Symbolic dynamics as a categorical notion

E. Jeandel

Université de Lorraine, France

Introduction

2 The simplification

3 Categories

4 Examples

5 Conclusion

Main open problem of symbolic dynamics:

Decide if two subshifts of finite type are conjugate.

Subshifts of finite type (SFT) can be defined in various ways. Here we focus on the graph approach.

Given a finite graph G, the subshift of finite type X_G associated to G is the set of all biinfinite paths on G.

We may think either of G as a graph, or equivalently as a matrix with nonnegative coefficients.

- We say that two SFTs are conjugate if the dynamical systems they represent are conjugate.
- If we write the biinfinite paths as words over some infinite alphabet, then the conjugacy is a cellular automaton.

Main problem of symbolic dynamics: decide conjugacy.

Conjugacy

In terms of matrices:

M is *Strong Shift Equivalent* to *N*, if $M \sim N$ where \sim is the smallest equivalence relation s.t. $RS \sim SR$ for all nonsquare integral nonnegative matrices *R*, *S*

In terms of graph:

G is conjugate to G' if *G* can be obtained from G' by a series of incoming/outgoing splits and amalgamations.

Incoming split: transform one vertex u into two vertices u_1 , u_2 , split the inputs and share the outputs.

Examples

All pictures from Kitchen's book (Symbolic Dynamics):

Examples

All pictures from Kitchen's book (Symbolic Dynamics):

Figure 2.1.5

All pictures from Kitchen's book (Symbolic Dynamics):

Figure 2.1.6

I will use "Strong Shift equivalence" (SSE) instead of conjugacy

- Williams 1973: SSE is introduced
- Williams 1973: SSE is decidable for one-sided SFTs (only incoming splits/amalgamations)
- Franks 1984: Flow equivalence (a variant of SSE) is decidable
- Kim-Roush 1988: Shift equivalence (a variant of SSE) is decidable
- Kim-Roush 1992: Shift equivalence is not the same as SSE
- Folklore: SSE is decidable for matrices in \mathbb{Z} rather than in \mathbb{Z}_+ (graphs with negative edges)

Conclusion: while SSE is not known to be decidable, there are a lot of variants that are.

- SSE is complicated because the split/amalgamation stuff is complicated
- We will introduce a simplified version of the split/amalgamation
- The equations we obtain will remind us of category theory, and we will use category theory to obtain some results

Introduction

The simplification

3 Categories

4 Examples

5 Conclusion

Flow equivalence (Parry-Sullivan 1975)

We will first focus on *flow equivalence*, a variant of SSE.

Flow equivalence is just SSE with a looser notion of time

i.e. we can now stretch a vertex:

We will reformulate flow equivalence with simpler equations
Then we will go back to the original problem
Goal: get rid of the split/amalgamations equations.

Idea

Represent the graph in a new formalism with two kinds of vertices:

Vertices that collect incoming edges

• Vertices that distribute outgoing edges:

How does flow equivalence translate into rules for red-blue graphs ?

We want to think of the blue vertex as gathering incoming edges:

- Gathering one incoming edge is the same as doing nothing
- Gathering three incoming edges is the same as gathering the first two, then gathering the result with the third

We only need blue vertices of incoming degree 2

(Technically we also need vertices of incoming degree 0)

The same is true for red vertices

Two rules

Two rules

What axioms do we need to take into account amalgamations/split ?

We only need ONE additional axiom:

Theorem

Flow equivalence, when expressed on bicolored graphs is entirely given by the following equations;

(plus other axioms for degenerate graphs, i.e. graphs with sources and sinks)

As an example, how to do the following split?

=

Proof

Theorem

Flow equivalence, when expressed on bicolored graphs is entirely given by the following equations;

(plus other axioms for degenerate graphs, i.e. graphs with sources and sinks)

How to go back to strong shift equivalence (conjugacy) ?

Flow equivalence is just SSE with a looser notion of time

SSE is just flow equivalence with a stronger notion of time.

(formal statement uses results from Boyle and Wagoner) We will add a new vertex that represents one unit of time

Theorem

SSE, when expressed on bicolored graphs is entirely given by the following equations;

(plus other axioms for degenerate graphs)

Introduction

2 The simplification

3 Categories

4 Examples

5 Conclusion

Idea: Do not see these boxes as nodes in a graph, but as operators :

Typically, the blue node takes two inputs, and converts them to one output, similarly for the others.

What do we need to represent graphs ?

- A way to compose these operators sequentially
- A way to compose these operators in parallel

What we need is a symmetric monoidal category.

A *prop* is the data, for each pair (n, m) of a set P[m, n]. Think of elements of P[m, n] as boxes with *m* inputs and *n* outputs. We write $f : m \rightarrow n$.

We also need :

- A composition P[n, p] × P[m, n] → P[m, p] satisfying the obvious axioms.
- An identity element:
- A tensor product : $P[m_1, n_1] \times P[m_2, n_2] \rightarrow P[m_1 + m_2, n_1 + n_2]$ satisfying the obvious axioms
- A swap element:

A *prop* is the data, for each pair (n, m) of a set P[m, n]. Think of elements of P[m, n] as boxes with *m* inputs and *n* outputs. We write $f: m \rightarrow n$.

We also need :

A composition P[n, p] × P[m, n] → P[m, p] satisfying the obvious axioms.

$$f \circ g: \xrightarrow{:} g \xrightarrow{:} f \xrightarrow{:} f$$

- An identity element:
- A tensor product : $P[m_1, n_1] \times P[m_2, n_2] \rightarrow P[m_1 + m_2, n_1 + n_2]$ satisfying the obvious axioms
- A swap element:

A *prop* is the data, for each pair (n, m) of a set P[m, n]. Think of elements of P[m, n] as boxes with *m* inputs and *n* outputs. We write $f: m \rightarrow n$.

We also need :

- A composition P[n, p] × P[m, n] → P[m, p] satisfying the obvious axioms.
- An identity element:

id: 🛶

- A tensor product : $P[m_1, n_1] \times P[m_2, n_2] \rightarrow P[m_1 + m_2, n_1 + n_2]$ satisfying the obvious axioms
- A swap element:

A *prop* is the data, for each pair (n, m) of a set P[m, n]. Think of elements of P[m, n] as boxes with *m* inputs and *n* outputs. We write $f: m \rightarrow n$.

We also need :

- A composition P[n, p] × P[m, n] → P[m, p] satisfying the obvious axioms.
- An identity element:
- A tensor product : $P[m_1, n_1] \times P[m_2, n_2] \rightarrow P[m_1 + m_2, n_1 + n_2]$ satisfying the obvious axioms

A *prop* is the data, for each pair (n, m) of a set P[m, n]. Think of elements of P[m, n] as boxes with *m* inputs and *n* outputs. We write $f: m \rightarrow n$.

We also need :

- A composition P[n, p] × P[m, n] → P[m, p] satisfying the obvious axioms.
- An identity element:
- A tensor product : $P[m_1, n_1] \times P[m_2, n_2] \rightarrow P[m_1 + m_2, n_1 + n_2]$ satisfying the obvious axioms
- A swap element:

A *traced prop* is a prop that contains an operator:

 $[n + 1, m + 1] \rightarrow [n, m]$, called the trace satisfying obvious axioms

A *traced prop* is a prop that contains an operator: $[n+1, m+1] \rightarrow [n, m]$, called the trace satisfying obvious axioms

A *traced prop* is a prop that contains an operator: $[n+1, m+1] \rightarrow [n, m]$, called the trace satisfying obvious axioms

A *traced prop* is a prop that contains an operator: $[n+1, m+1] \rightarrow [n, m]$, called the trace satisfying obvious axioms

A *traced prop* is a prop that contains an operator: $[n+1, m+1] \rightarrow [n, m]$, called the trace satisfying obvious axioms

- Find a traced prop which contains a bigebra, that is
 - An element 2 \rightarrow 1 to represent the blue node
 - An element 1 \rightarrow 2 to represent the red node
 - An arrow 1 \rightarrow 1 to represent the square
- Suppose these three things satisfy the axioms we gave previously
- Then one can "interpret" graphs/matrice/SFTs in this category in such a way that SFTs that are conjugate corresponds to the same element of the prop.
- This gives a way to obtain invariants

• Start from a graph/matrix

$$M = \begin{pmatrix} 0 & 2 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Main idea

Convert it into a red/blue graph:

• Convert it into a red/blue graph:

Interpret the nodes as operators in some category:

54

These equations are incredibly common, and appear in many parts of math:

Introduction

- 2 The simplification
- 3 Categories

5 Conclusion

These equations are incredibly common, and appear in many parts of math:

Introduction

The simplification

3 Categories

Examples

Monoids

- Bialgebras and Hopf Algebras
- Groups

Solution: monoids with multiplicities:

- Input of size *n*: an element of $\mathcal{M}^n \to \mathbb{N}_{\infty}$.
- The trace counts for how many elements of \mathcal{M} the diagram makes sense.

Solution: monoids with multiplicities:

- Input of size *n*: an element of $\mathcal{M}^n \to \mathbb{N}_{\infty}$.
- The trace counts for how many elements of *M* the diagram makes sense.

Monoids

Solution: monoids with multiplicities:

- Input of size *n*: an element of $\mathcal{M}^n \to \mathbb{N}_{\infty}$.
- The trace counts for how many elements of *M* the diagram makes sense.

Monoids

Solution: monoids with multiplicities:

- Input of size *n*: an element of $\mathcal{M}^n \to \mathbb{N}_{\infty}$.
- The trace counts for how many elements of \mathcal{M} the diagram makes sense.

What about the square ?

It's just a morphism for the monoid (which will automatically work with the copy)

Theorem

Let R be a matrix and \mathcal{M} be a monoid, and h an homomorphism. When interpreting the diagram in the previous category, R represents the number of solutions of the equation x = h(Rx) in the monoid \mathcal{M} .

Theorem

For all commutative monoids \mathcal{M} and all homomorphisms h of \mathcal{M} , the number of solutions of the equation x = h(Rx) in \mathcal{M} is an invariant of conjugacy.

Introduction

The simplification

3 Categories

4

Examples

Monoids

Bialgebras and Hopf Algebras

Groups

5 Conclusion

Bialgebras and Hopf Algebras are well studied in representation theory and combinatorics.

- Input of size *n*: an element of V^{⊗n} where V is a vector space over some field K
- If V is a vector space with basis e_i, V ⊗ V is a vector space with basis e_i ⊗ e_j
- Boxes are linear maps

Monoid ring : $\mathbb{K}[\mathcal{M}]$, vector space with basis e_x , $x \in \mathcal{M}$

- Multiplication: $e_x \otimes e_y \rightarrow e_{x+y}$
- By the multiplication: $3(e_2 \otimes e_3) - 2(e_1 \otimes e_4) + 3(e_1 \otimes e_5) \rightarrow e_5 + 3e_6$
- Comultiplication $e_x \rightarrow e_x \otimes e_x$
- By the comultiplication: $e_5 + 3e_6 \rightarrow e_5 \otimes e_5 + 3e_6 \otimes e_6$

Exactly the same example as before, presented differently.

The binomial bialgebra: $V = \mathbb{K}[X]$, basis $(X^n)_{n \ge 0}$

- Multiplication: $X^n \otimes X^m \to X^{n+m}$
- By the multiplication: $3(X^2 \otimes X^3) - 2(X^1 \otimes X^4) + 3(X^1 \otimes X^5) \rightarrow X^5 + 3X^6$
- Comultiplication $X^n \to \sum_k {n \choose k} X^k \otimes X^{n-k}$
- By the comultiplication: $X^2 \rightarrow 1 \otimes X^2 + 2X \otimes X + X^2 \otimes 1$
- Homomorphism: $X^n \to (\lambda X)^n$ for some $\lambda \in \mathbb{K}$

The canonical example $V = \mathbb{K}[X]$ does not have a trace, we need to tweak it:

 $\bullet\,$ Coefficients in the complete semiring \mathbb{R}_∞ rather than in $\mathbb{R}\,$

• We allow infinite sums: $V = \mathbb{R}_{\infty}[[X]]$

Trace: sum over all *n* of the coefficient of X^n of the output if the input is X^n

The golden shift:

The golden shift:

We look without the traces. If we start from $X^n \otimes X^m$, the output is

$$\lambda^{n+m}\sum_{k}\binom{n}{k}X^{m+k}\otimes X^{n-k}$$

The golden shift:

We look without the traces. If we start from $X^n \otimes X^m$, the output is

$$\lambda^{n+m}\sum_k \binom{n}{k} X^{m+k} \otimes X^{n-k}$$

The coefficient of $X^n \otimes X^m$ in this sum is $\binom{n}{n-m}\lambda^{n+m}$

The golden shift:

$$M = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

The coefficient of $X^n \otimes X^m$ in this sum is $\binom{n}{n-m}\lambda^{n+m}$ The value of the graph is therefore

$$\sum_{n,m} \binom{n}{n-m} \lambda^{n+m} = \frac{1}{1-\lambda^2 - \lambda}$$

Theorem

Let M be a nonnegative matrix. The result of the computation is $\zeta_M(\lambda)$, with $\zeta_M(t) = \frac{1}{\det(I-tM)}$. Therefore ζ_M is an invariant of conjugacy.

Consequence of McMahon master's theorem.

Introduction

The simplification

3 Categories

Examples

- Monoids
- Bialgebras and Hopf Algebras
- Groups

Cospans

New, weird category:

- A box with n inputs and m outputs is a commutative group, with at least n + m generators, and a finite presentation.
- Inputs and outputs are to be understood as generators that can still be plugged in into other generators
- Composition is the new group obtained by identifying input and output generators that are plugged together (pushout)

$$\mathbf{r} \xrightarrow{f} \mathbf{s} \qquad \mathbf{a} \xrightarrow{g} d \qquad \mathbf{r} \xrightarrow{f} g \xrightarrow{e} d$$
$$\left\langle \begin{array}{c} r,s, \\ t,u \end{array} \middle| u=2t+r \right\rangle \quad \left\langle \begin{array}{c} a,b, \\ c,d \end{array} \middle| \begin{array}{c} a-b=c+d \\ c-3d=a \end{array} \right\rangle \quad \left\langle \begin{array}{c} a,b, \\ c,d, \\ r,s, \\ t,u \end{array} \middle| \begin{array}{c} a-b=c+d \\ u=2t+r \\ c-3d=a \\ t=b \end{array} \right\rangle$$

 Tensor product is the new group obtained by putting the two groups side by side (sum of the group)

$$\mathbf{r} - \underbrace{\mathbf{f}}_{+} \stackrel{s}{t} \stackrel{a}{b} \stackrel{g}{-} \stackrel{d}{c} \stackrel{a}{t} \stackrel{g}{+} \stackrel{d}{c} \stackrel{g}{+} \stackrel{d}{c} \stackrel{g}{+} \stackrel{d}{c} \stackrel{g}{+} \stackrel{d}{c} \stackrel{g}{+} \stackrel{d}{c} \stackrel{g}{+} \stackrel{d}{c} \stackrel{d}{t} \stackrel{g}{+} \stackrel{d}{c} \stackrel{d}{t} \stackrel$$

~

Г

- Trace consists in equating input and output
- We have to look at groups upto isomorphism of the internal generators.
- What is the red and blue node ?
 - Red node: group $\mathbb{Z} = \langle x, y, z | x = y = z \rangle$: all generators are equal
 - Blue node: group $\mathbb{Z}^2 = \langle x, y, z | x + y = z \rangle$: output generator is equal to the sum of the input generators.

Note: the square is the trivial homomorphism

Theorem

Starting from a matrix M (or a graph G), this construction associates to M the abelian group

$$G = \langle x | x = Mx \rangle$$

This is the Bowen-Franks group

We can do the same with things other than groups: if we look at $\mathbb{Z}[t]$ -modules instead of groups, we can have a nontrivial interpretation of the square, and obtain:

Theorem

Starting from a matrix M (or a graph G), this construction associates to M the $\mathbb{Z}[t]$ module:

$$G = \langle x | x = tMx \rangle$$

This is the dimension group (Krieger).

Introduction

- 2 The simplification
- 3 Categories
- Examples

A systematic way to obtain invariants for symbolic dynamics by looking at algebraic structures in some categories.

We recover the classical invariants, which proves the method works:

- The Zeta function
- The Bowen-Franks group
- The Dimension group

Now: test other categories, to obtain new invariants!