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Conjugacy

Relation on integral nonnegative matrices:

Definition
M is Strong Shift Equivalent to N, if M ∼ N where ∼ is the smallest
equivalence relation s.t. RS ∼ SR for all nonsquare integral
nonnegative matrices R,S

Main open problem of symbolic dynamics: If SSE decidable ?
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Invariants

To partially solve this problem, one uses invariants:

Definition
An invariant is a quantity ϕ(M), easy to compute s.t.
If M ∼ N then ϕ(M) = ϕ(N).

This talk: how to get invariants for free.
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Warning

I will cheat and obtain invariants for a related notion, called flow
equivalence, that I won’t define.
SSE just needs ten more minutes.

E. Jeandel, PROPs and Symbolic dynamics 5/1



Plan

E. Jeandel, PROPs and Symbolic dynamics 6/1



PROPs

Definition
PROPs are symmetric monoidal categories generated by a single
object

Wait, what ?
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PROPs

PROPs come from category theory, and correspond to structures with
two composition rules: a sequential and a parallel composition rule.

No need to know category theory, but universal algebra might help.
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PROPs

In a prop, we have functions that have m inputs and n outputs.
We write f : m → n.

...f...

E. Jeandel, PROPs and Symbolic dynamics 9/1



PROPs

We can compose sequentially g : a → b and f : b → c if
#outputsg = #inputsf .

f ◦ g

...f...g...
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PROPs

We can compose “in parallel” g : a → b and f : c → d .

f ⊗ g:

...f...

...g...
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PROPs

We have access to the identity function : id : 1 → 1:

id :

And to a swap function: σ : 2 → 2.

σ
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Example

If we have access to f : 2 → 1 and g : 2 → 2, we can e.g. write:

(g ⊗ id) ◦ (f ⊗ σ) ◦ (id ⊗ g ⊗ id)
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Example

If we have access to f : 2 → 1 and g : 2 → 2, we can e.g. write:

(g ⊗ id) ◦ (f ⊗ σ) ◦ (id ⊗ g ⊗ id)

gf

g
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PROPs

Everything satisfy the natural equations they should satisfy:
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PROPs

Everything satisfy the natural equations they should satisfy:

...

...f...

=
...f...

...
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PROPs

Everything satisfy the natural equations they should satisfy:

f ◦ (id ⊗ id) = f

f=f
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PROPs

Everything satisfy the natural equations they should satisfy:

(f1 ◦ g1)⊗ (f2 ◦ g2) = (f1 ⊗ f2) ◦ (g1 ⊗ g2)
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PROPs

Everything satisfy the natural equations they should satisfy:

(f1 ◦ g1)⊗ (f2 ◦ g2) = (f1 ⊗ f2) ◦ (g1 ⊗ g2)

f1g1

f2g2

=
f1

f2

g1

g2
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PROPs

(Coherence theorem)

The axioms imply that reasoning with pictures is OK!
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Examples

f : m → n are functions from Am to An

◦ is the composition of functions
SWAP: (x , y) → (y , x)
f ⊗ g is the cartesian product
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Examples

f : m → n are functions from [1,m] to [1,n].
◦ is the composition of functions
SWAP: 1 ↔ 2
If f1 : [1,m1] → [1,n1] and f2 : [1,m2] → [1,n2], then

f1 ⊗ f2 :
[1,m1 + m2] → [1,n1 + n2]

x ≤ m1 7→ f1(x)
x > m1 7→ f2(x − n1) + n2

E. Jeandel, PROPs and Symbolic dynamics 17/1



Examples

f : m → n are matrices from Mn,m(R)
◦ is the matrix product

swap:
(

0 1
1 0

)
M ⊗ N is the Kronecker sum:

(
M 0
0 N

)
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f.p. PROPs

Like with groups and other structures, we can look at props given by
generators and relations

Generators:

Relations:
==
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The Boolean Prop

What are the generators and relations of the props corresponding to
functions {0,1}m → {0,1}n ?
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The Boolean prop

We have a generator: AND : 2 → 1

and some equations like

=

=
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The Boolean prop

We have a generator: OR : 2 → 1

and some equations like

=

=
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The Boolean prop

We have two generator: T : 0 → 1 and F : 0 → 1

and some equations like

==

==
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The Boolean prop

We have one generator: NOT : 1 → 1

and some equations like

=

=
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The Boolean Prop

We’re missing some equations but do we have all generators ?
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The Boolean prop

We have two generators: CPY : 1 → 2 and TRASH : 1 → 0.

and some equations like

=

==

=
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Some of the remaining equations

=

=

=
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Some of the remaining equations

=

=

=
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Theorem

Theorem (Folklore)
The corresponding generators and equations correspond to the PROP
of functions from {0,1}m → {0,1}n.
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Example

What is this prop ?
Generators:

Equations:
=

and

=

(No commutativity or associativity)
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Example

What is this prop ?

Theorem
It is the prop of bijective dyadic affine functions from [1,m] to [1,n].
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Example

Theorem
It is the prop of bijective “local” functions from {1, . . . ,m} × {0,1}ω to
{1, . . . ,n} × {0,1}ω

These are called “generalized shifts” in the vocabulary of Moore [1991].
Input (n, x) is to be interpreted as “I have the infinite word x in the n-th
wire”.
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Example

x
0x

x
1x

0x
x

1x
x
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Example

Harder example:

=

=

=
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Example

Theorem
It is the prop of bijective “local” functions from
{1, . . . ,m} × {0,1}ω × {0,1}ω to {1, . . . ,n} × {0,1}ω × {0,1}ω

Theorem
It is the prop of reversible Turing machines.

More precisely, maps m → m correspond to reversible Turing
machines with m states.
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Example

The following map:

is just the shift!
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Example
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Matrices

f : m → n are matrices from Mm,n(N)
◦ is the matrix product

swap:
(

0 1
1 0

)
M ⊗ N is the Kronecker sum:

(
M 0
0 N

)
What are the generators and relations ?
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Matrices

Axioms: (co)associativity, (co)commutativity, (co)unit and:

=
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Matrices

2 1 0
1 1 1
0 0 0
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Matrices

2 1 0
1 1 1
0 0 0
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AND and matrices

All the previous properties were satisfied by AND and CPY. What does
it mean ?
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AND and matrices

Proposition (Universal Property)
There exists a morphism (technically a functor) from matrices into
boolean functions

(
1 0 1
1 2 0

)
(x , y , z) 7→ (x AND z, x AND y AND y)
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We are computer scientists, let’s add feedback loops!
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Traces

A traced prop is a prop that contains an operator, called the trace,
satisfying obvious axioms

f
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Traces

A traced prop is a prop that contains an operator, called the trace,
satisfying obvious axioms

g
f

=
f

g
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Traces

A traced prop is a prop that contains an operator, called the trace,
satisfying obvious axioms

=
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What becomes the prop of matrices when we add a loop ?
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Theorem
Let M and N two matrices, represented as diagrams.
If we completely trace both matrices (we link all outputs to all inputs),
then
trM = trN iff M and N are flow equivalent.

Flow equivalence is an equivalence notion on matrices (technically on
SFTs) coming from symbolic dynamics.
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We have reformulated a notion from symbolic dynamics into a
category notion. This is great!

Why is this great ?

E. Jeandel, PROPs and Symbolic dynamics 52/1



Suppose we know of mathematical objects in some structure C
that satisfy all properties I gave
By the universal property, there is a morphism from (traced)
matrices to these objects
If we start from two matrices that are flow equivalent, then they
should correspond to the same thing in C

We have produced an invariant of flow equivalence!
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Axioms again

Axioms: (co)associativity, (co)commutativity, (co)unit and:

=

And there is a trace.

These equations are incredibly common, and appear in many parts of
math.
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Monoids

Let M be a commutative monoid. Inputs and outputs are elements of
M:

x

y
x + y

x

x
x

For the trace to make sense, we have to go with monoids with
multiplicities rather than monoids.

Theorem
The number of solutions in M of the equation Mx = x is an invariant of
flow equivalence.
If M and N are flow equivalent, the equations Mx = x and Nx = x
have the same number of solutions.
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The binomial bialgebra

Inputs/Outputs are polynomials in n/m variables
Green node: identify two variables X k

1 X m
2 → X k+m

White node: divide two variables X n →
∑

k
(n

k

)
X k

1 X n−k
2

Trace: sum over all n of the coefficient of X n of the output if the
input is X n

Theorem
det(I − M) is an invariant of flow equivalence.
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Cospans

A box with m inputs and n outputs is a commutative group, with at
least n + m generators
Composition = identifying generators
Green node: Group with three generators x , y , z s.t. the output z
is the sum of the two inputs.
White node: Group with three generators x , y , z s.t. the outputs y
and z are equal to x

Theorem
The group

G = ⟨x |x = Mx⟩

is an invariant of flow equivalence

(This is the Bowen-Franks group)
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Partial Conclusion

Many invariants of symbolic dynamics can be recovered by trying
to find structures (traced bialgebras) in some unrelated objects.
This can also be done for conjugacy (strong shift equivalence)

We can recover the Zeta function
We can recover the dimension group

Now: test other categories, to obtain new invariants!
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