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Dynamical systems allow to modelize various phenomena or processes by only
describing their local behaviour. It is however useful to understand the behaviour
in a more global way. Checking the reachability of a point for example is a
fundamental problem. In this document we will show that this problem that is
undecidable in the general case is in fact decidable for a natural class of continuous-
time dynamical systems: linear systems. For this, we will use results from the
algebraic numbers theory such as Gelfond-Schneider’s theorem.
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1 Introduction

A dynamical system is described by a function (the dynamics of the system) and a space
on which this function is defined and in which the system will evolve. The evolution of a
dynamical system is hence described in a very simple way but it can be hard to grasp where
a point that undergoes the dynamics will go. Hence the problem of deciding whether given a
certain point, the system will eventually reach another given point is fundamental.

Indeed, many natural phenomena can be described using dynamical systems. Examples
come from mathematics [1], physics, biology [2]; the famous Lorenz’ attractor [3] is an example
of a dynamical system describing a meteorological phenomenon. However, as standard as
those systems are, and as simple as the description of their dynamics may be, many important
problems such as limit and reachability are undecidable.

Some positive results are known for some very specific classes but on the whole, it is very
difficult to know much about such systems. Even considering polynomial systems yields
many undecidable problems: [4] shows that it is possible to simulate a Turing machine using
a polynomial dynamical system. It is hence undecidable whether or not a trajectory will reach
the region corresponding to the halting state of the machine. This particular problem can be
seen as a continuous version of the Skolem-Pisot problem [5, 6, 7] which studies whether a
component of a discrete linear system will reach 0. This problem is not different from deciding
if this system reaches a hyperplane of the space, described by yk = 0 where k is the number
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of the component considered. The Skolem-Pisot problem is equivalent to deciding whether a
linear recurrent sequence reaches 0.

It is still open whether the Skolem-Pisot problem is decidable. Some results are known but
they don’t yet enlighten the whole decision problem. As an example of recent developments,
[7] shows that in small dimensions, the problem is decidable, and [8] shows that this problem
is NP-hard. As this problem also arises in a continuous context it would be interesting to
study the continuous Skolem-Pisot problem for continuous-time linear dynamical systems.
Considering a continuous space may make the study of this problem easier than in a discrete
space, indeed if two points on the two different sides of the aimed hyperplane are reached,
continuity (and the intermediate values theorem) implies that the hyperplane will also be
reached. Even if the discrete version of this problem had many possible interpretations, no
natural interpretation appears in the continuous case.

The (point to point) reachability problem, which is undecidable in the general case, has
been shown undecidable for various restricted classes of dynamical systems, such as Piecewise
Constant Derivative systems [9] where the dynamics are really simple as it consists of a sharing
of the space into regions where the derivative will be constant. Other results on the subject of
reachability and undecidability of problems in hybrid systems are studied in [10, 11, 12, 13].

It has been shown [14] that in discrete-time linear dynamical systems, the reachability
problem is decidable. The class of linear dynamical systems in the continuous field is hence
a good candidate for a class of dynamical systems where reachability might be decidable.
It is however not trivial to extend the result on discrete dynamical systems to continuous
dynamical systems, indeed, it uses algebraic properties of the orbit that are not preserved in
a continuous setting. In this paper, we will hence focus on linear continuous-time dynamical
systems and show that reachability is decidable for those systems. This result is a necessary
step if we want to study the continuous Skolem-Pisot problem that also deals with linear
dynamical systems.

The section 2 presents the problems we are going and mathematical notions that will be
useful in the following. The section 3 contains results of undecidability: for polynomial dy-
namical systems, the Skolem-Pisot problem and the reachability problem are undecidable.The
next section is the core of this paper: it contains the theorem 4 which is the core of this paper
and proves the decidability of reachability in linear dynamical systems. The proof of this
result details in fact the algorithm used to decide the question. It is composed of two parts:
the part 4.2 shows how to solve the problem in the specific case where the matrix is in Jordan
form; the part 4.1 recalls that putting the matrix into Jordan form is doable.

2 Prerequisites

2.1 Linear continuous-time dynamical systems

The dynamics of a linear dynamical system are described by a linear differential equation. To
describe such a system, we take a matrix of real numbers which will represent the dynamics
and a vector of reals that is the initial point. We use here classical definitions and notations
that can be found in [15].

Definition 1 (Linear continuous-time dynamical system) Given a matrix A ∈ Rn×n
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and a vector X0 ∈ Rn. We define X as the solution of the following Cauchy problem:{
X ′ = AX

X(0) = X0.

X is called a trajectory of the system.

Definition 2 (Reachability) Given A ∈ Rn×n, X0 ∈ Rn, Y ∈ Rn, the system is said to
reach Y from X0 if there exists t ∈ R such that X(t) = Y with X the trajectory defined with
the dynamics A and the initial point X0.

Definition 3 (ω-limit points) Given a trajectory X, a point Y is an ω-limit point of X if
there is an diverging increasing sequence (tn) ∈ RN such that Y = limn→+∞X(tn).

Definition 4 (ω-limit sets) The ω-limit set of a dynamical system is the set of its ω-limit
points: ω(X) = ∩n∪t>nX(t), where A is the closure of the set A.

The problems we are interested in are the reacability problem (which we will prove decidable
in Linear Dynamical Systems) and the Skolem-Pisot problem.

Problem 1 (Reachability problem) Given a trajectory X defined from A ∈ Kn×n and
X0 ∈ Kn, a point Y ∈ Kn, decide whether Y can be reached from X0.

The classical Skolem-Pisot problem originally consists in determining if a linear recurrent
sequence has a zero. It can however be defined as a hyperplane reachability problem.

Problem 2 (Skolem-Pisot problem) Given a trajectory X, given C ∈ Kn defining an
hyperplane1 of Kn, decide if ∃t ∈ R such that CTX(t) = 0? In other words, does the trajectory
X intersect the hyperplane defined by C?

The problems we will consider will be those for which the field K is in fact the set of rational
numbers Q.

2.2 Polynomials

Let us now recall a few notations, mathematical tools and algorithms on polynomials. In the
following, we use a field K that is a subfield of C.

Definition 5 (Ring of polynomials) We denote K[X] the ring of one variable polynomials
with coefficients in K. A polynomial can be written as P (X) =

∑n
i=1 aiX

i, with ai ∈ K and
an 6= 0. The integer n is the degree of P .

Definition 6 (Roots of a polynomial) The set Z(P ) of roots of a polynomial P is defined
as Z(P ) = {x ∈ C;P (x) = 0}

Definition 7 (Algebraic numbers) The set of roots of polynomials with coefficients in Q
is the set of algebraic numbers.

1The hyperplane defined by C is the set of points Y such that CTY =
ˆ
0
˜
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An algebraic number can be represented uniquely by the minimal polynomial it nulls (mini-
mal in Q[X] for the division) and a ball containing only one root of the polynomial. Note that
the size of the ball can be chosen using only the values of the coefficients of the polynomial
as [16] shows a bound on the distance between roots of a polynomial from its coefficient.

Definition 8 (Representation of an algebraic number) An algebraic number α will be
represented by (P, (a, b), ρ) where P is the minimal polynomial of α, a+ib is an approximation
of α such that |α− (a+ ib)| < ρ and α is the only root of P in the open ball B(a+ ib, ρ).

It can be shown that given the representations of two algebraic numbers α and β, the
representations of α+ β, α− β, αβ and α/β can be computed. See [17, 18] for details.

We will also need specific results on algebraic numbers that come from [19, 20].

Proposition 1 (Baker) Given α ∈ C− {0}, α and eα are not both algebraic numbers.

Theorem 1 (Gelfond-Schneider) Let α and β be two algebraic numbers. If α /∈ {0, 1}
and β /∈ Q, then αβ is not algebraic

2.3 Matrices

Definition 9 (Characteristic polynomial) Given a matrix A ∈ Kn×n, its characteristic
polynomial is χA(X) = det(XIn −A)

Definition 10 (Exponential of a matrix) Given a matrix A, its exponential denoted exp(A)
is the matrix

+∞∑
i=1

1
i!
Ai.

Note that the exponential is well defined for all real matrices.
All matrices can be put in Jordan form, which allows to compute easily the exponential.

To find more about Jordan matrices and blocks, the reader may consult [15] or [21].

Definition 11 (Jordan block) A Jordan block is a square matrix of one of the two follow-
ing forms

λ
1 λ

. . . . . .
1 λ

 ;


B
I2 B

. . . . . .
I2 B

 with B =
[
a −b
b a

]
and I2 =

[
1 0
0 1

]

Definition 12 (Jordan form) A matrix that contains Jordan blocks on its diagonal is said
to be in Jordan form. 

D1 0 · · · 0

0 D2
. . .

...
...

. . . . . . 0
0 · · · 0 Dn


Proposition 2 ([21]) Any matrix A ∈ Rn×n is similar to a matrix in Jordan form. In other
words,

∃P ∈ GL(Rn×n) and J in Jordan form such that A = P−1JP.
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3 Undecidability for polynomial dynamical systems

Many biological phenomena can be modelised using polynomial dynamical systems rather
than linear dynamical systems. A famous example comes from meteorological systems which
were described by Lorenz in [3]. Lorenz’ attractor has a quite chaotic behaviour which gives
the intuition that the reachability problem in polynomial dynamical systems is not decidable.
Other polynomial differential systems yields fractal basins of attraction. In other words, this
dynamical systems has exactly two ω-limit points depending on the initial point and, the set
of starting points that will lead to the first of those attractors is a fractal, for example a Julia
set.

In those systems, from already known results, we can infer that the Skolem-Pisot problem
and the reachability problem are undecidable.

Theorem 2 The Skolem-Pisot problem is undecidable for polynomial dynamical systems.

Proof: From [4], we know that it is possible to simulate a Turing machine using a polynomial
differential system. The halt of the Turing machine is then equivalent to the system reaching
the hyperplane z = qf which stands for the halting state. This is an instance of the Skolem-
Pisot problem. �

Theorem 3 Reachability is undecidable for polynomial dynamical systems.

Proof: Let us modify the Turing machine of the previous proof so that from the halting
state, the machine erases its tape then enters a special state. Simulating this machine by the
same mechanism from [4], the dynamical system reaches the point representing blank tapes
and special state if and only if the original machine halts. This means we can translate any
instance of the halting problem into a reachability in polynomial differential systems problem.
�

4 Decidability for linear dynamical systems

This section is devoted to proving the main theorem of this article: theorem 4.

Theorem 4 The reachability problem for continuous time linear dynamical systems with ra-
tional coefficients is decidable.

To decide whether a point is reachable we will try to obtain an expression of the trajectory
X that is usable and with this expression search for the different t that could be solution.
We will first consider the case where the matrix is in Jordan form: this case will be studied
in section 4.2. The section 4.1 will show how to put the matrix in Jordan form. Note that
the Jordan matrix will have algebraic coefficients and not only rational ones.

4.1 To put the matrix in Jordan form

To be able to do what we have done in the previous section, we will want to find a Jordan
matrix similar to the one considered. Building the Jordan form of a matrix implies knowing
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its eigenvalues, for that we need to compute the roots of the characteristic polynomial of the
matrix.

This consist in the following steps that are classical: computing the characteristic polyno-
mial; factorizing the polynomial in Q[X]; computing the roots; jordanizing the matrix.

4.2 If the matrix is in Jordan form

Let us suppose that the matrix A is in Jordan form with algebraic coefficients and that the X0

and Y vectors are also composed of algebraic elements. This means A =


D1 0 · · · 0

0 D2
. . .

...
...

. . . . . . 0
0 · · · 0 Dk


with the Di being Jordan blocks.

The solution of the Cauchy system
{
X ′ = AX
X(0) = X0

is X(t) = exp(tA)X0.

We then need to compute the exponential of tA. It is easy to check that

exp(tA) =


exp(tD1)

exp(tD2)
. . .

exp(tDk)


Finding a t ∈ R such that X(t) = Y is equivalent to finding such a t for each component i

and ensuring this is always the same t. We are going to solve the equation Jordan block by
Jordan block. It means we choose an i such that the corresponding part of X0 is not null (in
the other case it is easy to decide if either all t ∈ R will be solutions or no t will be solution)

and search for a t such that exp(tDi)

 x1
...
xni

 =

 y1
...
yni

 where the xj and yj are the elements of

X0 and Y corresponding to the block i. To simplify the notations, we will forget i and just
consider the problem as being exp(tD)X0 = Y and k being the size of this block.

There are two cases to consider: the two different forms of Jordan blocks. For each of those
cases, a few sub cases are to be considered which revolve around the nullity of the real part
of the eigenvalue. Let us note that as we deal with algebraic numbers, it is possible to verify
if the real part or the imaginary part is null.

4.2.1 First form: a real eigenvalue

The first form of Jordan blocks corresponds to a real eigenvalue λ. Two cases need to be
dealt with: λ = 0 and λ 6= 0
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If λ 6= 0. The exponential is exp(tD) = etλ


1
t 1
t2

2 t 1
...

. . . . . . . . .
tk

k! · · ·
t2

2 t 1

. If X01 is not 0, then

there is at most one t ∈ R solution. Indeed, let us consider xi, the first non null element of
{x1, xk}. The only possible t is then 1

λ ln
(
yi

xi

)
.

We want to verify that this t is coherent with the rest of the block. Let us remark that
etλ = yi

xi
is an algebraic number. If the block has size more than 1, then t verifies some

algebraic equations hence the proposition 1 says λt = 0, it is easy to verify if t = 0 is the
solution of the block.

If λ = 0. The case with λ = 0 means we are searching for a t such that
1
t 1

t2/2 t 1
...

. . . . . . . . .
tk

k! · · · t2/2 t 1


x1

...
xk

 =

y1
...
yk



For such a t to exist, we need to have x1 = y1, x2 + tx1 = y2, ... Let us say that xi is the
first non-null element of X. Then the only candidate for t is yi+1−xi+1

xi
. Since this candidate

is algebraic, it is easy to check whether this t is a solution for the block.

4.2.2 Second form

The second form corresponds to complex eigenvalues. The Jordan block is

D =


B
I2 B

. . . . . .
I2 B

 with B =
[
a −b
b a

]
and I2 =

[
1 0
0 1

]
.

The exponential is

exp(D) = eta


B2

tB2 B2
t2

2 B
2
2 tB2 B2

...
. . . . . . . . .

tk

k!B
k
2 · · · t2

2 B
2
2 tB2 B2

 with B2 =
[
cos(tb) − sin(tb)
sin(tb) cos(tb)

]
.

There are two cases to consider, whether a is null or not.
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If a = 0. In the case where the eigenvalue has a null real part, the exp(ta) term disappears.
Let us suppose c is the smallest odd number such that xj 6= 0 or xj+1 6= 0. We first want

to solve
[
yj
yj+1

]
= B2

[
xj
xj+1

]
. Let us remark that, since B2 is a rotation, if

√
x2
j + x2

j+1 6=√
y2
j + y2

j+1, there is no solution and in the other case, there is an infinity of solutions. We

can express the solution of this system t ∈ α + 2π
b Z where α is not explicitly algebraic as

its expression uses tan−1. Let us remark that for all those candidate t, the matrix B2 is the

same, namely B2 =
[
cos(α) − sin(α)
sin(α) cos(α)

]
. Those cos(α) and sin(α) are algebraic numbers that

can be computed: we can write an expression in xj , xj+1, yj and yj+1 for each combination
of signs for those numbers.2

We then have to verify whether the following components of X and Y are compatible with

those t. We have
[
yj+2

yj+3

]
= t

[
yj
yj+1

]
+
[
cos(α) − sin(α)
sin(α) cos(α)

] [
xj+2

xj+3

]
. Since yj or yj+1 is non null

(as
√
y2
j + y2

j+1 =
√
x2
j + x2

j+1 6= 0), there is then at most one solution and we can express it
as an algebraic number.

Conclusion for a = 0. We are able to discriminate 3 possible cases: either there is no
solution, either there is exactly one candidate t (defined with a fraction and a few subtractions
of elements of X and Y ) either there is an infinity of candidate t (defined as ±α+ 2π

b Z with
the α being fractions of elements of X and Y ). This last case will need to be compared with
the results for the other Jordan blocks to decide whether there will be solutions or not for
the whole system.

If a 6= 0. In the case where a 6= 0, the term exp(ta) makes the solution not simply turn
around the origin but describe a spiral. If a > 0, this spiral is diverging, if a < 0 it is
converging to the origin. We just have to study the norm of Y .

We want to solve the system eta
[
cos(tb) − sin(tb)
sin(tb) cos(tb)

] [
x1

x2

]
=
[
y1

y2

]
with x1 or x2 not null

(if they are, we will choose another xj). Let us consider the norms of the two sides of this
equation: eta

√
x2

1 + x2
2 =

√
y2
1 + y2

2. As we have chosen x1 or x2 to be non null, we can

write eta =
√

y21+y22
x2
1+x2

2
. We hence have exactly one t candidate to be the solution. This t is the

logarithm of an algebraic number and we can check whether tb is the correct angle (this is
the combination of a non algebraic solution with an infinity of solutions).

Putting together the solutions. As we have seen, for one block, we may have no
solution, one solution or an infinity of solutions. We must then bring the blocks together.
In the case where one block has no solution, the problem is solved. In the case where there
is exactly one solution, it can be algebraic (if λ = 0, or λ > 0 and there is more than one
component to check), in which case it is easy to compute formally exp(tA)X0 and compare
it with Y .

If we only have non explicitly algebraic solutions, we know that the solution must verify
∀i, exp(ait) = zi with ai and zi algebraic numbers. We must then have e

a1
a2

ln(z1) = z2. From

2For example, if xj > 0, xj+1 > 0, yj > 0 and yj+1 > 0, we have sin(α) =

r
y2

j

y2
j +y2

j+1

x2
j+x2

j+1
(xj+xj+1)2

and cos(α)

satisfies a similar expression.
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theorem 1, it implies that a1/a2 ∈ Q or z1 ∈ {0, 1}. z1 = 0 is not compatible, z1 = 1 means
that t is rational and does not belong to this case. a1/a2 ∈ Q can be checked easily (it means
the degree of the minimal polynomial is at most 1). Then we must check that za1/a2

1 = z2
which is possible for a rational exponent. This verification must be done for all pairs of ai.

If we have several infinities of candidates, we have to decide whether those infinities have
a common point. To decide whether the αi + 2π

bi
Z intersect, we need to know whether the bi

have an integer common multiple. If they don’t, then there will exist an infinity of t belonging
to all those sets; if they do, only a finite number of t need to be tested.

The last case is if we have on one hand a non algebraic solution and on the other hand
an infinity of solutions. We can summarize this case as the simultaneous resolution of

two constraints:


eat = z[
cos(bt) − sin(bt)
sin(bt) cos(bt)

] [
x1

x2

]
=
[
y1

y2

]
. We will rephrase the second part as[

eibt 0
0 e−ibt

] [
1 −i
1 i

] [
x1

x2

]
=
[
1 −i
1 i

] [
y1

y2

]
.

And we can write the whole system as the following:


eat = z
eibt = z2
e−ibt = z3

, where a, b, z, z2, and

z3 are algebraic numbers (some are complex). We have already been confronted with such a
system (but it had only two components) and we know that from theorem 1 it means that i ba
belongs to Q or z ∈ {0, 1}. i ba ∈ Q can be verified easily as it is an algebraic number; z = 0
is impossible, 1 means eat = 1 hence a = 0 (which belongs to another case) or t = 0 hence
z2 = z3 = 1 in which case, t = 0 is a solution to the problem.
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thesis, École polytechnique (2003)

[18] Brawley, J.V., Carlitz, L.: Irreducibles and the composed product for polynomials over
a finite field. Discrete Mathematics 65(2) (1987) 115–139

[19] Baker, A.: Transcendental Number Theory. Cambridge University Press (1990)

[20] Gelfond, A.O.: Transcendental and Algebraic Numbers. Dover Publications (2003)

[21] Lelong-Ferrand, J., Arnaudiès, J.M.: Cours de mathématiques, tome 1 : algèbre. Dunod
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A Appendix

A.1 Factorizing a polynomial in Q[X]

The characteristic polynomial χA(X) of the matrix A ∈ Qn×n belongs to Q[X]. We will first
factorize χA(X) in Q[X] to obtain some square-free polynomials. This is a classical problem.
One solution is to use Yun’s algorithm [22, p. 371] that writes our polynomial χA into the
form

χA =
∏
i

Rii

where the Ri are square-free and do not share roots. The polynomial
∏
Ri is then a square-

free polynomial that has the same roots as P .

Proposition 3 Suppose given a polynomial P that we can write as

P =
∏

(X − αj)βj

with the αj distinct. Let Q = P/ gcd(P, P ′), then Q is square-free and

Q =
∏

(X − αj).

We then want to factorize this polynomial Q in irreducible factors in Q[X]. This problem
is again a classical problem. An algorithm that achieves this goal is for example presented in
[23, p. 139].

Proposition 4 Given a square-free polynomial P ∈ Q[X], we can compute its factorization
in Q[X].

So we have obtained Q =
∏
Qi with the Qi being polynomial that are irreducible in Q[X]

A.2 Computing the roots

To obtain χA’s roots, we are going to compute the roots of Q. Those are algebraic numbers.
We only then need to compute a representation of each of those roots. It means finding the
minimal polynomial and giving a rational approximation of the root and an error bound to
discriminate other roots of the minimal polynomial. Let us consider a Qi.

There can be both real roots and complex roots that are not real. Sturm’s theorem allows
us to know the number of each of them [23, pp. 153-154]. We can then find the real roots
with, for example, Newton’s iteration algorithm [22, sec. 9.4]. The complex roots will for
example be computed with Schönhage’s method.

From this, we obtain approximations of the roots of the polynomial Qi. Let αj be one
of those roots. The minimal polynomial of αj divides Qi and belongs to Q[X]. As Qi is
irreducible in Q[X], the minimal polynomial can only be Qi (1 has no root and hence cannot
be a minimal polynomial).

We then obtain a factorization of Q as
∏

(X−αj) with the αj explicitly defined as algebraic
numbers.
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A.3 Jordanizing the matrix

The final step to be able to use the method described earlier is to do the factorization of χA in
C[X]. In fact, it is sufficient to do it in Q({αj})[X] to obtain a factorization into monomials.
So from now on, we will work in Q(αj) which is the field generated from Q and the algebraic
numbers {αj}.

To find the multiplicity of each root, we just need to know how many times the minimal
polynomial divides χA. We then obtain a decomposition

χA(X) =
∏

(X − ai)bi
∏

((X − αi)(X − ᾱi))βi

with the αi being the complex not real roots and the ai the real roots.

The different Jordan blocks composing the matrix are either


ai
1 ai

. . . . . .
1 ai

 either


B
I2 B

. . . . . .
I2 B

 with B =
[
p −q
q p

]
for αi = p + iq. Note that an eigenvalue can be

responsible for more than one block. The number of different blocks an eigenvalue λ creates
is dim(ker(A− λ)). Similarly, let δi = dim(ker(A− λ)i), δi+1 − δi is the number of blocks of
size at least i+ 1. We can hence know the number of blocks of each size and write a Jordan
matrix J consisting of blocks in decreasing size order (any order would be fine). This Jordan
matrix is similar to the original matrix A.

We finally need to compute the similarity matrix P which will be such that A = P−1JP .
This matrix is obtained by computing the eigenvectors of the matrix A (or J).
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