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Generic Situation

In various contexts C (group theory, logic, dynamics), the following
situation appears:

Structures of C can be defined by the set of axioms they satisfy
Someone proves: there exists a structure of C that is not
computable
Someone proves: if we suppose that the structure has additional
property P, then the structure is computable
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Context 1: Combinatorial Group theory

Finitely generated groups with two generators a,b:
We are given two generators a and b, and maybe some set of
relations R between products of the generators.
The group is the set of all possible products of a,b,a−1,b−1

If we have the relations x = y then the element x and the element
y are identified.
Principal question of comb. group theory: Given two elements s
and t , do we have s = t ?
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Examples

Suppose we have no relations.
Then

aba = abb−1bab−1b
baa−1 = bb−1b
But baa 6= abb−1
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Examples

Suppose we have the relation ab = ba
Then

aba = abb−1bab−1b (same as before)
abb = bab = bba
But baa 6= abb−1
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Context 1: Combinatorial Group Theory

Definition
A presentation of a group with generators a,b is just a set of relations
for the group.

Theorem (Boone 57, Novikov 55)
There exists a group with a finite presentation for which the equality is
not computable

Theorem (ess. Kuznetsov 58)
Any simple group with a finite presentation has a computable equality.
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Context 2: Subshifts

Definition
Subshifts over an alphabet {0,1} are sets of infinite words given by a
set of forbidden patterns, i.e. finite words they cannot contain
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Example

No forbidden patterns: we can produce all infinite words:
01111111111111111 . . .
10101010101000000 . . .
1100100100001111110110 . . . (bits of π)
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Example

Forbidden pattern: 01
000000000000000000 . . .
111111000000000000 . . .
11111111111111111 . . .
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Example

Forbidden patterns: 10n1 for all n
000000000000000000 . . .
000000100000000000 . . .
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Context 2: Symbolic Dynamics (Tilings)

Definition
A presentation of a subshift is a set of forbidden patterns that define it.

Theorem (Robinson 71)
There exists subshifts with a finite presentation which is
noncomputable

Theorem (Ballier-J. 08, Hochman 09)
Minimal subshifts with finite presentation are computable.
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Example: First order logic

Fix a vocabulary V

Definition
An axiomatisation of a theory T is a set of axioms for T .

Theorem (Robinson 1950)
There exists theories with finitely many axioms that are not
computable.

Theorem (Folklore ?)
Complete theories with finitely many axioms are computable.
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Goal of the talk

Is there a common framework ?

Universal Algebra (observed by Kuznetsov 55, see also Mal’tsev
61) captures group but does not capture logic and dynamics.
Model Theory : not well adapted for finitely generated structures.
Category Theory : not clear
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Goal of the talk

We use here a framework from formal logic called closure spaces
Start from topology (Moore 1910)
Large role in universal logic (Tarski 1930’s)
Then in universal algebra (closure systems)

We add some computable flavor to this framework
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General Framework

In all our cases, structures are entirely defined by the properties they
satisfy.

Almost by definition.

A structure can be identified with the set of properties it satisfies

We want to see a structure as a closed subset of properties, so we
need a notion of closure.
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General Framework

We want to introduce a consequence operator on properties
C(X ) will be the set of consequences of X .

E. Jeandel, Computability in Closure Spaces 21/66



Group Theory

“aa−1b = bb−1b′′ ∈ C(∅)
“aab = baa′′ ∈ C(“ab = ba′′)
“a = b′′ ∈ C(“ab = ba′′, “abb = baa′′)
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Symbolic Dynamics

“0 is forbidden” ∈ C(“01 is forbidden”, “00 is forbidden”)
“10 is forbidden” ∈ C(“00 is forbidden”, “101 is forbidden”)
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First-Order Logic

On vocabulary V = {P(·),a,b}.
“∀x ,P(x) ∨ ∃x¬P(x)′′ ∈ C(∅)
“∃x ,P(x)′′ ∈ C(“∀x ,P(x)′′)
“P(a) ∨ P(b)′′ ∈ C(“P(a)′′)
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The closure operator

(I is the set of all properties/axioms)
The closure operator satisfies all the following rules:

For all R ⊆ I, R ⊆ C(R)

For all R ⊆ I, C(C(R)) = C(R)

For all A ⊆ B, C(A) ⊆ C(B)

And is finitary:
Every consequence of R is a consequence of a finite subset of R.

C(R) =
⋃

R′⊆R,R′finite

C(R′)

The closure operator form what is known as a Tarski space.
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Remark

In all three cases, the structures can be identified as closed subsets of
properties

A group with two generators a,b can be identified to a normal
subgroup of Fa,b.
A subshift can be identified with the set of finite words that do not
appear in it.
A theory is (by definition) a set of axioms closed under
consequences.
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Closure operators

Where do the closure operators come from ?

Are there other ways to see why these operators exist ?
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First method

We start from a collection of rules of the form:

p1,p2 . . . pn ` p0

Every structure that has properties p1 . . . pn should have property
p0

C(S) is the smallest superset of S that is closed under all rules.
Finitary by construction.
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Example: Subshifts

w forbidden ` w0 forbidden .
w forbidden ` w1 forbidden .
w forbidden ` 0w forbidden .
w forbidden ` 1w forbidden .
w0 forbidden ,w1 forbidden ` w forbidden .
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Example: Groups

` x = x
` aa−1 = 1
` a−1a = 1
x = y , x ′ = y ′ ` xx ′ = yy ′

x = y ` x−1 = y−1
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Other examples

Closed subsets X of [0,1].
Properties of the form: ]p,q[ does not intersect X

If interval I does not intersect X , then no smaller interval intersect X
If I and J overlap and do not intersect X , then I ∪ J does not intersect
X .

Connected subsets X of a computable graph G.
Properties of the form: u belongs to X
If u ∈ X and R(u, v) then v ∈ X .
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Closure operators

Closure operators might also come from:
Galois connections
Topology
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Closure systems

Our objects (f.g. groups, subshifts and theories) are exactly the closed
subsets of a closure system.

Groups: closure system on the free group Fa,b

Subshifts: closure system on the set of finite words over {0,1}
Theories: closed system on the set of formulas
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Uses

What do we get from closure spaces ?
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Order

Subsets of properties are naturally ordered by subset inclusion.
Closed subsets correspond to structures
This gives an order on closed subsets.

M ≤ N if N satisfies more relations than M
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Examples

G ≤ H iff H is a quotient of G.
The largest group is therefore the trivial group with one element.

S ≤ T iff T ⊆ S (as sets of infinite words)
The largest subshift is therefore the empty subshift

T ≤ T ′ iff T ⊆ T ′ for theories.
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Computability

What typically are the computable properties of the closure system ?
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The framework

In typical applications:
The set of all properties I is computable
The set of all rules

p1,p2 . . . pn ` p0

can be computably enumerated
What does it mean for the closure operator ?
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Key ingredient - Enumeration reducibility

Most results involve enumeration reducibility

Definition (Informal)
A ≤e B if there is a program that can list the elements of A from any list
of all elements of B

(Note: B is usually infinite)

Definition (Informal)

A ≤f
e B if the program is called f .

≤e is a preorder, smallest degree is exactly the computably
enumerated sets.

E. Jeandel, Computability in Closure Spaces 40/66



First Theorem

Theorem
For all X , C(X ) ≤e X

There is some program that can list C(X ) from any list of X .

The program does not depend on X .
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First Theorem

What does it mean ?
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What does it mean ?

Enumeration reducibility speaks about “positive information”

A ≤e B : Some program can give me a list of the elements in A given
any list of all elements in B

As B is (usually) infinite, at any moment my program knows only that
some elements are in B, but will never know that some elements are
not in B.

To produce the list of elements in A, the program cannot use negative
information about B, i.e. information about which elements are not in
B.
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What does it mean ?

C(X ) ≤e X

To enumerate the consequences of X , we only need positive
information about X .
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Presentations

Definition
If X = C(R), we usually say that R is a presentation of X .
X is finitely presented if X = C(R) for R finite.

Finitely presented groups = finitely presented groups.
Finitely presented subshifts = subshifts of finite type.
Finitely presented theories = finitely axiomatizable theories.
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First theorem

Proposition (Classical Theorem 1)
If X ⊆ I is finitely presented, then the set of consequences of X is
computably enumerable

Indeed, X ≤e R for R finite, therefore X is enumerable given the
enumeration of a finite set, i.e. enumerable.
encompasses exactly what happens in the three situations
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Craig’s theorem

Definition
Say that the set of properties is redundant if for any finite set S of
properties there exists a disjoint set T with C(S) = C(T )

All examples have redundant properties.

Proposition (Craig’s theorem)
Suppose the set of properties is redundant.
If X = C(S) for a computably enumerable set S, then X = C(T ) for a
computable T .

encompasses exactly what happens in the three situations
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Maximal elements

Definition (Maximal points)
A closed subset X is maximal if any closed set Y s.t. X ⊆ Y satisfies
Y = I or Y = X .

(I is the set of all properties).
The only structure “above” X is the structure with all properties, i.e. the
“trivial” structure.
Alternatively, for any e 6∈ X , C(X ∪ {e}) = I, the whole set.
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Examples

In first-order logic
T is maximal iff adding any axiom to T would lead to the theory
consisting of all axioms i.e. the inconsistent theory
T is therefore a complete theory.

In groups:
G is maximal iff adding any equality to G would lead to the trivial
group
T is therefore a simple group

For subshifts, maximal elements are usually called minimal subshifts.
(due to duality)
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Main Theorem

Theorem (Generalization of the classical theorem )
If X is maximal and finitely presented, then X is computable.

encompasses exactly what happens in the three situations
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Corollary

Theorem (Ballier-J. 08, Hochman 09)
Minimal subshifts with finite presentation are computable.

Theorem (ess. Kuznetsov 58)
Any simple group with a finite presentation has a computable equality.

Theorem (Folklore ?)
Complete theories with finitely many axioms are computable.

E. Jeandel, Computability in Closure Spaces 52/66



Main Theorem

Theorem (Classical Theorem, modified)

If X is maximal, then X ≤e X

X = I \ X is the complement of X

In a maximal point, one can enumerate non-consequences from
consequences.

Trivial for logic. Shows that X ≤e X is an important relation to study in
computable algebra.
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Converse

Theorem
If X ≤e X, then there exists a (computable) closure system on I for
which X is maximal

Hence ≤e captures exactly what we want.
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Conclusion - Maximality

Many rigidity conditions on a structure X can be expressed in terms of
the natural order on the lattice of all structures.

The signification of these conditions is that they imply that negative
information on X can be obtained from positive information on X .
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Conclusion

What do we gain from this ?
Unified proofs
Results that are valid also for nonrecursive structures
Show that results from different areas are instances of a general
theorem
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Where to go

Additional theorems we would like to unify. In all three examples:

Boone-Novikov 55-57, Robinson 50, Robinson 71
There exists finitely presented structures that are undecidable

Higman 61, Kleene 52, Hochman 09
A structure has a computable presentation iff it has a finite
presentation over a larger vocabulary/alphabet/set of generators.

folklore
Finitely presented structures that are residually finite/with finite model
property/with dense set of periodic points are computable
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Classical Theorem 2

Theorem (Boone 57, Novikov 55)
There exists f.p. groups with undecidable word problems.

Theorem (Robinson 71)
There exists subshifts of finite type with an nonrecursive language

Theorem (Robinson 1950)
There exists finitely axiomatisable theories that are not recursive
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Classical Theorem 3

Theorem (Higman 61)
A group is recursively presented iff it embeds into a finitely presented
group

Theorem (Kleene 52)
A theory with identity is recursively axiomatisable iff it is finitely
axiomatisable using additional predicates

Theorem (Hochman 2009)
A subshift of dimension d is effectively closed iff it is of “finite type” in
dimension d + 2
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Classical Theorem 4

Theorem (Higman-Thompson 80)
A group has a recursive word problem iff it embeds into a finitely
presented simple group

Theorem (J.-Vanier 2019)
A subshift of dimension d has a computable word problem iff it is a
subaction of a minimal subshift of finite type.
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Galois connection

We start from a relation R ⊆ I × J (I will be a set of attributes, J a set
of objects)

This gives us two mappings:

F (X ) = {b ∈ J,∀a ∈ X , (a,b) ∈ R}

G(Y ) = {a ∈ I, ∀b ∈ Y , (a,b) ∈ R}

Our structures can be seen as sets of the form F (X ) or dually of the
form G(Y ).
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Subshifts

I are finite words
J are infinite words
xRu if the finite word x does not appear in u

F (X ) the set of infinite words that contain no element of X
Exactly our subshifts

G(Y ) the set of finite words that appear in no element of Y .
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First-order logic

I are first-order formulas over the alphabet V
J are first-order structures over the vocabulary V
φRM if φ is true on M

F (X ) the set of models that satisfy all axioms of φ.
G(Y ) the set of formulas true in all models in Y

These are precisely theories

E. Jeandel, Computability in Closure Spaces 65/66



Galois connection

The Galois connection gives us a closure system on I

C(X ) = G(F (X ))

NOT finitary in general. For first order logic, this is essentially the
compactness property.

Our objects (f.g. groups, subshifts and theories) are exactly the closed
subsets of this closure system.
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