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Maximizing the Diversity of Exposure
in a Social Network

Antonis Matakos, Cigdem Aslay, Esther Galbrun, and Aristides Gionis

Abstract—Social-media platforms have created new ways for citizens to stay informed and participate in public debates. However, to
enable a healthy environment for information sharing, social deliberation, and opinion formation, citizens need to be exposed to
sufficiently diverse viewpoints that challenge their assumptions, instead of being trapped inside filter bubbles. In this paper, we take a
step in this direction and propose a novel approach to maximize the diversity of exposure in a social network. We formulate the
problem in the context of information propagation, as a task of recommending a small number of news articles to selected users. In the
proposed setting, we take into account content and user leanings, and the probability of further sharing an article. Our model allows to
capture the balance between maximizing the spread of information and ensuring the exposure of users to diverse viewpoints.
The resulting problem can be cast as maximizing a monotone and submodular function, subject to a matroid constraint on the
allocation of articles to users. It is a challenging generalization of the influence-maximization problem. Yet, we are able to devise
scalable approximation algorithms by introducing a novel extension to the notion of random reverse-reachable sets. We experimentally
demonstrate the efficiency and scalability of our algorithm on several real-world datasets.
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1 INTRODUCTION

Over the past decade, the emergence of social-media platforms
has changed society in unprecedented ways, completely altering
the landscape of societal debates and creating radically new ways
of collective action. In this networked public sphere, members of
society have access to a public podium where they can participate
in public debate and speak up about topics they deem to be
of public concern. This emerging environment of participatory
culture has made the diversity of citizens’ views more relevant
than ever before.

While having the potential to expose individuals to diverse
opinions, social-media platforms typically resort to personaliza-
tion algorithms that filter content based on social connections
and previously expressed opinions, creating filter bubbles [1]. The
resulting echo chambers tend to amplify and reinforce pre-existing
opinions, catalyzing an environment that has a corrosive effect on
the democratic debate.

In this paper we propose a novel approach towards breaking
filter bubbles. We consider social-media discussions around a topic
that are characterized by a number of viewpoints falling within
a predefined spectrum of opinions. To accurately model the dy-
namics of social-media platforms, we assume that each viewpoint
is represented by a number of items (articles, posts) propagat-
ing through the network via messages, re-shares, retweets, etc.
Furthermore, we assume that each individual is associated with
a leaning with respect to the issue, which impacts whether they
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will further disseminate any article they come across, depending
on how it aligns with their leaning. We think that this is a realistic
assumption, since, for example, an individual with a conservative
leaning might be reluctant to share an article with a liberal leaning.

We refer to the diversity of the information that a user is
exposed to as the user’s “diversity exposure level”. It depends
on the viewpoint expressed in the articles the user consumes,
referred to as article leanings, and the users’ existing viewpoint
on the matter, referred to as user leanings. We assume that the
diversity exposure level of users can be increased through content
recommendations made by the social-media platform. Considering
that filter bubbles result from a lack of exposure to diverse
viewpoints, our aim is to measure and maximize the total diversity
exposure levels of all users in the network.

Our problem can be naturally defined in an information-pro-
pagation setting [2]: we ask to select a small number of seed
users and the articles that should be recommended to them so
as to maximize the total diversity of exposure in the network.
Since the recommended articles are inserted into the timeline of
the users, disrupting the organic flow of the content in the network,
we also consider a limit on the number of articles that can be
recommended to a user in this way.

An attractive aspect of our problem setting is that it consolida-
tes many aspects of the functionality of real-life social networks.
By incorporating article leanings, user leanings, and the proba-
bilities of further sharing an article, we ask to find the recom-
mendations that translate to a good spread and simultaneously
maximize the diversity exposure level of the users. To better
understand the interplay between spread and diversity, observe
that assigning articles that match the users’ predisposition is likely
to result in a high spread but minimal increase of diversity, while
recommending articles that are opposed to users’ predispositions,
will likely result in high diversity locally but hinder the spread of
the articles. This trade-off is central to the diversity-maximization
problem we consider.

We show that taking all the aforementioned components into
account, the problem of maximizing the diversity of exposure
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in a social network can be cast as maximizing a monotone
and submodular function subject to a matroid constraint on the
allocation of articles to users. We show that this problem is NP-
hard and is far more challenging than the classical influence-
maximization problem. We introduce a non-trivial generalization
of random reverse-reachable sets (RR-sets) [3], which we call
random reverse co-exposure sets (RC-sets), for accurately esti-
mating the diversity of exposure in a social network. We propose
a scalable approximation algorithm, named Two-phase Diversity
Exposure Maximization (TDEM), that leverages random RC-sets
and an adaptive sample size determination procedure, ensuring
quality guarantees on the returned solution with high probability.

Although our approach belongs to a large body of work on
information propagation and breaking filter bubbles, there are
significant differences and novelties. In particular:

• We are the first to address the problem of maximizing
the diversity of exposure and breaking filter bubbles in an
item-aware information propagation setting. We leverage
several real-world aspects of social-media functionality,
such as how users consume and share articles, while con-
sidering user-article dependent propagation probabilities.

• We formally define the problem of maximizing the diver-
sity of exposure, prove its hardness, and develop a simple
greedy algorithm.

• We then introduce the notion of random reverse co-
exposure sets and devise a scalable instantiation of the
greedy algorithm with provable guarantees.

• Our extensive experimentation on real-world datasets con-
firms that our algorithm is scalable and delivers high qual-
ity solutions, significantly outperforming several natural
baselines.

A preliminary version of our work provided a first theoreti-
cal and experimental treatment of the problem under a simpler
formulation [4]. Specifically, we previously defined the diversity
exposure level of a user to be equal to the breadth of leanings
spanned by the items the user is exposed to, in addition to the
user’s own leaning. In this paper, we extend our preliminary
results in several directions. First, we propose a refined scheme to
quantify the diversity exposure level of a user. The new diversity
definition measures not only the range of leanings in a set of items
but also their spread within this range. That is, our refined scores
does not only look at the extremes of represented leanings but also
at how well intermediate leanings are covered. Second, we show
that the total diversity exposure function remains submodular and
monotone and we extend our scalable approximation framework
based on random reverse co-exposure sets to operate under this
new score. Finally, we provide additional experiments on many
real-world datasets.

2 RELATED WORK

Our work relates to the emerging line of research on breaking
filter bubbles in social media. To the best of our knowledge, this
is the first work that approaches this problem from the angle of
maximizing the diversity of information exposure in an item-aware
independent-cascade model.
Filter bubbles and echo chambers. Recently, there have been
a number of studies on the effects of “echo chambers” [5], [6],
where users are only exposed to information from like-minded
individuals, and of “filter bubbles” [1], [5], where algorithms

only present personalized content that agrees with the user’s
viewpoint. In particular, Garrett et al. [6] observed that news
stories containing opinion-challenging informations spread less
than other news.

In order to measure how strongly these phenomena manifest
themselves on social media, a significant body of work has
emerged that focuses on measures for characterizing polariza-
tion [7], [8], [9], [10], [11], [12].

In a similar vein to ours, previous works have studied the
problem of diversifying exposure. This task presents various
aspects, such as the questions of who to target, what viewpoints
to promote, or how best to present possibly opposing viewpoints
to users [13]. Recent approaches focus on targeting users so
as to reduce the polarization of opinions and bridge opposing
views [7], [12], [14], [15]. These works consider an opinion-
formation model whereas our underlying model is an influence-
propagation model. From this angle, the works by Garimella et
al. [16] and Rawal and Khan [17] are closest to our work. They
consider an influence propagation setting, where two conflicting
campaigns propagate in the network and the goal is to maximize
the number of users exposed to both campaigns. The granularity
of our setting is finer, however, since we consider items with
leanings lying across a spectrum rather than two opposing sides.
Additionally, we consider the leanings of users, which affect the
propagation probabilities. Since our goal is to identify assignments
of items to users, we aim to identify both the users to target and
the viewpoints to expose them to.

Influence maximization. Our problem is also related to the
work on influence maximization. Kempe et al. [2] formalized the
influence maximization problem and proposed two propagation
models, the independent-cascade model and the linear-threshold
model. These models were subsequently extended to handle the
case of multiple competing campaigns in a network [18], [19],
[20]. As other authors have suggested, we consider a central
authority selecting the seed set [16], [21], [22], [23]. Our setting
is related to social advertising [22], [23], which also considers
item-aware propagation models, aiming to allocate ads so as to
maximize the engagement of users. Key to our work is the idea of
reverse reachable sets introduced by Borgs et al. [3], which pro-
vides scalable solutions for the influence maximization problem.
Subsequent works [24], [25], [26], [27] introduced techniques to
improve upon this idea even further. We extend these ideas to our
setting, and obtain an algorithm that scales to very large datasets.

3 PROBLEM DEFINITION

Notation. The input to the problem of maximizing the diversity of
exposure consists of the following ingredients: (i) a directed social
graph G = (V,E), with |V | = n nodes and |E| = m edges,
where nodes represent users and a directed edge (u, v) indicates
that user v follows user u, thus, v can see and propagate posts by
u; (ii) a set H of (news) items on a (possibly controversial) topic,
with |H| = h; (iii) item-specific propagation probabilities piuv ,
for all items i ∈ H and edges (u, v) ∈ E, where piuv represents
the probability that item i will propagate from user u to user v;
(iv) a leaning function ` : V ∪ H → [−1, 1] that quantifies the
polarity of the viewpoints of items and users with respect to the
considered issue or topic.

Cascade model. We assume that the propagation of an item i ∈ H
from user u to user v follows the independent-cascade model with
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parameter piuv , and is independent from the propagation of other
items to v from its in-neighbors. Thus, once u becomes active on
item i at time t, the probability piuv that u succeeds in activating v
with item i at time t+ 1 is independent of other items with which
user u or other in-neighbors of v might succeeded to activate v
at any time. We incorporate the different tendency of users to
share items with leanings diverging from or similar to their own
by allowing item-specific propagation probabilities for each edge.
Hence, piuv implicitly takes into account the leanings of users u
and v and of item i. The leaning of a user reflects the user’s
viewpoint, which is considered to be stable. Therefore, we assume
that the transmission probabilities remain fixed over time, and
probabilities piuv are constant values input to our cascade model.
We consider the estimation of user leanings and transmission
probabilities as orthogonal to our work.1

Quantifying diversity of exposure. We say that user v is exposed
to item i if v is activated on item i by an in-neighbor that is itself
exposed on item i, or if user v is a seed node for item i. Consider
a user v that is exposed to a set I ⊆ H of items. It follows that
user v is exposed to a set of leanings {`(v)} ∪ {`(i) : i ∈ I}.
Intuitively, we want each user to be aware of a multitude of view-
points, while also retaining a balanced perspective. To account for
both factors, we define a penalty function that quantifies the lack
of diversity of exposure.

Specifically, we want to penalize large gaps in the spread of
leanings, which correspond to ranges of opinions not represented
among items the user is exposed to. Therefore, the function is
defined for each user by considering the set of distinct leanings he
is exposed to, sorted by polarity, and taking the sum of squared
distances between consecutive leanings, also accounting for the
extreme values of leanings. We consider that each item contributes
only once to the diversity of exposure of a user. Therefore seeing
the same article multiple times should have no impact on the
objective.

We let L(v, I) = 〈`1, . . . , `η〉 denote the set {`(v)} ∪ {`(i) :
i ∈ I} ∪ {−1, 1} sorted by increasing values, i.e., such that `i ≤
`j for all i < j. This set contains user v’s own leaning, the distinct
leanings among the items in I that user v has been exposed to, as
well as the two extreme leanings across the spectrum of opinions,
`1 = −1 and `η = 1. Then, we define the penalty for node v,
gv : 2H → [0, 4], as

gv(I) =

η−1∑
j=1

(`j+1 − `j)2, ` ∈ L(v, I). (1)

Given the penalty function gv(I) that quantifies the lack of
diversity in the leanings of the items I that v is exposed to, we
define the level of diversity exposure fv : 2H → [0, 1] of v as

fv(I) = 1− 1

4
gv(I). (2)

Notice that the range of the diversity exposure function fv is [0, 1],
where a value of 1 corresponds to the maximum possible diversity
of exposure.

To motivate the definition of our diversity function fv we
provide the following two lemmas, which illustrate some of its
desirable properties.

1. Twitter offers a built-in feature, that users can choose to opt-in, to estimate
their preferences with respect to various topics, which remains valid for a
limited amount of time. See https://help.twitter.com/en/using-twitter/tailored-
suggestions

Lemma 1. For all I ⊆ J ⊆ H , we have fv(I) ≤ fv(J).

Lemma 1, for which the proof is provided as part of Lemma 3,
states that fv is monotone, i.e., the diversity exposure level of v
cannot decrease as the user is exposed to more items.

Next we formally show that, if we fix the number of items that
user v will see, then the configuration in which fv is maximized
corresponds to the desired scenario where the user leaning of v
and the leanings of the items v is exposed to are equally spaced
across [−1, 1].

Lemma 2. Consider a set of items I , so that I has fixed
cardinality κ. Then, the diversity function fv(I) is maximized if
the leanings of the items in I are equidistantly positioned in the
interval [−1, 1].

Proof. For the sake of simplicity, and without loss of generality,
assume that neither the leaning of v nor the extreme leanings −1
and 1 are represented in I , so that |L(v, I)| = κ + 3. Let rj =
`j+1−`j , for j = 1, . . . , κ+2. Notice that

∑κ+2
j=1 rj is a constant

that depends only on how we model the range of the leanings, i.e.,
for [−1, 1], we have

∑κ+2
j=1 rj = 2. Remember that by definition

fv(I) is maximized whenever gv(I) is minimized. Then, solving
the equations resulting from g′v(I) = 0 and

∑κ+2
j=1 rj = 2, we

see that gv(I) attends its minimum value when

r1 = . . . = rκ+2 =
2

κ+ 2
.

Assignment to seed nodes. We consider selecting a set of users
in V as the seed nodes and expose them to a subset of items
from H . Let E = V × H denote the set of all possible (user,
item) pairs and let A ⊆ E denote an assignment such that the set
Ai = {u ∈ V : (u, i) ∈ A} contains the seed nodes selected for
initial exposure to item i and the set Au = {i ∈ H : (u, i) ∈ A}
contains the items assigned to seed node u. For each v ∈ V ,
we denote by Iv(A) the set of items that v is exposed to when
the propagation process initialized with assignment A converges.
The diversity of exposure score F (A) of an assignment A is then
defined as the sum of diversity exposure levels of all the users
resulting from the assignment A in G

F (A) =
∑
v∈V

fv
(
Iv(A)

)
. (3)

Note that the function fv(Iv) : 2E → [0, 1] is a composition
fv(Iv) = fv ◦ Iv of the functions Iv : 2E → 2H and fv :
2H → [0, 1]. We will later use this fact to show that fv(Iv) is a
submodular function over E .

Constraints on assignments. We assume that we are interested in
assignments of size at most k ∈ N. Moreover, taking into account
the limited attention span of users, which can be user-specific [28],
we also limit the number of items that a user can be seeded with.2

We model this using an attention bound constraint ku ∈ N for
each user u ∈ V . We say that an assignment A is feasible if
|A| ≤ k and |Au| ≤ ku, for each seed node u.

Assumptions. We assume that there exist e, e′ ∈ V ∪H such that
`(e) 6= `(e′). This weak assumption is simply a bare minimum

2. As in previous work [22], we do not assume any attention bound on the
number of items that are not recommendations in our problem definition, i.e.,
items that appear in the news-feed of the users in the social network, as such
items are part of the organic operation of the network.

https://help.twitter.com/en/using-twitter/tailored-suggestions
https://help.twitter.com/en/using-twitter/tailored-suggestions
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requirement on the diversity of the leanings of the users and
items, aligned with the motivation of the problem. We will use
this assumption in the greedy approximation analysis to constrain
the optimal values of expected diversity exposure score to R+.

We are now ready to formally define our problem.

Problem 1 (Diversity Exposure Maximization). Given a directed
social graph G = (V,E) with user leanings `(v), for all v ∈ V ,
a set of items H with item leanings `(i), for all i ∈ H , item-
specific propagation probabilities piuv , for all (u, v) ∈ E and all
i ∈ H , positive integers ku as attention bound constraints for all
u ∈ V , and a positive integer k, find a feasible assignment A that
maximizes the expected diversity exposure score

maximize
A⊆E

E [F (A)]

subject to |A| ≤ k,
|Au| ≤ ku, for all u ∈ V.

We use A∗ to denote the optimal solution of Problem 1, and
OPT = E [F (A∗)] to denote its expected score in G.

4 THEORETICAL ANALYSIS

4.1 Possible-world semantics

A probabilistic graph G = (V,E, p), comprises a vertex set
V and an edge set E, where each edge e is associated with a
probability pe ∈ p. Given a probabilistic graph, a possible world
is a deterministic graph obtained from G with edges sampled
independently according to p. We now introduce the possible-
world model for our problem, that can capture the co-exposure of
nodes to items resulting from any given assignment.

We start by defining a directed edge-colored multigraph G̃ =
(V, Ẽ, p̃) from G = (V,E), by creating h copies of each directed
edge (u, v) ∈ E. For each item i ∈ H we create a parallel edge
(u, v)i in G̃, having distinct color and associated probability piuv .
We interpret G̃ as a probability distribution over all subgraphs of
(V, Ẽ), i.e., we sample each edge (u, v)i ∈ Ẽ independently at
random with probability piuv . The probability of a possible world
g v G̃ is given by

Pr[g] =
∏
i∈H

∏
(u,v)i∈g

piuv
∏

(u,v)i∈Ẽ\g

(1− piuv). (4)

Let pathig(u, v) denote an indicator variable that equals 1 if
node v ∈ V is reachable by node u via the colored edges of i in
g, and 0 otherwise. We say that a pair (u, i) can color-reach node
v if pathig(u, v) = 1. For an assignment A and a node v ∈ V
let Igv (A) be the set of items that v is exposed to, due to A, in
network g. It can be written as

Igv (A) = {i ∈ H | exists (u, i) ∈ A and pathig(u, v) = 1}.

The value of the objective E [F (A)] in Problem 1 is given by

E [F (A)] = E

[∑
v∈V

fv(I
g
v (A))

]
=

∑
gvG̃

Pr[g]
∑
v∈V

fv(I
g
v (A)). (5)

4.2 Hardness and approximation

We will first show that the objective function of Problem 1 is
monotone and submodular.

Lemma 3. The function E [F (·)] is monotone and submodular.

Proof. To prove the lemma, we utilize the possible-world seman-
tics. It is well known that a non-negative linear combination of
submodular functions is also submodular. Therefore, to prove
submodularity of E [F (·)], it is sufficient to show that in any
possible world g v G̃, fv : 2E → [0, 1] is submodular.
Similarly, to prove monotonicity of E [F (·)], it suffices to show
the monotonicity of fv(·) in any possible world g.

Now, recall that we have fv(Igv (A)) = 1− 1
4gv(I

g
v (A)). We

will show that gv(Igv (A)) is supermodular and monotonically non-
increasing in A which will directly imply the submodularity and
monotonicity of fv(Igv (A)).

First we show that gv(Igv (A)) is monotonically non-increasing
in A by showing that gv(Igv (A)) ≥ gv(Igv (A∪e)) for any A ⊆ E
and (w, x) ∈ E \A.

First, consider the case pathxg(w, v) = 0. Notice that in this
case we have gv(Igv (A)) = gv(I

g
v (A ∪ {(w, x)})) as Igv (A) =

Igv (A ∪ {(w, x)}). Now, consider the case pathxg(w, v) = 1. In
this case, we have Igv (A ∪ {(w, x)}) = Igv (A) ∪ {x}. Let i, j ∈
Igv (A) be such that `(i) and `(j) are the immediate predecessor
and successor of `(x) in L(v, Igv (A∪{(w, x)})) respectively, i.e.,
6 ∃y ∈ L(v, Igv (A ∪ {(w, x)})) such that `(i) ≤ `(y) ≤ `(x) or
`(x) ≤ `(y) ≤ `(j).

Then we have,

gv(I
g
v (A ∪ {(w, x)}))− gv(Igv (A))

= (`(i)− `(x))2 + (`(x)− `(j))2 − (`(i)− `(j))2

= (`(i)− `(x))2 + (`(x)− `(j))2

− (`(i)− `(x) + `(x)− `(j))2

≤ 0.

We have just shown that gv(I
g
v (A)) is monotonically non-

increasing in A.
We now show that gv(Igv (A)) is supermodular in A. Let

gv(I
g
v ((w, x) | A)) denote the marginal decrease in the penalty

when (w, x) is added to the assignment A:

gv(I
g
v ((w, x) | A)) = gv(I

g
v (A ∪ {(w, x)}))− gv(Igv (A)).

To show that gv(Igv (·)) is supermodular, we need to show that

gv(I
g
v ((w, x) | A)) ≤ gv(Igv ((w, x) | B)),

for any A ⊆ B ⊆ E and (w, x) 6∈ B.
Let B = A ∪ {(z, y)} for some (z, y) ∈ E \ A. First, notice

that if pathxg(w, v) = 0 and pathyg(z, v) = 0, then the analysis
is trivial, since, Igv ((w, x) | A) = Igv ((w, x) | B) = Igv (A),
resulting in gv(I

g
v ((w, x) | A)) = gv(I

g
v ((w, x) | B)) = 0.

Next, we provide the analysis for the case pathxg(w, v) = 1 and
pathyg(z, v) = 1, and omit the analysis of the other two cases
in which either pathxg(w, v) = 0 or pathyg(z, v) = 0 as their
analysis use similar arguments.

We now start the analysis for the case pathxg(w, v) = 1 and
pathyg(z, v) = 1. To do so, we perform case-by-case analysis
based on how `(x) is compares to the leanings in L(v, Igv (A))
and L(v, Igv (B)).
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Let i, j ∈ Igv (A) be such that `(i) and `(j) are the immediate
predecessor and successor of `(x) in L(v, Igv (A ∪ {(w, x)})).
Next, we consider the following two cases.

• Case 1: y is such that `(y) < `(i) or `(y) > `(j). Then
we have gv(Igv ((w, x) | B)) = gv(I

g
v ((w, x) | A)).

• Case 2: y is such that `(i) ≤ `(y) ≤ `(x). Then we have

gv(I
g
v ((w, x) | A))− gv(Igv ((w, x) | B))

= (`(i)− `(x))2 − (`(i)− `(j))2 − (`(y)− `(x))2

+ (`(y)− `(j))2

= −2`(i)`(x) + 2`(i)`(j) + 2`(y)`(x)− 2`(y)`(j)

+ (`(x)− `(j))(2`(y)− 2`(i)) ≤ 0

• Case 3: y is such that `(x) ≤ `(y) ≤ `(j). This case is
symmetric to Case 2, so we omit the proof for brevity.

Theorem 1. Problem 1 is NP-hard.

Proof. We will show that Problem 1 contains the influence max-
imization problem as a restricted special case, which is shown to
be NP-hard [2]. Consider the case where H consists of a single
item, which we denote by i′. Let `(i′) = 0 and `(v) = 1, for
all v ∈ V . Notice that since h = 1, the multiplicity of each
edge in G̃ is 1. In any g v G̃, if a node v is exposed to A then
fv(I

g
v (A)) = 1

2 , while fv(Igv (A)) = 0 if v is not exposed to A.
For any assignment A, define the seed set S = {u | (u, i′) ∈ A}.
LetCg(S) denote the number of nodes reachable by S in g. Notice
the equivalence Cg(S) = 2

∑
v∈V fv(I

g
v (A)) in g. Now, let

S∗ ⊆ V denote the optimal solution to the influence maximization
problem with parameter k. The expected spread of S∗ is given
by E [Cg(S

∗)]. If S∗ is the seed set that maximizes E [Cg(S)],
then, A∗ = {(u, i′) | u ∈ S∗} is the assignment that maximizes
E
[∑

v∈V fv(I
g
v (A))

]
. Thus, solving the influence maximization

problem and obtaining S∗, yields the optimal solution A∗ for
Problem 1.

Given the monotonicity and submodularity of the objective
function, a standard greedy algorithm can be used to solve
Problem 1. The pseudocode is given in Algorithm 1. Let
E [F ((u, i) | A)] = E [F (A ∪ {(u, i)})] − E [F (A)] denote the
marginal increase in the expected diversity exposure score of
an assignment A if (u, i) is added to A. Let AG denote the
greedy solution. At each iteration, the greedy algorithm chooses
the feasible pair (u∗, i∗) that yields the maximum gain in the
expected diversity exposure score among all the feasible pairs.3

The algorithm terminates when |AG| = k.
Before we analyze the approximation guarantee of the greedy

algorithm, we remind the reader of the following notions.

Definition 1 (Matroid). A set system (E ,F), defined over a finite
ground set E and a family F of subsets of E , is a matroidM =
(E ,F) if

(i) F is non-empty;

(ii) F is downward closed, i.e., X ∈ F and Y ⊆ X implies
Y ∈ F ; and

(iii) F satisfies the augmentation property, i.e., for all X,Y ∈ F
with |Y | > |X|, there exists an element e ∈ Y \X such that
X ∪ {e} ∈ F .

3. We say that a pair (u, i) is feasible if it can be added to the current
assignment AG without breaking the attention bound constraint ku.

Algorithm 1: Greedy Algorithm

Input : G̃ = (V, Ẽ, p̃); size constraint k; attention bound
constraint ku for all u ∈ V ; leanings `(i) for all i ∈ H ,
and `(u) for all u ∈ V

Output: Greedy solution AG

1 AG ← ∅

2 while |AG| ≤ k do
3 (u∗, i∗)← arg max(u,i) E [F ((u, i) | AG)],

subject to |{i : (u, i) ∈ AG}| ≤ ku
4 AG ← AG ∪ {(u∗, i∗)}
5 return AG

Definition 2 (Uniform Matroid). A matroid M = (E ,F) is a
uniform matroid if F = {X ⊆ E : |X| ≤ k}.

Definition 3 (Partition Matroid). Let E1, · · · , EZ be a partition
of the ground set E into Z non-empty disjoint subsets. Let dz be
an integer with 0 ≤ dz ≤ |Ez|, for each z = 1, . . . , Z . A matroid
M = (E ,F) is a partition matroid if F = {X ⊆ E : |X∩Ez| ≤
dz, for all z = 1, · · · , Z}. In other words, a partition matroid
contains exactly the sets X ⊆ E that share at most dz elements
with each subset Ez .

Lemma 4. Given the ground set E = V × H of user× item
assignments, an integer k, and integers ku, for all u ∈ V , let
F ⊆ 2E denote the set of feasible solutions to Problem 1. Then,
M = (E ,F) is a matroid defined on E .

Proof. To prove this result, we will show that (i) the constraint
|A| ≤ k corresponds to a uniform matroid defined on E , which
we denote by Mk; (ii) the constraints |{i : (u, i) ∈ A}| ≤ ku,
for all u ∈ V , correspond to a partition matroid defined on E ,
which we denote byMp; (iii) the intersectionM =Mk ∩Mp

is also a matroid defined on E .
Let Fk ⊆ 2E denote the set of assignments of size at most

k, i.e., Fk = {A ⊆ E : |A| ≤ k}. It is easy to see that Mk =
(E ,Fk) is a uniform matroid.

Let Fp ⊆ 2E denote the set of assignments that do not violate
any user attention bound constraint, i.e., for all A ∈ Fp, we have
|{i : (u, i) ∈ A}| ≤ ku, for all u ∈ V . Define Eu = {(u, i) : i ∈
H}, for all u ∈ V . The sets Eu, with u ∈ V , form a partition of E
into n disjoint sets. Notice that an assignment A ⊆ E can belong
in Fp if and only if

|A ∩ Eu| ≤ ku, for all u ∈ V.

Hence,Mp = (E ,Fp) is a partition matroid.
Notice that the setF of feasible solutions to Problem 1 is given

by F = Fk ∩ Fp. Hence, the set system (E ,F) corresponds to
the intersection of matroidsMk andMp that are both defined on
E . Note that the intersection of two matroids is not necessarily a
matroid in general. However, in this case we have the intersection
of a matroid with a uniform matroid, which is known to always
result in a matroid; this operation is known as the truncation of a
matroid [29].

Theorem 2. Algorithm 1 achieves an approximation guarantee of
1/2.

Proof. As we have shown in Lemma 4, the constraints of Prob-
lem 1 correspond to a matroid defined on the ground set E .
Moreover, we have shown in Lemma 3 that the objective function
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of Problem 1 is monotone and submodular. Thus, Problem 1 cor-
responds to monotone submodular function maximization subject
to a matroid constraint.

Therefore, the approximation guarantee of Algorithm 1 thus
follows from the result of Fisher et al. [30] for submodular
function maximization subject to a matroid constraint.

5 SCALABLE APPROXIMATION ALGORITHMS

The efficient implementation of the greedy algorithm (Algo-
rithm 1) is a challenge as the operation on line 3 translates to
a large number of expected spread computations: in each iteration,
the greedy algorithm requires to compute the expected marginal
gain E [F ((u, i) | AG)] for every feasible pair (u, i), which in
turn requires to identify the set Igv (A ∪ {(u, i)}) of items that
every v is exposed to in each g v G̃, which is akin to computing
the expected influence spread when h = 1.

Computing the expected influence spread of a given set of
nodes under the independent-cascade model is #P-hard [31]. A
common practice is to estimate the expected spread using Monte
Carlo (MC) simulations [2]. However, accurate estimation requires
a large number of MC simulations.

Hence, considerable effort has been devoted in the literature to
developing scalable approximation algorithms. Recently, Borgs et
al. [3] introduced the idea of sampling reverse-reachable sets (RR-
sets), and proposed a quasi-linear time randomized algorithm.
Tang et al. improved it to a near-linear time randomized algo-
rithm, called Two-phase Influence Maximization (TIM) [27], and
subsequently tightened the lower bound on the number of random
RR-sets required to estimate influence with high probability [26].

Random RR-sets are critical for efficient estimation of the
expected influence spread. However, they are designed for the
standard influence-maximization problem, which is a special case
of Problem 1. We introduce a non-trivial generalization of reverse-
reachable sets, which we name reverse co-exposure sets (RC-
sets), and devise estimators for accurate estimation of the expected
diversity exposure score E [F (·)].

5.1 Reverse co-exposure sets

Recall that we can interpret G̃ as a probability distribution over
all subgraphs of (V, Ẽ), where each edge (u, v)i ∈ Ẽ is realized
with probability piuv . Let g ∼ G̃ be a graph drawn from the
random graph distribution G̃. Notice that, over the randomness in
g, the set Igv (A) can be regarded as a Multinoulli random variable
with 2h outcomes, where each outcome corresponds to one of the
subsets of H . Now, let R̃v,g ⊆ E denote the set of pairs in g that
can color-reach v, i.e., R̃v,g = {(u, i) ∈ E : pathig(u, v) = 1}.
Also let

I(A ∩ R̃v,g) = {i ∈ H : (u, i) ∈ A ∩ R̃v,g}.

The following lemma establishes the activation equivalence
property that forms the foundations of random reverse co-exposure
sets (RC-sets).

Lemma 5. Let I be a subset of H . For any assignment A and for
all v ∈ V , we have

Prg∼G̃ (Igv (A) = I) = Prg∼G̃(I(A ∩ R̃v,g) = I).

Proof. Notice that in any possible world g, we have:

Igv (A) = {i ∈ H : ∃ (u, i) ∈ A such that pathig(u, v) = 1}
= {i ∈ H : (u, i) ∈ A ∩ R̃v,g}
= I(A ∩ R̃v,g).

Hence we have

Prg∼G̃ (Igv (A) = I) =
∑
gvG

Pr[g]1[Ig(A)=I]

=
∑
gvG

Pr[g]1[I(A∩R̃v,g)=I]

= Prg∼G̃(I(A ∩ R̃v,g) = I).

Next we formally define the concept of random RC-sets.

Random RC-sets. Given a probabilistic multi-graph G̃ =
(V, Ẽ, p̃) and a setH of items, a random RC-set R̃v,g is generated
as follows. First, we remove each edge (u, v)i from G̃ with
probability 1 − piuv , generating thus a possible world g. Next,
we pick a target node v uniformly at random from V . Then, R̃v,g
consists of the pairs that can color-reach v, i.e., all pairs (u, i) for
which pathig(u, v) = 1.

Sampling a random RC-set R̃v,g can be implemented effi-
ciently by first choosing a target node v ∈ V uniformly at random
and then performing a breadth-first search (BFS) from v in G̃.
Notice that a random RC-set Rv,g is subject to two levels of
randomness: (i) randomness over g ∼ G̃, and (ii) randomness
over the selection of target node v ∼ V .

Lemma 6. For any random RC-set Rv,g , let the random variable
w(A∩ R̃v,g) = fv(I(A∩ R̃v,g)) represent the diversity exposure
weight of A on R̃v,g . Then, E [F (A)] = n E

v,g

[
w(A ∩ R̃v,g)

]
,

where the expectation is taken over the randomness in v ∼ V and
g ∼ G̃.

Proof. First, notice that over the randomness in g, fv(Igv (A)) is
a function of a random variable Igv (A), hence, by the LOTUS
theorem [32], which defines expectation for functions of random
variables, its expectation can be computed as

E
g

[fv(I
g
v (A))] =

∑
I∈2H

Pr
g

(Igv (A) = I) fv(I). (6)

Then, by Equation (6) and the activation equivalence property
shown in Lemma 5, we have

E [F (A)] = E
g

[∑
v∈V

fv(I
g
v (A))

]
=

∑
v∈V

E
g

[fv(I
g
v (A))]

=
∑
v∈V

∑
I∈2H

Prg (Igv (A) = I) fv(I)

= n
∑
I∈2H

Prv,g(I(A ∩ R̃v,g) = I) fv(I)

= n E
v,g

[
fv(I(A ∩ R̃v,g))

]
.

Lemma 6 shows that we can estimate E [F (A)] by estimat-
ing nE

[
fv(I(A ∩ R̃v,g))

]
on a set of random RC-sets. This
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Algorithm 2: TDEM (G̃, k, l, ε, `)

1 R̃ ← Sampling(G̃, k, ε, `)

2 Ã← RC-Greedy(R̃, k, l)
3 return Ã

Algorithm 3: RC-Greedy(R̃, k, l)

1 Ã← ∅
2 while |Ã| ≤ k do
3 (u∗, i∗)← arg max(u,i)WR̃((u, i) | Ã),

subject to |{i : (u, i) ∈ Ã}| ≤ ku
4 Ã← Ã ∪ {(u∗, i∗)}
5 return Ã

suggests that if we have a sample R̃ of random RC-sets from
which we can obtain, with high probability, accurate estimations
of E [F (A)] for every assignment A such that |A| ≤ k, then,
we can accurately solve Problem 1 on the sample R̃ with high
probability, as we show next.

Given a sample R̃ of random RC-sets, let

WR̃(A) =

∑
R̃v,g∈R̃ w(A ∩ R̃v,g)

|R̃|
,

denote the diversity exposure weight of A on the sample. Notice
that, as a direct consequence of Lemma 6, the quantity nWR̃(A)
is an unbiased estimator of E [F (A)].

Moreover, let

WR̃((u, i) | A) =WR̃(A ∪ {(u, i)})−WR̃(A),

denote the marginal increase in the diversity exposure weight of
A if the pair (u, i) is added to A.

5.2 Two-phase Diversity Exposure Maximization
We now present our Two-phase Diversity Exposure Maximization
algorithm (TDEM), which provides an approximate solution to
Problem 1. The pseudocode is shown in Algorithm 2. As it names
suggests, TDEM operates in two phases: a sampling phase and
a greedy pair-selection phase. In the sampling phase, a sample
R̃ of random RC-sets is generated (details later). This sample is
provided as input to RC-Greedy (Algorithm 3), which greedily
selects feasible pairs (u, i) into Ã. The algorithm terminates when
|Ã| = k and it returns Ã as a solution to Problem 1.

Theorem 3. Assume that the algorithm RC-Greedy receives as
input a sample R̃ of random RC-sets such that for any assignment
A of size at most k it holds that∣∣nWR̃(A)− E [F (A)]

∣∣ < ε

2
OPT, (7)

with probability at least 1−n−`/
(nh
k

)
. Then, RC-Greedy returns

a ( 1
2 − ε)-approximate solution to Problem 1 with probability at

least 1−n−`. The running time of RC-Greedy isO(
∑
R̃∈R̃|R̃|),

that is, linear in the total size of the RC-sets in the sample.

Proof. First, notice that, WR̃(·) is a linear combination of sub-
modular fv(·)’s, hence is also submodular. Moreover, the acti-
vation equivalence property depicted in in Lemma 5 shows that

we can approximately solve Problem 1 by finding the assignment
that maximizes WR̃(·) on a sample R̃ of RC-sets. Now, given
that the size of R̃ is such that, the diversity exposure score of
any assignment of size at most k is accurately estimated w.p. at
least 1− n−`/

(nh
k

)
, it follows, via union bound, that w.p. at least

1− 1/n` we have:

E
[
F (ÃG)

]
≥ E

[
F (AG)

]
− εOPT (8)

where AG is the real greedy solution and ÃG is the approximate
greedy solution that TDEM returns. Note that, nWR̃(ÃG) ≥
nWR̃(AG) is the greedy solution obtained on R̃.

The correctness of Equation 8 follows from the following case
analysis: (i) ÃG is the real greedy solution AG to Problem 1;
(ii) ÃG is an assignment with E

[
F (ÃG)

]
> E

[
F (AG)

]
;

or (iii) ÃG is an assignment with E
[
F (ÃG)

]
< E

[
F (AG)

]
such that its maximum possible accurate estimate (that satisfies
Equation 7) is higher than the minimum possible accurate estimate
of E

[
F (AG)

]
, hence is returned by RC-Greedy instead of AG,

i.e.,

E
[
F (ÃG)

]
+
ε

2
OPT ≥ nWR̃(ÃG)

≥ nWR̃(AG)

≥ E
[
F (AG)

]
− ε

2
OPT.

Obviously, the approximation guarantee does not deteriorate from
(1/2) for the first two cases. For case (iii) we have:

E
[
F (ÃG)

]
≥ E

[
F (AG)

]
− εOPT

≥ (1/2) OPT− εOPT.

Therefore the result follows.
Now we analyze the running time of RC-Greedy. First, we

remind that the running of the greedy algorithm on RR sets, for
approximately solving the influence maximization problem, fol-
lows from the running time of the maximum cover problem [27].
For the analysis of RC-Greedy, we use a similar reasoning and
exploit a connection to the weighted version of the maximum
coverage problem. However, we note that our problem does not
correspond to the weighted maximum coverage problem since
(i) we are interested in the weights of RC-sets even in the case
when they have been already covered by a pair (u, i),4 (ii) the
weights of the ground set elements (which correspond to RC-sets)
dynamically change based on the pairs that already covered them.
However, these differences do not affect the running time analysis
much. The constant time operation to check whether an RC-set
is covered by a pair (u, i) is replaced by the operation of finding
the next smaller and next larger labels compared to l(i) from the
labels of the items that have previously covered this RC-set. Using
binary search, this can be done in logarithmic time.

Since this operation is independent of the seed node u, the
number of “covered” checks performed on each RC-set is upper-
bounded by the size of the RC-set, times a logarithmic factor
as explained above. Hence, the total running time complexity of
RC-Greedy is O(

∑
R̃∈R̃|R̃| log(|R̃|)).

Let θ∗ be the minimum sample size such that Equation (7)
holds for all assignments of size at most k. Notice that since
the desired estimation accuracy is a function of OPT, the value

4. We say that a pair (u, i) covers an RC-set R̃ if (u, i) ∈ R̃
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of θ∗ also depends on OPT, which is unknown and in fact
NP-hard to compute. To circumvent the problem we follow a
similar approach to TIM [27] and IMM [26]: we estimate a lower
bound on the value of the optimal solution, and use it for the
determination of the sample size. We also generalize the statistical
test employed by IMM [26] for estimating a lower bound when
working with random RC-sets. Note that the results from influence
maximization do not carry over to our case, therefore our extension
of the technique is non-trivial.

5.3 Determining the sample size

Let R̃1, R̃2, . . . , R̃θ be the sequence of random RC-sets generated
in the sampling phase of TDEM. For a given assignment A,
let wj denote its weight on the RC-set R̃j . Notice that the
choices of v and g during the creation of R̃j are independent of
R̃1, . . . , R̃j−1. However, as we will see soon, the sampling phase
of TDEM employs an adaptive procedure, in which the decision
to generate R̃j depends on the outcomes of R̃1, . . . , R̃j−1. This
creates dependencies between the RC-sets in the sample R̃. Thus,
we can only use concentration inequalities that allow dependencies
in the sample. We first introduce the notions that are crucial in our
analysis.

Definition 4 (Martingale). A sequence X1, X2, . . . of random
variables is a martingale if and only if E[|Xj |] < +∞ and E[Xj |
X1, . . . , Xj−1] = Xj−1 for any j.

We now establish the connections to martingales. Let w =
E [F (A)] /n. By Lemma 6 we have E[wj ] = w, for all j ∈ [1, θ].
Noting that the choice of v and g during the creation of R̃j is
independent of R̃1, . . . , R̃j−1, we have

E[wj | w1, . . . , wj−1] = E[wj ] = w.

Let Mj =
∑j
z=1(wz − w), so E[Mj ] = 0, and

E[Mj |M1, . . . ,Mj−1] = E[Mj−1 + wj − w |M1, . . . ,Mj−1]

= Mj−1 − w + E[wj |M1, . . . ,Mj−1]

= Mj−1 − w + E[wj ]

= Mj−1,

therefore, the sequence M1, . . . ,Mθ is a martingale.
The following lemma from Chung and Lu [33] shows a con-

centration result for martingales, analogous to Chernoff bounds
for independent random variables.

Lemma 7. [Theorem 6.1, [33]] Let X1, X2, . . . be a martingale,
such that X1 ≤ a, Var[X1] ≤ b1, |Xz − Xz−1| ≤ a for z ∈
[2, j], and

Var[Xz | X1, . . . , Xz−1] ≤ bj , for z ∈ [2, j],

where Var[·] denotes the variance. Then, for any γ > 0

Pr (Xj − E[Xj ] ≥ γ) ≤ exp

(
− γ2

2(
∑j
z=1 bz + aγ/3)

)

We now discuss how to use this concentration result for the
martingale M1, . . . ,Mθ . Notice that since wj ∈ [0, 1] for all
j ∈ [1, θ], we have |M1| = |w1−w| ≤ 1 and |Mj−Mj−1| ≤ 1

for any j ∈ [2, θ]. We also have Var[M1] = Var[w1], and for any
j ∈ [2, θ]

Var[Mj |M1, . . . ,Mj−1]

= Var[Mj−1 + wj − w |M1, . . . ,Mj−1]

= Var[wj |M1, . . . ,Mj−1]

= Var[wj ].

Recall that fv(Igv (A)) is a function of the Multinoulli random
variable Igv (A), hence, w(A ∩ R̃v,g) = fv(I(A ∩ R̃v,g)). Based
on the LOTUS theorem [32] again, we have

E[fv(I(A ∩ R̃v,g))2] =
∑
I∈2H

Prv,g(I(A ∩ R̃v,g) = I) (fv(I))2.

Hence, we can bound the variance as follows

Var[fv(I(A ∩ R̃v,g))] = E[fv(I(A ∩ R̃v,g))2]− w2

≤ E[fv(I(A ∩ R̃v,g))2]

=
∑
I∈2H

Prv,g(I(A ∩ R̃v,g) = I) (fv(I))2

≤
∑
I∈2H

Prv,g(I(A ∩ R̃v,g) = I) fv(I)

= w,

where the last inequality follows from the fact that fv(·) is
bounded by 1. Therefore, Var[wj ] ≤ w for all j ∈ [1, θ]. Then,
by using Lemma 7, for Mθ =

∑θ
j=1(wj − w), with E[Mθ] = 0,

a = 1, bj = w, for j = 2, . . . , θ, and γ = δθw, we have the
following corollary.

Corollary 1. For any δ > 0,

Pr

 θ∑
j=1

wj − θw ≥ δθw

 ≤ exp

(
− δ2

2δ
3 + 2

θw

)
.

Moreover, for the martingale −M1, . . . ,−Mθ , we similarly
have a = 1 and bj = w for j = 1, . . . , θ. Note also that
E[−Mθ] = 0. Hence, for −Mθ =

∑θ
j=1(w−wj) and γ = δθw

we can obtain:

Corollary 2. For any δ > 0,

Pr

 θ∑
j=1

wj − θw ≤ −δθw

 ≤ exp

(
− δ2

2δ
3 + 2

θw

)
.

We will use these corollaries frequently. We are now ready to
start our analysis. We first provide a lower bound on the sample
size, which depends on OPT.

Lemma 8. Let θ = |R̃| denote the size of the random RC-
sets returned by the sampling phase of TDEM. Suppose that θ
satisfies

θ ≥ 2n(ε+ 6)
ln
(nh
k

)
+ ` lnn+ ln 2

3ε2 OPT
. (9)

Then, for any assignment A of size at most k, the following holds
with probability at least 1− n−`/

(nh
k

)
∣∣nWR̃(A)− E [F (A)]

∣∣ < ε

2
OPT. (10)

For better readability, we have included the proof of Lemmas
8, 9, and 10 in the supplementary material.



9

As stated in Theorem 3 the greedy pair selection phase of
TDEM requires as input a sample R̃ of random RC-sets such
that Equation (7) holds for all assignments of size at most k. As
shown in Lemma 8, this requirement translates to the lower bound
|R̃| ≥ λ/OPT, where

λ = 2n(ε+ 6)
ln
(nh
k

)
+ ` lnn+ ln 2

3ε2
. (11)

Given that OPT is unknown and NP-hard to compute, our
objective is to identify a lower bound on OPT, which is as tight
as possible, so as to reduce the computational cost of generating
the sample R̃. To achieve this goal, we extend the technique
introduced by IMM and we perform a statistical test B(x), such
that if OPT < x then B(x) = false with high probability.
Given that OPT ∈ (0, n] and using the value of the greedy
solution as an indicator of the magnitude of OPT, we can identify
a lower bound on OPT by running the test B(x) on O(log2 n)
values of x, i.e., x = n/2, n/4, . . . , 2.

We now give details of our sampling algorithm, which first
adaptively estimates a lower bound on the value of OPT by
employing the statistical test, and then it keeps generating random
RC-sets into R̃ until |R̃| ≥ λ/LB.

The sampling algorithm, pseudocode provided in Algorithm 4,
first sets R̃ = ∅ and initializes LB to a naı̈ve lower bound —
which we will explain soon. Then, it enters a for-loop with at
most log2 n iterations. In the i-th iteration, the algorithm computes
x = n/2i and derives

θi =
( 2ε
3 + 2)

(
ln
(nh
k

)
+ ` lnn+ ln log2 n

)
ε2

n

x
.

Then the Algorithm inserts more random RC-sets into R̃ until
|R̃| ≥ θi and invokes RC-Greedy (Algorithm 3). If R̃ satisfies
the following stopping condition

nWR̃(Ã) ≥ (1 + ε)x, (12)

the algorithm sets the lower bound LB =
nWR̃(Ã)

1+ε and terminates
the for-loop. If this is the case, then algorithm generates more
random RC-sets into R̃ until |R̃| ≥ λ

LB and returns R̃. Otherwise,
the algorithm proceeds with the (i + 1)-th iteration. If after
O(log2 n) iterations the algorithm cannot set LB, then it uses
the naı̈ve lower bound and generates random RC-sets into R̃ until
|R̃| ≥ λ/LB0. The naı̈ve bound LB0 corresponds to the value
of the minimum possible solution on the input instance for any
positive integer k, hence, we set LB0 = 1− 1

4 max
(v,i)∈E

gv({i}).5

The following theorem gives the correctness of Algorithm 4.

Theorem 4. With probability at least 1−n−`, Algorithm 4 returns
a sample R̃ such that |R̃| ≥ λ/OPT.

To prove Theorem 4, we first establish the following two
lemmas, for which the proofs can be found in the supplementary
material.

Lemma 9. Assume that we invoke algorithm RC-Greedy on a
sample R̃ of θ random RC-sets such that

θ ≥
( 2ε
3 + 2)

(
ln
(nh
k

)
+ ` lnn+ ln log2 n

)
ε2

n

x
.

5. Notice that this is analogous to IMM’s naive lower bound for the
influence maximization problem that is equal to 1.

Algorithm 4: Sampling(G̃, k, ε, `)

1 R̃← ∅ ;
2 LB← LB0 ;
3 for i = 1, . . . , log2 n− 1 do
4 x← n/2i ;

5 θi =
( 2ε

3 +2) (ln (nhk )+` lnn+ln log2 n)
ε2

n
x ;

6 while |R̃| ≤ θi do
7 R̃ ← R̃ ∪GenerateRC-Set;
8 Ãi ← RC-Greedy(R̃, k, l) ;
9 if nWR̃(Ãi) ≥ (1 + ε)x, then

10 LB← nWR̃(Ã)

1+ε ;
11 break;
12 θ ← λ/LB;
13 while |R̃| ≤ θ do
14 R̃ ← R̃ ∪GenerateRC-Set ;
15 return R̃

Let Ã be the solution returned by the RC-Greedy. If
nWR̃(Ã) ≥ (1 + ε)x, then OPT ≥ x with probability at least
1− n−`

log2 2n .

Lemma 10. Assume x, ε, R̃, and Ã are defined as in Lemma 9.
If OPT ≥ x then nWR̃(Ã) ≤ (1 + ε) OPT with probability at
least 1− n−`

log2 n
.

We are now ready prove Theorem 4.

Proof of Theorem 4. Let i∗ = dlog2
n

OPTe. We will first show
that the probability the stopping condition holds while OPT < x
is at most (i∗ − 1)/(n` log2 n). Recall that the value of x is
determined by n/2i at each iteration i. Therefore, for any i < i∗,
we have x = n/2i < OPT. Hence, by Lemma 9 and the union
bound over i∗ − 1 iterations, the probability that OPT < x and
nWR̃(Ã)/(1+ε) ≥ x is at most (i∗−1)/(n` log2 n). Moreover,
it follows from Lemma 10 that the probability that OPT ≥ x and
nWR̃(Ã) > (1+ε) OPT is at most 1/(n` log2 n). Hence, when
the stopping condition holds, by union bound, the probability that
OPT ≥ x and nWR̃(Ã) ≤ (1 + ε) OPT is at least

1−
(

i∗ − 1

n` log2 n
+

1

n` log2 n

)
≥ 1− n−`.

Then by Lemma 10 and the union bound, it follows that with
probability at least 1− n−`, we have

OPT ≥
nWR̃(Ã)

1 + ε
≥ x.

Therefore, the algorithm sets LB ≥ OPT with probability at least
1− n−` and returns a sample R̃ such that

|R̃| ≥ λ

LB
≥ λ

OPT

with probability at least 1− n−`.

6 EXPERIMENTS

In this section, we evaluate our proposed algorithm on a range of
real-world datasets.
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TABLE 1
Statistics of the datasets.

Dataset n m d(G) ` `2 piuv

avg avg min avg max

DBLP:BSch 167 634 3.80 −0.60 0.50 0.034 0.116 0.249
DBLP:CPap 144 800 5.56 −0.26 0.28 0.034 0.117 0.247
DBLP:PYu 342 1964 5.74 −0.52 0.42 0.034 0.118 0.249
TPair:X 140 1372 9.80 −0.03 0.34 0.034 0.112 0.249
TPair:Y 338 8436 24.96 −0.07 0.43 0.034 0.107 0.249
TPair:Z 577 24427 42.33 0.12 0.36 0.034 0.113 0.250
Tweet:S5 2719 7714 2.84 0.24 0.52 0.034 0.114 0.249
Tweet:S2 4379 27765 6.34 0.26 0.52 0.034 0.113 0.249
Tweet:M5 5183 50165 9.68 0.26 0.51 0.034 0.113 0.250
Twitt:Follow 5454 835725 153.23 0.27 0.52 0.034 0.116 0.250
G:Brexit 22745 48830 2.15 0.65 0.72 0.010 0.014 0.110
G:IPhone 36742 49248 1.34 0.87 0.90 0.010 0.053 1.000
G:US-elect 23816 844700 35.47 0.46 0.75 0.010 0.013 0.043
G:Abortion 279505 670501 2.40 0.02 0.80 0.010 0.011 0.110
G:Fracking 374403 1366909 3.65 0.55 0.61 0.010 0.011 0.110
G:ObamaC 334617 1511670 4.52 0.12 0.61 0.010 0.012 0.110
Twitt:XL 481523 52378856 108.78 0.07 0.39 4.2e-5 0.028 1.000

6.1 Datasets
In our experiments, we use five collections of networks, one based
on data from the DBLP bibliographic database, and the other four
collected from Twitter.

The first collection consists of the one-hop egonets of three
well-known researchers: B. Schneiderman (DBLP:BSch), P. Yu
(DBLP:PYu) and C. Papadimitriou (DBLP:CPap). Node lean-
ings are derived from publication-venue information using the
method proposed by Galbrun et al. [34].

Twitt:Follow is the Twitter follower network obtained
by Lahoti et al. [35] and Twitt:XL is a larger variant of
this same network. For node leanings we use rescaled ideology
scores from Barberá et al. [36]. From the same harvest of tweets
as Twitt:Follow, we construct two additional collections of
networks. The first collection contains the networks TPair:X,
TPair:Y, and TPair:Z. Each of these networks is obtained
by selecting a pair of users who have opposite leanings but share
neighbors, and extracting the neighborhood. The second collection
contains the networks Tweet:S5, Tweet:S2, and Tweet:M5.
Instead of follower-followee relationships, these networks capture
actual exchanges of tweets between users, with increasing require-
ments on the strength of the exchanges.

The last collection consists of the six networks from the
study by Garimella et al. [16]: G:Abortion, G:Brexit,
G:Fracking, G:IPhone, G:ObamaC and G:US-elect,
Each network represents a Twitter follower network focused
around topics with two opposing sides. We obtain node leanings
from the estimated probabilities of users to retweet content from
either of the opposing sides.

Note that solving our problem for h items on a network with
m edges requires maintaining in memory a multigraph of h ×
m edges, which is analogous to the requirement for solving the
standard influence maximization problem on a graph with h ×
m edges. Hence, our largest configuration, Twitt:XL with 25
items, effectively yields a graph with 52.5 M× 25 ≈ 1.3 B edges
and is comparable to IMM’s largest dataset of 1.5 B edges [26].

For the largest configuration, Twitt:XL, following IMM
[26] to retain comparability, we use the weighted-cascade
model [2] that assigns piu,v = 1/|N in(v)| for each item and
edge. For the rest of the datasets, the propagation probabilities of

items along the edges of the network depend on the leaning of the
item being propagated, and on the leanings of the emitting and
receiving users. Intuitively, the further away from the leaning of
the users, the less likely an item is to be propagated.

We consider an exponential function to model how the pro-
pagation probability drops as the leaning of the item lies further
away from that of the communicating nodes. More specifically,
we use an exponential function with parameters β and γ:

Φβ,γ(u, v, i) = β exp(−γ max(|`(u)−`(i)|, |`(v)−`(i)|)/2) .

We set β = 0.25 for all collections except G for which
we use the edge probabilities present in the network as values
for β and add a 0.01 offset to all resulting values, in order to
obtain reasonable propagation probabilities. We experiment with
probabilities obtained with the exponential function, letting γ = 2.
We compare the propagation probabilities resulting from this
function to an exponential function with γ = 4 as well as a linear
function. A heatmap of the resulting propagation probabilities can
be found in the supplementary material.

We use 25 items with leanings evenly spread over the interval
[−1, 1] as our pool of items in all the setups. For the smaller
datasets, we look for assignments of size k = 5 with an attention
bound ku = 1, while for larger datasets we use k = 50 and
ku = 5. Following [26], we set ε = 0.2 and ` = 1 in all the
experiments.

Table 1 shows the basic statistics of the datasets used in our
experiments. For each dataset, we indicate the number of nodes
(n), the number of edges (m), the density of the graph (d(G) =
m/n), the average node leaning (`), the squared node leaning
(`2), as well as the minimum, average and maximum propagation
probabilities, over all edges and items in the network (piuv).

Figures 1–3 show histograms of node leanings and leaning
differences across the edges of each network from the different
collections.

6.2 Comparison baselines
To better understand the quality of the returned assignments, we
compare the solution of our algorithm to item–user assignments
obtained with simple yet intuitive baselines. Recall that the run-
ning time of TDEM is linear in the total number of generated
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Fig. 1. Histograms of node leanings (left) and leaning differences across the edges (right) of DBLP, TPair and G networks.
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Fig. 2. Histograms of node leanings (left) and leaning differences across
the edges (right) of Tweet networks.

RC-sets, which is very efficient. In order to not give it an unfair
advantage against the comparison baselines, we store the RC-sets
computed during the RC-set generation step of TDEM, and use
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Fig. 3. Histograms of node leanings (left) and leaning differences across
the edges (right) of Twitt networks.

them to also compute the baselines.6

The first baseline, MIN-VAR, selects at each iteration the
highest-degree node v and greedily assigns to it items so as to min-
imize the variance among the leanings. Once kv items have been
assigned to v, MIN-VAR repeats the same process for the next
highest degree node, until a total of k assignments are obtained.
The second baseline, MAX-VAR, proceeds almost identically to
MIN-VAR, but maximizes the variance instead of minimizing it.
The third baseline, MYOPIC, selects the (next) highest degree node
v at each iteration, like the other two baselines, but greedily
assigns to it a set Av ∈ H of kv items so as to maximize
fv(Av). We also considered a simple baseline that uses fully
random assignments. However it performed very poorly, obtaining

6. Our implementation is publicly available: https://github.com/
aslayci/TDEM extension

https://github.com/aslayci/TDEM_extension
https://github.com/aslayci/TDEM_extension
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exposure scores several orders of magnitude smaller than TDEM,
so we decided to leave it out.

6.3 Results
Table 2 shows the diversity exposure scores achieved by the three
baselines and by our algorithm, TDEM. For easier comparison,
we report the average diversity exposure score of the individuals of
the social network in each dataset. Recall that the smallest possible
value is 0 and the maximum possible value is 1. Additionally, we
report TDEM’s memory consumption (in megabytes) and runtime
(in seconds). The main computational bottleneck comes from the
RC-generation step, which is also used by the baselines. Therefore,
we do not report their memory consumption and runtime, since it
differs only by a negligible amount to that of RC-Greedy, as the
rest of the computations performed by the baselines are trivial.
In summary, TDEM clearly outperforms the simple baselines in
terms of the diversity exposure scores obtained. TDEM is able
to identify non-trivial assignments that yield optimized diversity
exposure in the network. That is, it finds a balance between
exposure to diverse opinions yet selects items and nodes that do
not have overly extreme leanings so as to not hinder propagation.

Observe that the runtime does not grow in proportion to the
size of the network. Instead, it depends on the ability of items to
propagate through the network, which depends, in turn, on the par-
ticular network structure, distribution of leanings, and propagation
probabilities. Indeed, according to Theorem 4, the more limited
the propagation of items, the more samples are needed to ensure
adequate estimation of the spread. Thanks to the use of reverse
exposure sets, we obtain a highly efficient algorithm, especially
considering that we are dealing with h different influence spread
problems, one for each item.

7 CONCLUSIONS

In this paper we present the first work tackling the problem of
maximizing the diversity of exposure in an item-aware information
propagation setting, taking a step towards breaking filter bubbles.
Our problem formulation models many aspects of real-life so-
cial networks, resulting in a realistic model and a challenging
computational problem. Despite the inherent difficulty of the
problem, we are able to devise an algorithm that comes with an
approximation guarantee, and is very scalable thanks to a novel
extension of reverse-reachable sets. Through experiments on real-
world datasets, we show that our method performs well and scales
to large datasets.

Our work opens avenues for future work. One interesting prob-
lem is to improve the approximation guarantee of our algorithm
by investigating further properties of the matroid formulation. Sec-
ond, it would be interesting to experiment with different diversity
functions, as well as to extend our approach to more complex
propagation models such as, in particular, temporal variants of the
independent-cascade model, with transmission probabilities that
change over time.
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and A. Flammini, “Political polarization on twitter,” 2011.

[10] K. Garimella, G. D. F. Morales, A. Gionis, and M. Mathioudakis, “Quan-
tifying controversy in social media,” in Proceedings of the 9th ACM
International Conference on Web Search and Data Mining (WSDM),
2016.

[11] P. H. C. Guerra, W. M. Jr., C. Cardie, and R. Kleinberg, “A measure of
polarization on social media networks based on community boundaries,”
in Proceedings of the 6th ACM International Conference on Web Search
and Data Mining (WSDM), 2013.

[12] X. Chen, J. Lijffijt, and T. De Bie, “Quantifying and minimizing risk of
conflict in social networks,” in Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining
(KDD), 2018, pp. 1197–1205.

[13] Q. V. Liao and W.-T. Fu, “Can you hear me now?: Mitigating the echo
chamber effect by source position indicators,” in Proceedings of the 17th
ACM Conference on Computer Supported Cooperative Work and Social
Computing (CSCW), 2014, pp. 184–196.

[14] C. Musco, C. Musco, and C. E. Tsourakakis, “Minimizing Polarization
and Disagreement in Social Networks,” ArXiv, 2017, 1712.09948.

[15] K. Garimella, G. D. F. Morales, A. Gionis, and M. Mathioudakis,
“Reducing controversy by connecting opposing views,” in Proceedings of
the 10th ACM International Conference on Web Search and Data Mining
(WSDM), 2017.

[16] K. Garimella, A. Gionis, N. Parotsidis, and N. Tatti, “Balancing in-
formation exposure in social networks,” in Proceedings of the Annual
Conference on Neural Information Processing Systems (NIPS), 2017.

[17] K. Rawal and A. Khan, “Maximizing contrasting opinions in signed
social networks,” in 2019 IEEE International Conference on Big Data
(Big Data), 2019, pp. 1203–1210.

[18] S. Bharathi, D. Kempe, and M. Salek, “Competitive influence maxi-
mization in social networks,” in Proceedings of the 3rd International
Conference on Internet and Network Economics (WINE), 2007, pp. 306–
311.

[19] A. Borodin, Y. Filmus, and J. Oren, “Threshold models for competitive
influence in social networks,” in Proceedings of the 6th International
Conference on Internet and Network Economics (WINE), 2010, pp. 539–
550.

[20] I. Valera and M. Gomez-Rodriguez, “Modeling adoption and usage of
competing products,” in Proceedings of the IEEE International Confer-
ence on Data Mining (ICDM), 2015, pp. 409–418.

[21] A. Borodin, M. Braverman, B. Lucier, and J. Oren, “Strategyproof mech-
anisms for competitive influence in networks,” Algorithmica, vol. 78,
no. 2, pp. 425–452, 2017.

[22] C. Aslay, W. Lu, F. Bonchi, A. Goyal, and L. V. S. Lakshmanan, “Viral
marketing meets social advertising: Ad allocation with minimum regret,”
Proceedings of the VLDB Endowment, vol. 8, no. 7, pp. 814–825, 2015.

[23] C. Aslay, F. Bonchi, L. V. S. Lakshmanan, and W. Lu, “Revenue
maximization in incentivized social advertising,” Proceedings of the
VLDB Endowment, vol. 10, no. 11, pp. 1238–1249, 2017.

[24] E. Cohen, D. Delling, T. Pajor, and R. F. Werneck, “Sketch-based
influence maximization and computation: Scaling up with guarantees,” in
Proceedings of the 23rd ACM International Conference on Conference on
Information and Knowledge Management (CIKM), 2014, pp. 629–638.

[25] H. T. Nguyen, M. T. Thai, and T. N. Dinh, “Stop-and-stare: Optimal
sampling algorithms for viral marketing in billion-scale networks,” in
Proceedings of the International Conference on Management of Data
(SIGMOD), 2016.



13

TABLE 2
Results summary: Diversity exposure scores.

F (A) Mem. RT

Dataset (k, ku) MYOPIC MAX-VAR MIN-VAR TDEM (MB) (s)

DBLP:BSch (5, 1) 0.034 0.014 0.042 0.050 457 2.16
DBLP:CPap (5, 1) 0.077 0.019 0.070 0.111 276 1.8
DBLP:PYu (5, 1) 0.098 0.018 0.129 0.167 285 2.68
TPair:X (5, 1) 0.089 0.026 0.071 0.129 279 1.97
TPair:Y (5, 1) 0.175 0.046 0.156 0.194 174 2.34
TPair:Z (5, 1) 0.449 0.327 0.351 0.433 1 658 42.92
Tweet:S5 (50, 5) 0.019 0.011 0.023 0.030 5 943 24.12
Tweet:S2 (50, 5) 0.087 0.021 0.152 0.177 656 9.41
Tweet:M5 (50, 5) 0.187 0.052 0.256 0.334 3 100 77.47
Twitt:Follow (50, 5) 0.202 0.199 0.093 0.323 373 44.07
G:Brexit (50, 5) 0.001 0.001 0.001 0.003 23 725 72.49
G:IPhone (50, 5) 0.025 0.007 0.016 0.045 1 803 15.49
G:US-elect (50, 5) 0.001 0.003 0.004 0.009 45 828 525.21
G:Abortion (50, 5) 0.001 0.000 0.000 0.001 154 588 1 275.25
G:Fracking (50, 5) 0.000 0.000 0.000 0.001 400 565 4 785.12
G:ObamaC (50, 5) 0.000 0.000 0.000 0.001 360 449 3 936.16
Twitt:XL (50, 5) 0.051 0.047 0.034 0.122 3 438 806.05

[26] Y. Tang, Y. Shi, and X. Xiao, “Influence maximization in near-linear time:
A martingale approach,” in Proceedings of the International Conference
on Management of Data (SIGMOD), 2015, pp. 1539–1554.

[27] Y. Tang, X. Xiao, and Y. Shi, “Influence maximization: Near-optimal
time complexity meets practical efficiency,” in Proceedings of the Inter-
national Conference on Management of Data (SIGMOD), 2014.

[28] S. Lin, Q. Hu, F. Wang, and P. S. Yu, “Steering information diffusion
dynamically against user attention limitation,” in Proceedings of the IEEE
International Conference on Data Mining (ICDM), 2014.

[29] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms,
1st ed., 2015.

[30] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis of
approximations for maximizing submodular set functions,” in Polyhedral
combinatorics, 1978, pp. 73–87.

[31] W. Chen, C. Wang, and Y. Wang, “Scalable influence maximization for
prevalent viral marketing in large-scale social networks,” in Proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD), 2010, pp. 1029–1038.

[32] S. M. Ross, Applied Probability Models with Optimization Applications.
Courier Corporation, 1970.

[33] F. Chung and L. Lu, “Concentration inequalities and martingale inequal-
ities: a survey,” Internet Mathematics, vol. 3, no. 1, pp. 79–127, 2006.

[34] E. Galbrun, B. Golshan, A. Gionis, and E. Terzi, “Finding low-tension
communities,” in Proceedings of the SIAM International Conference on
Data Mining (SDM), 2017.

[35] P. Lahoti, K. Garimella, and A. Gionis, “Joint non-negative matrix
factorization for learning ideological leaning on twitter,” in Proceedings
of the 11th ACM International Conference on Web Search and Data
Mining (WSDM), 2018.
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