Symbolic dynamics and bialgebras arXiv:2107.10734

E. Jeandel

Université de Lorraine, France

Plan

(1) Symbolic Dynamics
(2) Categories for symbolic dynamics
(3) Applications

4 Conclusion

Edge shift

An edge shift is the set of all biinfinite walks (on edges) in a finite graph

Edge shift

An edge shift is the set of all biinfinite walks (on edges) in a finite graph

Edge shift

An edge shift is the set of all biinfinite walks (on edges) in a finite graph

. . . actactactact.actactactact . . .
. . . teamteam.teamteam . . .
. . . eeeeeeee.eeeeeeee . . .
. . . actactactact.eeeeeeee . . .
. . . actamteacte.amtamteact . . .

Conjugacy

Edge shifts are conjugate if they're isomorphic via local transformations

Conjugacy

Edge shifts are conjugate if they're isomorphic via local transformations

use different symbols for a depending on the next symbol. $a c \rightarrow a c$
$a m \rightarrow b m$

Conjugacy

Edge shifts are conjugate if they're isomorphic via local transformations

use different symbols for a depending on the next symbol. $a c \rightarrow a c$
$a m \rightarrow b m$

Conjugacy

Edge shifts are conjugate if they're isomorphic via local transformations

> use same symbols for c and m $a c \rightarrow a c$ $b m \rightarrow b c$

Conjugacy

Edge shifts are conjugate if they're isomorphic via local transformations

> use same symbols for c and m $a c \rightarrow a c$ $b m \rightarrow b c$

Conjugacy

Edge shifts are conjugate if they're isomorphic via local transformations

More generally, choose a vertex to duplicate

- Duplicate the inputs
- Redistribute the outputs or vice-versa

SSE

This can be defined directly on adjacency matrices:

Definition

Two matrices M and N are 1-step equivalent if $M=R S$ and $N=S R$ for (nonnecessarily square) nonnegative integral matrices R, S

SSE

This can be defined directly on adjacency matrices:

Definition

Two matrices M and N are 1-step equivalent if $M=R S$ and $N=S R$ for (nonnecessarily square) nonnegative integral matrices R, S

Example:

$$
\begin{aligned}
& M=\left(\begin{array}{lll}
0 & 2 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right) N=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1
\end{array}\right) \\
& R=\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right) S=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}\right)
\end{aligned}
$$

SSE

This can be defined directly on adjacency matrices:

Definition

Two matrices M and N are 1-step equivalent if $M=R S$ and $N=S R$ for (nonnecessarily square) nonnegative integral matrices R, S

Definition

Strong shift equivalence (SSE) is the transitive closure of 1 -step equivalence.

Graphs G_{1} and G_{2} represent conjugate edge shifts iff their adjacency matrices are SSE.

History

Main open problem of symbolic dynamics: decide conjugacy/SSE

- Open since the 70s
- Decidable for matrices in \mathbb{Z} (Krieger, 1980)
- (almost the) same as conjugacy in $G L_{n}(\mathbb{Z})$
- Decidable for one-sided edge-shifts (Williams, 1973)
- The rewriting system on graphs is confluent.

Invariants

Definition

An invariant is a function ψ s.t. $\psi(M)=\psi(N)$ if M and N are SSE.

- To prove that M and N are NOT SSE, just find an invariant that distinguishes them
Examples:
- Trace of the matrix
- More generally, number of cycles of size k
- The entropy (exponential growth of the number of paths of size n)

In this talk: A systematic way to find invariants

Plan

(1) Symbolic Dynamics

(2) Categories for symbolic dynamics

3 Applications
4. Conclusion

Goal

Build a category where arrows can represent matrices and equivalence classes of SSE.

Starting point

Folklore

The bialgebra PROP is exactly the PROP of nonnegative integer matrices.

Starting point

Folklore

The bialgebra PROP is exactly the PROP of nonnegative integer matrices.
A commutative monoid $(\eta: 0 \rightarrow 1, \mu: 2 \rightarrow 1)$

Starting point

Folklore

The bialgebra PROP is exactly the PROP of nonnegative integer matrices.
A commutative monoid $(\eta: 0 \rightarrow 1, \mu: 2 \rightarrow 1)$

A cocommutative comonoid $(\epsilon: 1 \rightarrow 0, \Delta: 1 \rightarrow 2)$ \square

Starting point

Folklore

The bialgebra PROP is exactly the PROP of nonnegative integer matrices.
A commutative monoid $(\eta: 0 \rightarrow 1, \mu: 2 \rightarrow 1) \longrightarrow$

A cocommutative comonoid ($\epsilon: 1 \rightarrow 0, \Delta: 1 \rightarrow 2$)

Bialgebra rules

Starting point

Folklore

The bialgebra PROP is exactly the PROP of nonnegative integer matrices.
arrows $n \rightarrow m$ are exactly matrices of size $m \times n$.

SSE

Technically, our matrices represent graph, so with inputs = outputs SSE states that $R S \equiv S R$, how can we simulate that?

SSE

Technically, our matrices represent graph, so with inputs = outputs

SSE states that $R S \equiv S R$, how can we simulate that?
With a trace!

Trace

Consider the traced bialgebra prop (the previous prop + a trace).

Trace

Consider the traced bialgebra prop (the previous prop + a trace).

Trace

In this prop, we can associate a scalar $t(M)$ to each matrix M.

Trace

In this prop, we can associate a scalar $t(M)$ to each matrix M. Is it true that $t(M)=t(N)$ iff M and N are SSE ?

Flow equivalence

$M=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $N=(1)$ satisfy $t(M)=t(N)$ but are not SSE.

Flow equivalence

$t(M)=t(N)$ iff M and N are flow-equivalent, another equivalence notion coming from symbolic dynamics
(First observed by David Hillman, 1995)
We have lost a notion of time, that we need to recover

Solution

We add a generator that is a morphism for both the monoid and the comonoid.

Solution

We add a generator that is a morphism for both the monoid and the comonoid.

Note: this new prop represents matrices in $\mathbb{Z}_{+}[t]$ rather than \mathbb{Z}_{+}

Solution

We add a generator that is a morphism for both the monoid and the comonoid.

Theorem
 In this prop, $t(M)=t(N)$ iff M and N are SSE.

Needs some new (easy) results in symbolic dynamics for the proof.

To recap: we need one bialgebra, a bialgebra morphism and a trace.

Plan

(1) Symbolic Dynamics

2 Categories for symbolic dynamics

3 Applications

4 Conclusion

Applications

What do we gain from it ?

- If one knows a concrete representation of this prop, one can decide conjugacy
- One can find invariants !

Methodology

- Let \mathfrak{C} be our category.
- Let \mathfrak{D} be any traced category that contains a bialgebra
- By the universal property, there is a functor from \mathfrak{C} to \mathfrak{D}
- Using this functor, we can associate to each matrix M an arrow $\psi(M)$ in \mathfrak{D} s.t. $\psi(M)=\psi(N)$ if M and N are SSE.

Good news/Bad news

Good news: There are a lot of bialgebras in the wild

Bad news:

- Some of them are in categories that are not traced
- Some of them are Hopf algebras
- Hopf algebras represent matrices with coefficients in \mathbb{Z}, not in \mathbb{Z}_{+}

Example from algebra $1 / 2$

- If M is a finite abelian monoid, $\mathbb{K}[M]$ has a structure of a bialgebra
- Product is the monoid product extended linearly
- Coproduct is the copy extended linearly

Theorem

Let \mathcal{M} be an additive monoid, and h an homomorphism.
Then the number of solutions in \mathcal{M} of the equation $h(M x)=x$ is an invariant for SSE.

Example from algebra $2 / 2$

- $\mathbb{K}[X]$ has a structure of a bialgebra
- Product is the product of polynomials
- Coproduct is defined by $\Delta(X)=1 \otimes X+X \otimes 1$

Problem: no trace!

Example from algebra $2 / 2$

- $\mathbb{K}[X]$ has a structure of a bialgebra
- Product is the product of polynomials
- Coproduct is defined by $\Delta(X)=1 \otimes X+X \otimes 1$

Solution: Replace $\mathbb{K}[X]$ by formal series in a complete semiring (like $\left.\mathbb{R}_{+} \cup\{+\infty\}\right)$.
If we take the morphism $h(X)=t X$ we get:

Theorem

The quantity $f_{M}(t)=\frac{1}{\operatorname{det}(I-t M)}$ is an invariant for SSE
This is the well-known Zeta function of a subshift.

Example from Category Theory

Let \mathfrak{D} be a category with finite limits and colimits.

- Suppose one has a monoid X in a \mathfrak{D} wih a morphism h.
- It extends to a bialgebra using the diagonal map as a comonoid.

Problem: What if there is no trace in \mathfrak{D} ?

Example from Category Theory

Let \mathfrak{D} be a category with finite limits and colimits.

- Suppose one has a monoid X in a \mathfrak{D} wih a morphism h.
- It extends to a bialgebra using the diagonal map as a comonoid.

Solution: Replace \mathfrak{D} with cospan (\mathfrak{D}) which is a compact category.

Example from Category Theory

Let \mathfrak{D} be a category with finite limits and colimits.

- Suppose one has a monoid X in a \mathfrak{D} wih a morphism h.
- It extends to a bialgebra using the diagonal map as a comonoid.

Theorem

Let M be a $n \times n$ matrix.
The object that is the coequalizer of $X^{n} \xrightarrow[h^{n} \circ M]{i d^{n}} X^{n}$ is an invariant for SSE.

Example from Category Theory

Let \mathfrak{D} be a category with finite limits and colimits.

- Suppose one has a monoid X in a \mathfrak{D} wih a morphism h.
- It extends to a bialgebra using the diagonal map as a comonoid.

Theorem

Let M be a $n \times n$ matrix.
The object that is the coequalizer of $X^{n} \xrightarrow[h^{n} \circ M]{i d^{n}} X^{n}$ is an invariant for SSE.

- Starting with the monoid $(\mathbb{Z},+)$ in the category of abelian groups, we obtain the Bowen-Franks group (1977)
- Starting with the monoid $(\mathbb{Z}[t],+)$ in the category of $\mathbb{Z}[t]$-modules, we obtain the dimension group of Krieger (1977)

Plan

(1) Symbolic Dynamics
(2) Categories for symbolic dynamics

3 Applications
4. Conclusion

Where to go from here ?

- We have a systematic way to find invariants
- Investigate new bialgebras to find new invariants!

