Association discovery in two-view data

Matthijs van Leeuwen m.van.leeuwen@liacs.leidenuniv.nl LIACS, Leiden University, NL

> Esther Galbrun esther.galbrun@inria.fr Inria Nancy – Grand Est, FR

Finding small and non-redundant sets of associations

that describe how the two sides of a two-view dataset are related.

PROBLEM

Two-view datasets are datasets whose attributes are naturally split into two sets, each providing a different view on the same set of objects.

What associations are present in these views?

A typical exploratory data mining question:

discovering patterns that together describe the structure of the data.

We are interested in associations that span both views. Associations might be unidirectional or hold in both directions, implying that the two observations occur mostly together.

Translation of a toy dataset consisting of the two views $\mathcal{D}_{\mathbf{L}}$ and $\mathcal{D}_{\mathbf{R}}$, in both directions with translation table *T*.

RELATED WORK

- ★ Association rule mining
 - closed itemsets
 - ★ statistical testing
- Pattern set mining
 MDL-based modelling
 Exceptional Model Mining

CONTRIBUTIONS <

- Introduction of pattern-based models for Boolean two-view data, i.e., *translation tables*;
- Model selection based on the Minimum Description Length (MDL) principle;
 - ★ Three *TRANSLATOR* algorithms.

TRANSLATOR-SELECT(1)	C ⁺
Red Fox \leftrightarrow European Hedgehog \land Least Weasel	0.98
Bank Vole \leftrightarrow European Water Vole \land Common Shrew	0.97
\land Eurasian Pygmy Shrew \land Red Squirrel \land Brow	wn rat
∧ Least V	Neasel
Brown long-eared bat \land Field Vole \land European Badger	0.97
\rightarrow Eurasian Pygmy	Shrew

MAGNUM OPUS

European Polecat \land European Mole \rightarrow	Europe	an Hare	0.98
European Badger \land European Mole \rightarrow	Europe	an Hare	0.97
Eurasian Water Shrew \land European Mole	$\rightarrow E t$	ropean Hare	0.97

★ Redescription Mining

Average compression ratios (14 datasets):

T-SELECT(1)79.73%REREMI97.74%MAGNUM OPUS123.81%KRIMP300.73%

EXPERIMENTS

REREMI

REFERENCES

M. van Leeuwen and E. Galbrun (2015) Association discovery in two-view data. TKDE 27(12). http://patternsthatmatter.org/software.php#translator

 [MAGNUM OPUS] G. I. Webb (2007) Discovering significant patterns. Machine Learning.
 [KRIMP] J. Vreeken, M. van Leeuwen, and A. Siebes (2011) Krimp: mining itemsets that compress. Data Mining and Knowledge Discovery.
 [REREMI] E. Galbrun and P. Miettinen (2012) From black and white to full color: extending redescription mining outside the boolean world. Statistical Analysis and Data Mining.

