in modeling the
conjunction of the two queries that make up a redescription,
and the intersection of their supports that is simply the support
of the redescription. Henceforth, we will treat a redescription
R = (qr,qr) as the logical statement s = g1, A gr, with
its associated support supp(s) = supp(qr) N supp(gr) =
supp(R), evaluated over the dataset D resulting from the
concatenation of Dy, and Dg; similarly, the variables in Vg,
and Vg are pooled together to form V. Thus, our dataset D
is a matrix with N = |V/| columns and M = |E| rows.

IV. THEORY

We now introduce our probabilistic models for the data.
First, we explain how to model the values occurring within an
arbitrary row while accounting for the presence of a given set
of statements, using the maximum entropy principle. Next, we
explain how to represent an entire dataset based on this row
model, using a mixture model that comes in two variants.

A. Modeling Rows

Let r represent a vector sampled from the domain of the
variables V = V; X -+ X Vy. Our goal in this section is to
define p(r | S), the probability that an arbitrary dataset row
takes on values 7, assuming the presence of a given collection
of logical statements S. We denote this probability simply as
p(r) when the constraining set of statements is clear from the
context. Each statement s € S is associated to a probability
ms that a random instance r satisfies it, with respect to the
probability measure defined by the model pp4. Thus, in our
setting, the conditions of Eq. (5) can be specified formally as

E,. [xs(r)] =7 VseSs, (6)

where x,(7) is the characteristic function of the statement s:
Xs(r) = 1 if s holds true on r, and x(r) = 0 otherwise.
We can assume that these conditions are satisfiable since they
are derived from actual observations. Then, plugging them as
constraint functions into Eq. (3) and (4), we obtain the solution

and partition function

pa(r) = 5 exp (Z Asxsm) 7 ™

ses

Zy = /v exp <Z )\st(w)> dx . (8)

ses

However, this formal solution to the maximum entropy
optimisation problem cannot be used directly. Indeed, in this
general form the model is computationally too complex and
we need to exploit the problem structure to simplify it.

Factorising the distribution: In its general form, the
integration in the partition function of Eq. (8) runs over
the domain of the entire set of variables, whereas each
logical statement typically only involves a small subset of
them. Therefore, to simplify the computation we can split
the statements into groups, so that the computation of each
group involves as few variables as possible and can be carried
out independently. The requirement for this is that the sets of
variables appearing in the different groups be disjoint from
one another, which also allows the sums within the exponents
of Eq. (7) and (8) to be similarly split into groups.

Hence, we define a partitioning X of the variables V' such
that for all s € S there exists a K € K with vars(s) C K,
and denote by Sk = {s € S : vars(s) C K} the subset of
statements that only contain variables in K. Then, the sets
{Sk,K € K} form a partitioning of S and we can write

exp (Z /\sxs(r)> = ] ew < > Asxs(r)> -

sES Kek s€ESK

The integral in the partition function can also be split into
integrals over domains Vg of the variables in K. We obtain

pa(r) = [] pac(r). ©)
KeK

which is a product of sub-probabilities defined over independent
subsets of the original variables

1
L(r)= ex ( Ag S(7“))
Pa Zrn) P S;:K X
Zr(A) = ex < As s(m))dw ,
K /VK p S;:K X

and the normalisation can be performed per each Z () term.

Example. Consider a dataset over six variables, {v4,..., v},
and a collection of five logical statements over these variables
S = {s1,...,85}, as shown in Fig. 1 (right). In this case,
the finest partitioning of the variables, so that all statements
are completely contained within one cluster, consists of the 3
groups Ky = {va,vp,vc}, Ko = {vp,vE}, and K3 = {vr},
as shown in Fig. 1 (top). Suppose that at this point the constraint
s¢ = ve V —lup < 30] is added. To fulfill the containment
requirement, we now need to merge K; and Ko, resulting in
the clustering shown in Fig. 1 (bottom).



va,vp,vc €{0,1}
vp € [10,50]
VE € [0, 5]
VF € {0, 1}

S1 =vA

So =vp N vc

s3 =va Vup Voo

S4 = [2<UE]

s5 = [20<vp]V[2<vEg]

S = Vo Vﬁ['li}) <30}

Figure 1: Clustering of the six data variables v4,...,vp of
a row model with five logical statements s1, ..., s5 (top) and
after the addition of a sixth statement sg (bottom).

To further speed-up the computation, we can also perform
a re-parametrization (or factorisation) of the distribution, for
instance using the Junction Tree algorithm [17].

Quantising the domains: A further source of com-
plexity results from integrating over the domain of the variable
set. We can exploit the fact that the redescriptions consider
intervals over the continuous variables to quantise the variables
into discrete bins defined over these intervals.

Looking at the truth table for the statements in S, we
group together the regions of the domain where the same
combination of statements are satisfied. Formally, adopting
an arbitrary ordering si, ..., s, of the statements in .S, for a
vector (t1,...,t,) € {0,1}7 of truth values for the statements
we denote the corresponding collection of regions as

Tiyot, ={r €V :xs,(r)=t; forall s, € S} .

The resulting partitioning of the domain is denoted as 7. Using

a similar notation for the subscripts, we denote the combinations

of Lagrange multipliers as (¢,..., (A) = A1 t1 4+ Ay - o
We can now express Eq. (7) and (8) as

pa(r) = ﬁexp (CemyN) (10
Z(X) = exp (G¢(A))dz (1)
= Z [ Te(N)] exp (Ge(N))

where t(r) = (x5, (7),. .., Xs, (7)) is the truth vector of the
statements for the current point.

Example. Going back to our example, consider the computation
of the factor associated to group Ky = {v4, vp, v}, involving
statements s1, so and s3 (see Fig. 1). The truth table of these
statements is shown in Tab. I (left). The terms can be gathered
based on the satisfiability of the constraints in the just 5
different combinations of Tab. I (right). The partition function
of Eq. (11) can then be written with one term per combination,
as

ZK1 (A) =1- eCooo +9. eC001 1. eCou +3. e(101 +1- €C111'

Table I: Domain quantisation for the statements {s1, 2, S3}
over the Boolean variables {v4,vp,vc} from K. Statements
truth table (left) and accumulated terms (right).

VA VB VC Xs1 Xs2 Xss T

0 0 0 0 0 0 Tooo Ty Ty Ct

1 0 0 1 0 1 Ti01

0 1 0 0 0 1 Tho ;38(1’ ; )?3

1 1 0 1 0 1 Tio T 1 Nt

0 0 1 0 0 1 Ty 011 278
101 1 0 1 T Tiow 3 M+

101 T111 1 )\1 + )\2 + )\3

0 1 1 0o 1 1 To11

1 1 1 1 1 1 T

Table II: Domain quantisation for the statements {s4, s5} over
the real-valued variables {vp,vg} from Ks. From statement
truths to region probabilities P(Q) := fQ p(x)dr.

Q vp VB XsaXss Tt |Til Gt p(x) PQ)
Q1 [10,201[0,2] 0 0 T 10-2 0 1/40 0.5
Q2 [20,501[0,2] O 1  Tor 30-2 As 1/(40-15) 0.1
Qs [10,20] [2,5] 1 1 10-3 . 0.1
Qi [20,50] [2.5] 1 1 [T p3g.3 AatAs 2/(40-15) ¢ g

In this small example, the number of terms has been reduced
from 2% = 8 to 5. As the number of variables per factor rises,
this simplification can become more dramatic.

In the more general case involving non-Boolean variables,
the boundaries delimiting the regions of the domain can be
easily identified from the thresholds of the intervals.

Example. Consider now the com-
putation of the factor associated to

group Ko = {vp,vg}, involving 50 -

the statements s, and s5 of Fig. 1, 0%

respectively; we assume satisfiabil- 4 s3] Q2 P ‘Q4 °

ity probabilities m;, = 0.4 and 90 K

s, = 0.5, and use domains vp € Q1 K Q3 >

[10,50] and vg € [0, 5]. 0=
The literals involved are [2 < Vg

vg] and [20 < wp], so the rele-
vant thresholds are (0,2, 5) for vg
and (10, 20, 50) for vp, respectively.
The resulting quantisation is de-
picted in Fig. 2, where each of the four blocks represents
one region of the domain, denoted as )y, ..., Q4. For each
region, the satisfiabilities of both statements are shown in
Tab. II. This combination determines the partition 73 to which
the region is assigned. The measure |7 | of a partition is simply
the sum of the areas of the regions it consists of. Using these
partitions and the corresponding combinations of Lagrange
multipliers, we can write the partition function as

ZKz()‘):/ BCOOO‘)dCC—i-/ 6401(>\)dm+/ eCu(A)dm
Too Tox T11

+ ‘Tll ‘ eMTAs

+120 M5

Figure 2: Regions of the
domains of vp and vg.

= |Tpo| €°

=20

-+ |T01| 6)‘5
+ 60 e



From the optimality conditions of Eq. (6) it follows that

(120 eMt2s) /Z,
(60 e*s + 120 e ts) /Zp, =

0.4
0.5,

Tsy =
sy =

which can be solved analytically to obtain e’ = 2, e*s = 1/15
and Zg, = 40, giving the probability measure

pa- (1) = 1/40 - 2% (") 1 /15%5 (1)

The case of certain satisfiability: A special case
which allows the problem to be simplified consists of sets of
statements such that all the statements are certain (i.e. w4 = 1).
Indeed, we can show that the maximum entropy distribution
incorporating a set of statements S all with 74 =1 is

p(r) = {UZ

if r satisfies all s € S, and
0 otherwise ,

where Z = |T3] is the measure of the subset 77, which consists
of the regions where all the statements in S are satisfied.

B. Modeling a dataset

Our models take as input an original dataset D and a
collection of logical statements S. To each deterministic row
d; in D we associate a random counterpart denoted by r;,
constrained by those statements in S that are satisfied on
d;. Let us denote this subset of statements by S;, that is
S; ={s €5 :xs(d;) = 1}. Using the row model introduced
in the previous section, henceforth denoted by proy, the
probability of the row values can now be defined as

]P’(?‘l ‘ D,S) = pRow('ri ‘ S’L) . (12)

Given the row probabilities, our goal is to combine them
into a probability over all possible values of a dataset.

A naive approach would be to model the data as a set of
independent rows so that the total probability is a simple prod-
uct. This has a major drawback, though: the total probability
depends too much on the probabilities of the individual rows.
For instance, if the satisfiability probability of a statement on
a row is halved, the total probability will be halved too.

Instead, our models compute the total probability as a
weighted average of row models. In our first model variant,
called MEALL, the average runs over all the rows in the dataset,
while our second model variant, called MEBLK, considers only
those rows which satisfy the given query statement.

Both MEALL and MEBLK are mixture models. MEALL is
represented by the solid arrows of the graphical model in Fig. 3.
Each of the M plates represents a variable r; depending on S
and d; through S;, as explained above. The mixing coefficient
p acts as a prior probability over the row indices. It specifies
which row models should be mixed together to obtain the final
distribution over the values of 7, a single row summarizing
the entire dataset. To enforce the selection behaviour r = 7,
the row selecting function can be expressed as

P(r|ry,....,7m,p) =0(r—r,), (13)

Symbol Meaning
p Row prior
S Model constraints
S;  i-th row constraints
d; i-th dataset row
r; i-th row model variables
T Row selector/Final distribution
s Query statement
q Satisfiability of query statement

Si S

Shape Meaning
(O Random variable
O Deterministic function
0 Known parameter
----- »> Dependencies in MEBLK only

Figure 3: Graphical Representation of MEALL (solid lines) and
MEBLK (all lines).

where ¢ (+) is the Dirac delta function! The row prior p is the
uniform distribution over the row indices.

We denote by ¢ the satisfiability of a query statement s on
a row r, which is constant given s and 7:

P(q|r,s):=xs(r). (14)
Now the posterior distribution of MEALL becomes
M
PaIsDS)=Y P [ Polrri)
p=1 VVi,...,Vum

M
Xp(q | T,S) X HP(’I"Z' | D,S)d’l"d’l"l---dT]V[ (15)
i=1

which simplifies by substituting the specific distributions to

M
1
parn(q | 83D, S) = i 5 Prow(q | 5;5i) , (16)
=1

with prow(q | $;5:) := E[xs(r:) | Si] being the probability
that the query statement s is satisfied on row r;.

The quantity in Eq. (16) is essentially an average over all
the probabilities assigned by the rows. If we change the row
prior distribution to be uniform over the rows which support
the query statement s exclusively,

s(d
'adMaS):: A)/([(p)

Zi:l Xs(di)
we obtain the MEBLK model, shown as the dotted dependencies
in Fig. 3.

Note that MEALL possesses the useful property that
parn(ql7s;+) = 1—parw(qls; ), which does not generally hold
under MEBLK. The latter, however, offers a more intuitive
interpretation of the occurrence probability, in accordance
to the framework of De Bie [6]. In particular, it is better
suited to comparing queries without penalizing support size
and yields qualitatively better results, as well as generally lower
computational complexity.

P(p|d,.. ) (a7

I'The Dirac delta, which is the continuous equivalent of the Kronecker delta,
is a generalised function that assumes an infinite mass when its argument is
zero, in our case effectively ensuring that only the case of 7 = 7, is possible.



V. ALGORITHMS

The models described in Section IV can be used for different
tasks which include generating synthetic datasets and ranking
patterns. We focus on the latter, which in turn involves two
main operations: (i) training the model by incorporating new
information in the form of patterns and (ii) querying the model,
i.e. evaluating the occurence probability for a pattern. In this
section, we present the algorithmic procedures for carrying out
these two main operations in practice.

Recall that the patterns considered here consist of logical
statements (redescriptions) and their supporting rows.

A. Training the model

As explained in the previous section, our models are mixtures
of row models. Each of the row models is maintained in a
factorized form where different factors involve disjoint sets
of variables that do not interact in any statements, SO as to
allow independent computations. In addition, any given factor
is shared by only a subset of the row models.

Our models are maintained as a set of factors . Each factor
f contains a set of statements Sy and applies to a subset of
rows Iy. Accordingly, it is represented as the pair f = (S, Iy).
Overloading the notation, we denote by vars(f) the set of data
variables associated with f, that is, vars(f) = [, s, vars(s).
For any given factor f, vars(f) and Iy define a tile in the
dataset, and

Ji ={f € F | vars(f) Nvars(s) # 0, i € Iy} (18)

is the set of all factors which overlap with a statement s
and contain row ¢ in their tile. Note that factor tiles do not
overlap by construction. For any given statement s, vars(s)
and supp(s) also define a tile in the dataset.

Training the model entails incrementally incorporating new
statements into it. At each step, the task of the main training
procedure is to update the model factors with a newly appended
statement, while updating the set of factors so that independence
is preserved by avoiding overlaps.

Algorithm 1: TRAINMODEL
input :model F, new statement s
output :updated model F

1 J <« {J;:i€supp(s)};

2 foreach J € J do

3 IJ < ﬂfGJ If 5

4 f(—fU{({s}UUfeJSf,IJ)}; // Add new factor

// See Eq. (18)

// Collect cluster rows

5 foreach f € J do // Update overlapping factors
6 Ip«Ip\1y; // Update rows
7 if Iy # 0 then

8 | F« F\U{fh // Delete
9 return F;

The pseudo-code for this procedure, TRAINMODEL, is
presented in Alg. 1. It works as follows. When adding a new
statement s to the model, we form the collection 7 of the sets
of existing factors that overlap with s, as per Eq. (18) (line 1).
Then, for each cluster J we create a new factor and add it to
the model (line 4). The new factor applies exactly to the rows

N vars(s)

—

M
I
f2 =y | Jma
2 1 = f
I ’ S
f f1
varsm) vars(fa)

Figure 4: From two existing factors and a new statement (left)
to the updated model containing five factors (right).

of the cluster (line 3) and contains all statements from the
existing overlapping factors, in addition to s. We also update
the set of rows to which the existing overlapping factors apply
(line 6), deleting the factor altogether if it no longer applies to
any row (line 8).

In the example shown in Fig. 4, the model contains two
factors, f1 and fo. A new statement s is to be added, triggering
the creation of several new factors. Factors fy,,, fm, and fm,
are created by merging the rows where s overlaps respectively
with fi, with f5, and with both, while factor f, is created
for the rows that did not overlap with either (corresponding
in Alg. 1 to the case of an empty row cluster J = (}). The
updated f;, now covering fewer rows, remains, whereas fo
has been deleted.

Note that the type of the domain of the variables only affects
TRAINMODEL implicitly, through the satisfiability assessment
Xs(+) of the newly appended statement s over the dataset rows.

B. Querying the model

We now turn to the procedure that allows us to query a model.
That is, given a model that has been trained as explained above,
the original dataset and a pattern extracted from the dataset,
the aim is to evaluate the occurence probability of the pattern.

The main building block in computing this probability is
the evaluation of the occurrence probabilities over single rows,
essentially the probabilities predicted by the row models.

Algorithm 2: QUERYMODELROW

input :model F, statement s

output : probability prow (s|D; F)

Fs « {f € F|vars(f) Nvars(s) # 0};

(w,v) < QUANTIZATION(S, Fs);

Zs +— 1Tw;

p— (vw)/Zs ; // ® is the element-wise product
p < MARGINALIZEANDNORMALIZE(s, Fs, P);

return p;

I NV S

Querying a row model: Each row model is pa-
rameterised by the subsets of statements that occur on the
corresponding data row. The occurrence probability prey (s |
D; F) of a statement for a given row model is computed by
QUERYMODELROW as shown in Alg. 2 and works as follows.



At first, we collect in F, the factors of the model that
share variables with statement s. Next, the domain of the
variables can be partitioned into regions over which the value
of the characteristic function of s is constant, by syntactically
parsing the statement and collecting all the involved thresholds
(cf. Sec. IV-A). Since, by construction, the value of the
characteristic function of s is the same in all points of a region,
we can compactly represent the result of this quantisation
by a pair of vectors (w,v), where w; measures the area of
region 7 and v; indicates whether s is satisfied on that region
(line 2). Using this information, we are able to compute the
probabilities for the different regions satisfying the statement
(lines 3—4). Finally, the probability of each region of the domain
is appropriately re-weighted with respect to the different factors
in Fs (line 5). More specifically, statement s together with
the subset F form a Junction Tree [3], and we may therefore
employ the Message Passing steps of the Junction tree algorithm
to efficiently re-scale the initial probabilities. In this way, the
effect of each overlapping factor is taken into account and
the corresponding constraints respected, to finally yield the
probability of statement s.

Putting the rows together: Now that we know how
to compute the probabilities for individual rows, we need to
combine them together. The two models, MEBLK and MEALL,
offer two alternatives for doing so. The overall probability
returned by MEALL is simply the average of pgroy(s | D; F;)
over all rows ¢ in the dataset, while MEBLK only averages
over rows that satisfy the statement under evaluation, i.e. over

supp(s).
C. A ranking scheme

Combining the two main operations of training and evalu-
ation explained above, the procedure for ranking patterns is
presented in Alg. 3.

Algorithm 3: RANKPATTERNS

input  :dataset D, set of statements S with selected statement sg
output :ordered list of statements O
F < TRAINMODEL(f, s0);
O <+ (s0); S+ S\ {so};
while S # () do
s* < s € S, minimizing QUERYMODEL(F, D, s);
F < TRAINMODEL(F, s*);
O+ (0,s*); S+ S\ {s*}
return O;

B N N

This procedure takes as input a dataset and a collection
of statements, with one of them designated to initialize the
model training (line 1). This method then iteratively constructs a
ranking of all the statements. In each step, the model is queried
to identify the statement with lowest predicted probability
(line 4), which is essentially the statement whose observation
is most surprising at that point. This statement is incorporated
into the model (line 5), appended to the list of results and
removed from the set of candidates (line 6). The procedure
iterates until all statements have been ranked. Note that this
method closely resembles the dynamic iterative ranking scheme
of Mampaey et al. [23].

VI. EXPERIMENTAL EVALUATION

In this section, we present experiments to investigate the
behaviour and performance of our algorithms and compare our
two models MEALL and MEBLK.

We implemented our algorithm? using MATLAB for the
high level procedures and C++ for the core operations. All
experiments were run on a cluster with 16 cores (at 2.4 GHz
and with 48 GB of memory). The sets of redescriptions
for the real-world data were mined in advance using the
REREMI algorithm [10] in the Siren redescription mining
interface® [11], [12]. Among existing redescription mining
algorithms, REREMI offers the most flexible query language
and is simultaneously rather suceptible to redundancy in the
result set.

We proceed with a series of experiments on synthetic datasets,
before moving on to real-world data.

A. Evaluation on synthetic datasets

Our goal in this series of experiments with synthetic datasets
is to shed light on the different aspects that impact the
complexity of the computations in a controlled experimental
setting. Our focus here is on the quantitative evaluation of the
performance of the algorithms and our primary measure in
these experiments is therefore the wall-clock time for training
and querying the model.

We start by considering the simplest case of a model trained
with a single Boolean statement and queried with another
Boolean statement. That is, we consider two statements, s;
and s4, used to constrain and to query the model, respectively.
In other words, we first train the model with s;, then query
the trained model to evaluate the occurrence probability of s,.

We call width of a statement the number of distinct variables
it contains, i.e. width(s;) = |vars(s;)|, while the overlap
between two statements is simply the number of variables they
have in common, i.e. over(sy, s,) = |vars(s;) N vars(sq)|. We
can fully control these parameters by using logical conjunctions
and choosing suitable sets of variables for our statements.

Our base case is as follows. We let s; = vy A vg Ave and
$q = vp Avc Avp, so that width(s;) = width(s,) = 3 and
over(sy, 84) = 2. We fix the number of rows in our dataset to
M = 1000, of which 70% satisfy both s; and s, while the rest
are evenly distributed over the remaining 3 truth combinations.

Starting from this base case, we can study the impact of
different parameters in turn, by repeating the training and
querying of our model while varying a chosen parameter of the
problem. For each configuration, we record the total running
times for training and querying. The results are reported in
Fig. 5. The markers and the error bars indicate respectively
the mean running times and twice the standard deviation for
10 repetitions of each configuration.

The first parameter we consider is the number of rows in the
dataset (Fig. 5a), the second parameter is the number of query
evaluations, that is, we train the model once with s;, before

2The source code is available at http://siren.mpi-inf.mpg.de/max-ent/.
3http://siren.gforge.inria.fr
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Figure 5: Experimental results: (a-h) synthetic datasets (running times for training and querying averaged over 10 repetitions,
the width of the error bars equals twice the standard deviation) and (i) real world datasets (averaged querying times).

repeatedly querying it with the same statement s, (Fig. 5b). In
both cases, the behaviour of both models is linear.

Next, we study the impact of the shape of the statements
by fixing the width of one statement to 3, while increasing
that of the other, always keeping their overlap constant. The
models show the same exponential increase of time in both
cases (Fig. 5c). Indeed, in both cases factors of equal sizes
need to be evaluated.

We look at the impact of interactions between the statements,
in terms of shared variables and of shared rows. The impact
of varying variable overlap, as measured by over(s;, sq), with
constant widths width(s;) = width(s,) = 11, is shown in
Fig. 5d. On the other hand, the impact of varying row overlap,
as measured by J(sq, s4), is shown in Fig. 5e. The latter shows
further evidence that the number of different value combinations
matters, rather than the number of rows in the overlap. Indeed,
since the algorithm processes rows clustered according to the
combination of factors they participate in, the number of such

clusters in the dataset has a major impact on the running times.

To further investigate the complexity arising from the
structure of the dataset through the number of clusters it
induces, we modify our setup as follows. Starting with an
empty model, in each iteration 7 we add a different statement
s; then query the updated model with the same statement s,,.
All statements are defined over 10 Boolean variables. The
query statement is a simple conjunction s, = v1 A ... A v19,
whereas the training statement added at the ¢-th iteration has

the form s; = v; A (\/N# v,.i) V= (\/H# vﬁ)>. The training

statements s; all have width(s;) = 10 and over(s;, s,) = 10,
but have all distinct truth tables.

Next, we create 3 different datasets, each with M = 1024
rows. The first one only contains rows from {0, 1}, i.e. with all
of their values equal, so that at most 2 clusters will be created,
regardless of the number of training statements added to the
model. The second dataset contains rows from the standard
basis {e, : k = 1,...,10}, so that the number of clusters
increases by one with each added training statement. Finally,
the third dataset contains rows with all the possible Boolean
combinations of the 10 variables, so that the number of clusters
grows exponentially, reaching 2° at the i-th iteration and thus
representing the worst case scenario.

The running times for each iteration on these three datasets
are reported in Fig. 5f-5h, respectively. We observe that the
running time for the MEALL model closely follows the number
of clusters, since they all have to be evaluated. On the other
hand, the MEBLK model only evaluates the clusters that support
54. The small additional overhead for the MEBLK model in the
last case is due to the training phase, which still needs to track
all clusters.

B. Evaluation on real-world datasets

After this systematic investigation of the performance of our
algorithms and models on synthetic datasets, we now present
results from real-world data for a qualitative assessment.

Our first example illustrates the iterative ranking process.
Using the REREMI algorithm, we mined redescriptions from



Table III: Ranking DBLP with MEBLK. Steps 0, 1, 6 and 7.

qL IR J(R) aqu ar p(R) aqu R p(R) au ar p(R)
SDM P.Yu Vv V. Kumar .198 SDM P.S.YuV V. Kumar — SDM P.Yu Vv V. Kumar — SDM P.Yu V V. Kumar —
SDM P.Yu VvV V. Kumar .198 EDBT A PODS A. Silberschatz 125 EDBT A PODS A. Silberschatz — EDBT A PODS A.Silberschatz —
COLT A ICML R. Schapire .175 FOCS A SODA N. Alon .125 FOCS A SODA N.Alon — FOCS A SODA N. Alon —
COLT A ICML R. Schapire .175 UAIAICML  D.Koller .125 UAIAICML  D.Koller — UAIAICML D. Koller —
COLT P.BartlettV M.Kearns .173 COLT A ICML R. Schapire .125 VLDB A ICDT H. Garcia-Molina — VLDB A ICDT  H. Garcia-Molina —
COLT P. Bartlett V A. Blum .172  COLT A ICML M. Kearns .125 COLT A ICML M. Kearns .133 COLT A ICML M. Kearns —
SDM J.Han V V. Kumar .166 COLT A ICML R.Schapire .125 COLT A ICML A.Blum .134 ICDTASIGMOD S. Abiteboul .153
ICDT R.MillerVS. Abiteboul .164 ICDT A PODS S. Abiteboul .125 FOCS A COLT Y.Mansour .143 ICDT A PODS  S. Abiteboul .153
SDM V.Kumar V H.Wang  .164 VLDB A ICDT H.Garcia-Molina .125 COLT A ICML R. Schapire .147 FOCS A COLT Y. Mansour .161
COLT C.Smith vV Y.Mansour .162 COLT A ICML A.Blum .125 COLT A ICML R. Schapire .147 SDM A KDD J.Han 215

Table IV: Redescriptions from Bio ranked by accuracy.

qL arR
(1) Polar Bear [-7.07 <tz < —3.38]
(2) Polar Bear [-16.7 <ty < —11.5]
(3) Polar Bear [—4.5 <tf, < —1]
(4) Polar Bear [1 <ts < 3.5
(5) Polar Bear [-9.6 <t < —5.6]
(6) Polar Bear [-11.9 <tf < —7.3]
(7) B.Vole V N.R. Vole [10.9 <t < 29.9] A [-9.2 <t], < 12.8]
V' S.Mouse V H. Seal A[34.7 <pg] A [47.6 <pg]
(8) W.Mouse (([2.9 <tV [9.7 <tF < 13.2])
A [—3.26 <t;; < 15.9]) v [5.81 <t < 5.88]
(9) W.Mouse V H. Seal [—0.8 <tF]A[-0.141 <t,, < 19.6]
V A.Noctule A [26.6 <p,]

Table V: Redescriptions from Bio ranked with MEATLL.

qL dr

(1) Polar Bear [-7.07 <t;< —3.38]
(2) G.W. Shrew ([15.6 <tg < 19] A [1.62 <pg < 7.44]
A E.Mongoose A [66.2 <p,, < 137]) Vv [13.9 <t, < 14.3]
(3) W.Mouse A N.Bat ([3.2 <tf < 14.5) A[17.3 <tf < 25.2]
A E.P.Shrew A [14.9 <t < 22.8]) v [19.6 <t, < 19.9]
(4) Wolverine ([7.2 <tf <117 A [-11. <t; < —5.37]
A [63.1 <p, < 106]) V [-3.43 <t,, < — 3.34]
[—0.3 <t; < 8.7 A[19.4 <t < 27.2]
A [45.4 <pg) A [48.8 <pg < 126]
(([—4.3 <t}, < 1.6] A [3.29 <t < 9.75))
V [-6.8 <ty < —6.8]) A[21.9 <p; < 72.2]
([—21.8 <ty < —8.7] A [12.5 <t < 16.6])
V [5.41 <ty < 5.43]) A [59. <pg < 166]
[-0.8 <t < 9] A[10.9 <t < 17.5]
A[17.7 <t < 24.4] A [43.3 <p]
([~9.7 <tF < — 47V [4.44 <t,, < 4.52))
A [41.7 <p< 68.3]) V[—4.39 <t , < —4.32]

(5) H.Mouse A E.Mole
(6) W.Lemming

(7) N.lemming

(8) E.P.Vole V R. Muntjac

(9) L. Shrew

the DBLP dataset. This dataset is extracted from the popular
computer science bibliography? The entities are researchers and
one side records major conferences where they published, while
the other side records the co-authorship graph (|E| = 2345,
VL] = 19, and |Vr| = 2345; both sides are Boolean). In
Tab. IIT we show the evolution of the top-ranked redescriptions
over a few steps.

Initially, the redescriptions fed to the algorithm are sorted
by accuracy. In the first step, the top redescription is added
to the model, the probabilities for the other redescriptions
are computed and the list is sorted by increasing occurrence
probability, since higher probabilities are associated to less
surprising and thus less interesting redescriptions. The second

“http://www.informatik.uni-trier.de/~ley/db/

redescription is then added to the model, the probabilities
recomputed and the ranking updated. The iterations continue
until the entire list has been processed.

Tab. IIT shows how the redundant redescriptions are pushed
away from the top of the list. For example, after adding the
first redescription, all other redescriptions with SDM on the
left-hand side are pushed out of the table. Notice, however, that
some overlap is possible, if the redescriptions are otherwise
surprising enough: for example, in the 7th step, ICML appears
in the right-hand side of two redescriptions that have already
been included in the model.

Our second dataset, Bio, comes from the domain of ecology.
The entities represent geographic areas of Europe, the left-hand
side records the presence of various mammals species [26],
while the right-hand side consists of bioclimatic variables, that
is, monthly average rainfall and monthly average, minimum,
and maximum temperatures [15] (|E| = 2575, |VL| = 194 and
|Vr| = 48; the species records are Boolean and the climate
variables real-valued).

In Tab. IV we show the top of the list of redescriptions, sorted
by accuracy, which were fed to the ranking procedure. The top
of the output list is shown in Tab. V. The top redescriptions
selected by our algorithm exhibit a much greater diversity. In
particular, the redescriptions about the Polar Bear do not take
all the top spots any longer: albeit very accurate, they are
highly redundant and of limited interest when taken together.

Our last dataset, Cover’, also comes from the domain of
ecology. The entities represent geographic areas of a national
forest in Colorado, USA. The wilderness area, soil type, and
cover type constitute the right-hand side variables, while other,
topographic variables, such as elevation and slope, are on the
left-hand side. (|E| = 581012, |V,| = 10 and |Vg| = 45; all
variables on the right are Boolean except for the cover type
which is nominal, and all those on the left are real-valued).

The RANKPATTERNS algorithm was run to rank sets of
redescriptions of size |S| = 100, 60 and 230, extracted from
DBLP, Bio and Cover respectively. For each dataset, Fig. 5i
depicts the average time required to query the occurence
probability for each of the remaining candidate redescriptions,
during each iteration of the ranking algorithm, ignoring the
negligible time required for training the model.

These plots show steep rises in the query times that
correspond to iterations where the last training redescription

Shttps://archive.ics.uci.edu/ml/datasets/Covertype



overlaps with the largest factor in the model, which must
therefore be extended. As explained in Sec. IV, our algorithms
use factorisation and quantisation to reduce the computational
cost of evaluating occurence probabilities. For this reason,
the runtime complexity is dominated by the size of the
largest factor in terms of value combinations, which may grow
arbitrarily large as the degree of overlap increases. This effect
is exacerbated in the case of numerical variables due to the
quantisation becoming finer following some model updates.
Fortunately, statements involving variables that have occurred
in earlier selected statements are typically assigned higher
probabilities. This means that such overlapping redescriptions
are generally deemed uninteresting and pushed lower in the
ranking, with the beneficial consequence of delaying the
formation of larger factors to later iterations of the algorithm.

VII. CONCLUSIONS

Thus far, redescription mining was mostly focused on the
problem of finding good redescriptions, ignoring the more
global problem of finding a good set of redescriptions. In this
work, we have approached this latter problem from the point
of view of maximum-entropy distributions: a redescription
is non-redundant if and only if it has a low likelihood
under the maximum-entropy distribution, conditioned on the
redescriptions previously seen. Thus, our approach fits into the
general framework of De Bie [6].

However, working with redescriptions comes with its own
challenges. Most notably, restricting redescriptions only to
conjunctive queries — as is (implicitly) done in the existing
work on subjective interestingness — severely limits the usability
of the method. Therefore, we had to develop an approach that
can also handle disjunctive queries.

Another significant difference with the existing line of work
on subjective interestingness is that we do not enforce any
a priori conditions on the data (such as row and column
marginals). Incorporating such constraints into our model is
an interesting topic for future work.

Finally, another natural direction for future work is to develop
methods that can directly mine the most surprising redescription
given the current model; the work presented in this paper can
only be applied as a post-processing step.
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