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Situation

Main open problem of symbolic dynamics:

Decide if two subshifts of finite type are conjugate.

Subshifts of finite type (SFT) can be defined in various ways. Here we
focus on the graph approach.
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SFTs

Given a finite graph G, the subshift of finite type XG associated to G is
the set of all biinfinite paths on G.

We may think either of G as a graph, or equivalently as a matrix with
nonnegative coefficients.

1 2 0
0 1 1
1 1 0
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Conjugacy

We say that two SFTs are conjugate if the dynamical systems they
represent are conjugate.
If we write the biinfinite paths as words over some infinite
alphabet, then the conjugacy is a cellular automaton.

Main problem of symbolic dynamics: decide conjugacy.
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Conjugacy

In terms of matrices:

M is Strong Shift Equivalent to N, if M ∼ N where ∼ is the smallest
equivalence relation s.t. RS ∼ SR for all nonsquare integral
nonnegative matrices R,S

In terms of graph:

G is conjugate to G′ if G can be obtained from G′ by a series of
incoming/outgoing splits and amalgamations.

Incoming split: transform one vertex u into two vertices u1,u2, split the
inputs and share the outputs.

→
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Examples

All pictures from Kitchen’s book (Symbolic Dynamics):
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History

I will use “Strong Shift equivalence” (SSE) instead of conjugacy
Williams 1973: SSE is introduced
Williams 1973: SSE is decidable for one-sided SFTs (only
incoming splits/amalgamations)
Franks 1984: Flow equivalence (a variant of SSE) is decidable
Kim-Roush 1988: Shift equivalence (a variant of SSE) is decidable
Kim-Roush 1992: Shift equivalence is not the same as SSE
Folklore: SSE is decidable for matrices in Z rather than in Z+

(graphs with negative edges)
Conclusion: while SSE is not known to be decidable, there are a lot of
variants that are.
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This talk

SSE is complicated because the split/amalgamation stuff is
complicated
We will introduce a simplified version of the split/amalgamation
The equations we obtain will remind us of category theory, and we
will use category theory to obtain some results
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Flow equivalence (Parry-Sullivan 1975)

We will first focus on flow equivalence, a variant of SSE.

Flow equivalence is just SSE with a looser notion of time

i.e. we can now stretch a vertex:

→
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Plan

We will reformulate flow equivalence with simpler equations
Then we will go back to the original problem

Goal: get rid of the split/amalgamations equations.
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Idea

Represent the graph in a new formalism with two kinds of vertices:
Vertices that collect incoming edges

Vertices that distribute outgoing edges:
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Rules

How does flow equivalence translate into rules for red-blue graphs ?
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Rules

We want to think of the blue vertex as gathering incoming edges:
Gathering one incoming edge is the same as doing nothing
Gathering three incoming edges is the same as gathering the first
two, then gathering the result with the third

We only need blue vertices of incoming degree 2

(Technically we also need vertices of incoming degree 0)

The same is true for red vertices
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Two rules

=
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=
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Axioms

What axioms do we need to take into account amalgamations/split ?
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Axioms

We only need ONE additional axiom:

=

E. Jeandel, Symbolic dynamics as a categorical notion 21/57



Theorem 1

Theorem
Flow equivalence, when expressed on bicolored graphs is entirely
given by the following equations;

= =

=

(plus other axioms for degenerate graphs, i.e. graphs with sources and
sinks)
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Idea of the proof

As an example, how to do the following split?

=
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Proof
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Theorem 1

Theorem
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(plus other axioms for degenerate graphs, i.e. graphs with sources and
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Strong Shift Equivalence

How to go back to strong shift equivalence (conjugacy) ?

Flow equivalence is just SSE with a looser notion of time

SSE is just flow equivalence with a stronger notion of time.

(formal statement uses results from Boyle and Wagoner)
We will add a new vertex that represents one unit of time
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Theorem 2

Theorem
SSE, when expressed on bicolored graphs is entirely given by the
following equations;

= =

=

= =

(plus other axioms for degenerate graphs)

E. Jeandel, Symbolic dynamics as a categorical notion 28/57



Plan

1 Introduction

2 The simplification

3 Categories

4 Examples

5 Conclusion

E. Jeandel, Symbolic dynamics as a categorical notion 29/57



Categories

Idea: Do not see these boxes as nodes in a graph, but as operators :

Typically, the blue node takes two inputs, and converts them to one
output, similarly for the others.
What do we need to represent graphs ?

A way to compose these operators sequentially
A way to compose these operators in parallel

What we need is a symmetric monoidal category.
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Categories

A prop is the data, for each pair (n,m) of a set P[m,n].
Think of elements of P[m,n] as boxes with m inputs and n outputs. We
write f : m→ n.

...f...

We also need :
A composition P[n,p]× P[m,n]→ P[m,p] satisfying the obvious
axioms.
An identity element:
A tensor product : P[m1,n1]× P[m2,n2]→ P[m1 + m2,n1 + n2]
satisfying the obvious axioms
A swap element:
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Categories

A traced prop is a prop that contains an operator:
[n + 1,m + 1]→ [n,m], called the trace satisfying obvious axioms

f
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Main idea

Find a traced prop which contains a bigebra, that is
An element 2→ 1 to represent the blue node
An element 1→ 2 to represent the red node
An arrow 1→ 1 to represent the square

Suppose these three things satisfy the axioms we gave previously
Then one can “interpret” graphs/matrice/SFTs in this category in
such a way that SFTs that are conjugate corresponds to the same
element of the prop.
This gives a way to obtain invariants
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Main idea

Start from a graph/matrix

M =

0 2 1
0 1 1
0 0 1
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Convert it into a red/blue graph:
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Main idea

Convert it into a red/blue graph:

Interpret the nodes as operators in some category:

54

E. Jeandel, Symbolic dynamics as a categorical notion 34/57



The equations

These equations are incredibly common, and appear in many parts of
math:

= =

= =

=

= =
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Monoids

LetM be a commutative monoid. Inputs and outputs are elements of
M:

x

y
x + y

x

x
x
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Monoids

LetM be a commutative monoid. Inputs and outputs are elements of
M:

x

y
x + y

x

x
x

M = (R,+) :
8

10

3

2

5

E. Jeandel, Symbolic dynamics as a categorical notion 39/57



Monoids

LetM be a commutative monoid. Inputs and outputs are elements of
M:

x

y
x + y

x

x
x

M = (R,+) : ?

2

5
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Monoids

Solution: monoids with multiplicities:
Input of size n: an element ofMn → N∞.
The trace counts for how many elements ofM the diagram makes
sense.
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Monoids

Solution: monoids with multiplicities:
Input of size n: an element ofMn → N∞.
The trace counts for how many elements ofM the diagram makes
sense.

M = (R,+) : all elements of R
2

0
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Monoids

What about the square ?

= =

It’s just a morphism for the monoid (which will automatically work with
the copy)
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Theorem

Theorem
Let R be a matrix andM be a monoid, and h an homomorphism.
When interpreting the diagram in the previous category, R represents
the number of solutions of the equation x = h(Rx) in the monoidM.

Theorem
For all commutative monoidsM and all homomorphisms h ofM, the
number of solutions of the equation x = h(Rx) inM is an invariant of
conjugacy.
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Bialgebras

Bialgebras and Hopf Algebras are well studied in representation theory
and combinatorics.

Input of size n: an element of V⊗n where V is a vector space over
some field K
If V is a vector space with basis ei , V ⊗ V is a vector space with
basis ei ⊗ ej

Boxes are linear maps
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Monoid ring

Monoid ring : K[M], vector space with basis ex , x ∈M
Multiplication: ex ⊗ ey → ex+y

By the multiplication:
3(e2 ⊗ e3)− 2(e1 ⊗ e4) + 3(e1 ⊗ e5)→ e5 + 3e6

Comultiplication ex → ex ⊗ ex

By the comultiplication: e5 + 3e6 → e5 ⊗ e5 + 3e6 ⊗ e6

Exactly the same example as before, presented differently.
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The binomial bialgebra

The binomial bialgebra: V = K[X ], basis (X n)n≥0

Multiplication: X n ⊗ X m → X n+m

By the multiplication:
3(X 2 ⊗ X 3)− 2(X 1 ⊗ X 4) + 3(X 1 ⊗ X 5)→ X 5 + 3X 6

Comultiplication X n →
∑

k
(n

k

)
X k ⊗ X n−k

By the comultiplication: X 2 → 1⊗ X 2 + 2X ⊗ X + X 2 ⊗ 1
Homomorphism: X n → (λX )n for some λ ∈ K
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The binomial bialgebra

The canonical example V = K[X ] does not have a trace, we need to
tweak it:

Coefficients in the complete semiring R∞ rather than in R
We allow infinite sums: V = R∞[[X ]]

Trace: sum over all n of the coefficient of X n of the output if the input is
X n
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Example

The golden shift:

M =

(
1 1
1 0

)
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Example
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M =

(
1 1
1 0

)

We look without the traces.
If we start from X n ⊗ X m, the output is

λn+m
∑

k

(
n
k

)
X m+k ⊗ X n−k
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We look without the traces.
If we start from X n ⊗ X m, the output is

λn+m
∑

k

(
n
k

)
X m+k ⊗ X n−k

The coefficient of X n ⊗ X m in this sum is
( n

n−m

)
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Example

The golden shift:

M =

(
1 1
1 0

)

The coefficient of X n ⊗ X m in this sum is
( n

n−m

)
λn+m

The value of the graph is therefore∑
n,m

(
n

n −m

)
λn+m =

1
1− λ2 − λ
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Zeta function

Theorem
Let M be a nonnegative matrix.
The result of the computation is ζM(λ), with ζM(t) = 1

det(I−tM) .
Therefore ζM is an invariant of conjugacy.

Consequence of McMahon master’s theorem.
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Cospans

New, weird category:
A box with n inputs and m outputs is a commutative group, with at
least n + m generators, and a finite presentation.
Inputs and outputs are to be understood as generators that can
still be plugged in into other generators
Composition is the new group obtained by identifying input and
output generators that are plugged together (pushout)

s
tfr d

c
ga

b
d
c

gfr

〈
r ,s,

t ,u

∣∣∣∣u=2t+r

〉 〈
a,b,

c,d

∣∣∣∣ a−b=c+d

c−3d=a

〉 〈 a,b,

c,d ,

r ,s,

t ,u

∣∣∣∣∣∣∣∣∣∣
a−b=c+d

u=2t+r

c−3d=a

s=a

t=b

〉
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Groups

Tensor product is the new group obtained by putting the two
groups side by side (sum of the group)

s
tfr d

c
ga

b

d
c
s
t

g

f

a

b

r

〈
r ,s,

t ,u

∣∣∣∣u=2t+r

〉 〈
a,b,

c,d

∣∣∣∣ a−b=c+d

c−3d=a

〉 〈 a,b,

c,d ,

r ,s,

t ,u

∣∣∣∣∣∣∣∣
a−b=c+d

u=2t+r

c−3d=a

〉
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Groups

Trace consists in equating input and output
We have to look at groups upto isomorphism of the internal
generators.

What is the red and blue node ?
Red node: group Z = 〈x , y , z|x = y = z〉: all generators are equal
Blue node: group Z2 = 〈x , y , z|x + y = z〉: output generator is
equal to the sum of the input generators.

Note: the square is the trivial homomorphism
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Theorem

Theorem
Starting from a matrix M (or a graph G), this construction associates to
M the abelian group

G = 〈x |x = Mx〉

This is the Bowen-Franks group
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Theorem

We can do the same with things other than groups: if we look at
Z[t ]-modules instead of groups, we can have a nontrivial interpretation
of the square, and obtain:

Theorem
Starting from a matrix M (or a graph G), this construction associates to
M the Z[t ] module:

G = 〈x |x = tMx〉

This is the dimension group (Krieger).
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Conclusion

A systematic way to obtain invariants for symbolic dynamics by looking
at algebraic structures in some categories.
We recover the classical invariants, which proves the method works:

The Zeta function
The Bowen-Franks group
The Dimension group

Now: test other categories, to obtain new invariants!
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