ZX-calculus

E. Jeandel
Loria (Nancy)

Plan

(1) Introduction

2 Description

3 Applications

4 Conclusion

What

The ZX-Calculus is a graphical calculus designed by Coecke and Duncan (2008) with categorical foundations:

- Which represents quantum circuits and more
- With easy and interpretable rules

It can be seen as a carefully designed extension of quantum circuits allowing some specific gates which are not reversible.

Why

- Matrices are exponential in the size of the circuits
- Equational theory of circuits is not known yet (in april 2022)

(straight from the slides of Bian-Selinger)

$$
\begin{aligned}
& \omega^{8}=1 \\
& H^{2}=1 \\
& S^{4}=1 \\
& \text { SHSHSH }=\omega
\end{aligned}
$$

(straight from the slides of Bian-Selinger)

$$
\begin{aligned}
& T T=S \\
& (\text { THSSH })^{2}=\omega \\
& \xrightarrow{-T \cdot}=\square^{T-T}
\end{aligned}
$$

When

- To analyze quantum circuits, esp. on particular inputs
- To design quantum circuits (with some caveats)
- To optimize quantum circuits (with some caveats)
- For any computation on unitary matrices

When not

- For general linear algebra
- Sums of matrices are not easy to handle
- nonunitary matrices are hard to represent

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Plan

(1) Introduction

(2) Description

3 Applications

4 Conclusion

Circuits and props

Circuits (and diagrams) will have inputs on the top, and outputs at the bottom

Circuits and props

- In a circuit, each box corresponds to a matrix
- If two boxes are put in parallel, we do the tensor product of the matrices
- If two boxes are put sequentially, we do the matrix product of the matrices

Diagrams work the same

ZX-Calculus Compositions

$$
\begin{aligned}
& {[a \in\|=\| Y] \cdot([\|\|\cdot\| V\|) \cdot(\|\infty\| \cdot\|\|)} \\
& =\frac{1}{2}\left(\begin{array}{cccc}
1 & 0 & 0 & i \\
1 & 0 & 0 & -i \\
0 & 1 & i & 0 \\
0 & 1 & -i & 0
\end{array}\right)
\end{aligned}
$$

Cups and Caps

$\cap|00\rangle+|11\rangle$
$\langle 00|+\langle 11|$

Cups and Caps

$\cap|00\rangle+|11\rangle \cup\langle 00|+\langle 11|$

Cups and Caps

$$
\cap|00\rangle+|11\rangle \quad \cup\langle 00|+\langle 11|
$$

All generators in the language are chosen to be compatible with bending wires

Graphs

ZX-Calculus

X

First gate: X
Addition modulo 2.

$$
\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right)
$$

X

What equations does X satisfy ?

X is associative, commutative and has a neutral element

X

Due to the equations, one can generalize X as:

Z

Second gate: Z

Copy

$\left(\begin{array}{ll}1 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 1\end{array}\right)$

Z

What equations does Z satisfy ?
Z is (co)associative, (co)commutative and has a neutral element.

where trashes * the qubits.

Equations

Equations

Equations

Equations

Equations

Equations

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Equations

What happens if we do CNOT twice ?

Quantum circuits

Quantum circuits are just like classical circuits but built on the following set of gates:

Quantum circuits

Quantum circuits are just like classical circuits but built on the following set of gates:

Commutes with all green nodes.

Quantum circuits

Quantum circuits are just like classical circuits but built on the following set of gates:

Spiders

Second summary

We have transformed our original gates into new nodes, that we better understand and that satisfy some equations, namely:

Almost all quantum algorithms and protocols can be understood using only these equations
(and two more to follow in the next slide)

Is this all?

Can we prove anything with this set of equations?

Theorem (J.-Perdrix-Vilmart 2017, Vilmart 2019)

No. We need a few additional equations:

Plan

(3) Applications

4 Conclusion

Circuit analysis, protocol analysis

slide from V. Zamdzhiev

Circuit analysis, protocol analysis

slide from T. Carette

Circuit simulation

Kissinger, van de Wetering 2022

Circuit simulation

Kissinger, van de Wetering 2022

Circuit simplification

Duncan, Kissinger, Perdrix, van de Wetering 2020

Circuit simplification

Duncan, Kissinger, Perdrix, van de Wetering 2020

Differentiation / Integration

Jeandel-Perdrix-Veshchezerova-2022, $e^{\beta H}$ for $H=Z_{1}+Z_{2}-2 Z_{1} Z_{2}$

$$
D_{U}(\beta)=0-3-3
$$

Using the formula (17) we find the derivative of $D_{U(\beta)}$:

$$
h=\overbrace{0}^{\pi} \overbrace{2}\left[\partial_{\mathrm{ZX}} D_{U(\beta)}\right]_{\beta \rightarrow 0}=0
$$

Differentiation / Integration

Wang-Yeung 2022

Plan

(1) Introduction

2 Description
(3) Applications
4. Conclusion

Conclusion

PICTURING QUANTUM PROCESSES

A First Course in Quantum Theory and
Diagrammatic Reasoning
BOB COECKE AND ALEKS KISSINGER

New book: Quantum - in Pictures (Coecke-Gogioso, soon)

