PROPs and Symbolic dynamics

E. Jeandel

Université de Lorraine, France

Plan

Conjugacy

Relation on integral nonnegative matrices:

Definition

M is Strong Shift Equivalent to N, if $M \sim N$ where \sim is the smallest equivalence relation s.t. $R S \sim S R$ for all nonsquare integral nonnegative matrices R, S

Main open problem of symbolic dynamics: If SSE decidable?

Invariants

To partially solve this problem, one uses invariants:

Definition

An invariant is a quantity $\phi(M)$, easy to compute s.t.
If $M \sim N$ then $\phi(M)=\phi(N)$.
This talk: how to get invariants for free.

Warning

- I will cheat and obtain invariants for a related notion, called flow equivalence, that I won't define.
- SSE just needs ten more minutes.

Plan

PROPs

Definition
 PROPs are symmetric monoidal categories generated by a single object

Wait, what?

PROPs

PROPs come from category theory, and correspond to structures with two composition rules: a sequential and a parallel composition rule.

No need to know category theory, but universal algebra might help.

PROPs

In a prop, we have functions that have m inputs and n outputs. We write $f: m \rightarrow n$.

PROPs

We can compose sequentially $g: a \rightarrow b$ and $f: b \rightarrow c$ if $\#$ outputs ${ }_{g}=\#$ inputs $_{f}$.

PROPs

We can compose "in parallel" $g: a \rightarrow b$ and $f: c \rightarrow d$.

PROPs

We have access to the identity function : id : $1 \rightarrow 1$:
id :

And to a swap function: $\sigma: 2 \rightarrow 2$.

$$
\sigma
$$

Example

If we have access to $f: 2 \rightarrow 1$ and $g: 2 \rightarrow 2$, we can e.g. write:

$$
(g \otimes i d) \circ(f \otimes \sigma) \circ(i d \otimes g \otimes i d)
$$

Example

If we have access to $f: 2 \rightarrow 1$ and $g: 2 \rightarrow 2$, we can e.g. write:

$$
(g \otimes i d) \circ(f \otimes \sigma) \circ(i d \otimes g \otimes i d)
$$

PROPs

Everything satisfy the natural equations they should satisfy:

PROPs

Everything satisfy the natural equations they should satisfy:

PROPs

Everything satisfy the natural equations they should satisfy:

PROPs

Everything satisfy the natural equations they should satisfy:

$$
\left(f_{1} \circ g_{1}\right) \otimes\left(f_{2} \circ g_{2}\right)=\left(f_{1} \otimes f_{2}\right) \circ\left(g_{1} \otimes g_{2}\right)
$$

PROPs

Everything satisfy the natural equations they should satisfy:

$$
\begin{aligned}
& \left(f_{1} \circ g_{1}\right) \otimes\left(f_{2} \circ g_{2}\right)=\left(f_{1} \otimes f_{2}\right) \circ\left(g_{1} \otimes g_{2}\right) \\
& -g_{1}-f_{1} \rightarrow
\end{aligned} \begin{aligned}
& -g_{1}-f_{1} \rightarrow \\
& -g_{2}-f_{2}
\end{aligned}
$$

PROPs

(Coherence theorem)
The axioms imply that reasoning with pictures is OK!

Examples

- $f: m \rightarrow n$ are functions from A^{m} to A^{n}
- \circ is the composition of functions
- SWAP: $(x, y) \rightarrow(y, x)$
- $f \otimes g$ is the cartesian product

Examples

- $f: m \rightarrow n$ are functions from $[1, m]$ to $[1, n]$.
- \circ is the composition of functions
- SWAP: $1 \leftrightarrow 2$
- If $f_{1}:\left[1, m_{1}\right] \rightarrow\left[1, n_{1}\right]$ and $f_{2}:\left[1, m_{2}\right] \rightarrow\left[1, n_{2}\right]$, then

$$
f_{1} \otimes f_{2}: \begin{aligned}
{\left[1, m_{1}+m_{2}\right] } & \rightarrow\left[1, n_{1}+n_{2}\right] \\
x \leq m_{1} & \mapsto f_{1}(x) \\
x>m_{1} & \mapsto f_{2}\left(x-n_{1}\right)+n_{2}
\end{aligned}
$$

Examples

- $f: m \rightarrow n$ are matrices from $M_{n, m}(\mathbb{R})$
- \circ is the matrix product
- swap: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $M \otimes N$ is the Kronecker sum: $\left(\begin{array}{cc}M & 0 \\ 0 & N\end{array}\right)$

Plan

f.p. PROPs

Like with groups and other structures, we can look at props given by generators and relations

Generators:

Relations:

Plan

The Boolean Prop

What are the generators and relations of the props corresponding to functions $\{0,1\}^{m} \rightarrow\{0,1\}^{n}$?

The Boolean prop

We have a generator: $A N D: 2 \rightarrow 1$
and some equations like

The Boolean prop

We have a generator: $O R: 2 \rightarrow 1$
and some equations like

The Boolean prop

We have two generator: $T: 0 \rightarrow 1$ and $F: 0 \rightarrow 1$

and some equations like

The Boolean prop

We have one generator: NOT : $1 \rightarrow 1$
and some equations like

The Boolean Prop

We're missing some equations but do we have all generators?

The Boolean prop

We have two generators: CPY:1 $\rightarrow 2$ and TRASH : $1 \rightarrow 0$.

and some equations like

Some of the remaining equations

Some of the remaining equations

Theorem

Theorem (Folklore)

The corresponding generators and equations correspond to the PROP of functions from $\{0,1\}^{m} \rightarrow\{0,1\}^{n}$.

Plan

Example

What is this prop ?
Generators:

Equations:

and

(No commutativity or associativity)

Example

What is this prop ?
Theorem
It is the prop of bijective dyadic affine functions from $[1, m]$ to $[1, n]$.

Example

Theorem

It is the prop of bijective "local" functions from $\{1, \ldots, m\} \times\{0,1\}^{\omega}$ to $\{1, \ldots, n\} \times\{0,1\}^{\omega}$

These are called "generalized shifts" in the vocabulary of Moore [1991]. Input (n, x) is to be interpreted as "I have the infinite word x in the n-th wire".

Example

Example

Harder example:

Example

Theorem

It is the prop of bijective "local" functions from $\{1, \ldots, m\} \times\{0,1\}^{\omega} \times\{0,1\}^{\omega}$ to $\{1, \ldots, n\} \times\{0,1\}^{\omega} \times\{0,1\}^{\omega}$

Theorem

It is the prop of reversible Turing machines.
More precisely, maps $m \rightarrow m$ correspond to reversible Turing machines with m states.

Example

The following map:

is just the shift!

Example

Plan

Matrices

- $f: m \rightarrow n$ are matrices from $M_{m, n}(\mathbb{N})$
- \circ is the matrix product
- swap: $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
- $M \otimes N$ is the Kronecker sum: $\left(\begin{array}{cc}M & 0 \\ 0 & N\end{array}\right)$

What are the generators and relations ?

Matrices

Axioms: (co)associativity, (co)commutativity, (co)unit and:

Matrices

Matrices

AND and matrices

All the previous properties were satisfied by AND and CPY. What does it mean?

AND and matrices

Proposition (Universal Property)

There exists a morphism (technically a functor) from matrices into boolean functions

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 2 & 0
\end{array}\right) \quad(x, y, z) \mapsto(x \text { AND } z, x \text { AND } y \text { AND } y)
$$

Plan

We are computer scientists, let's add feedback loops!

Traces

A traced prop is a prop that contains an operator, called the trace, satisfying obvious axioms

Traces

A traced prop is a prop that contains an operator, called the trace, satisfying obvious axioms

Traces

A traced prop is a prop that contains an operator, called the trace, satisfying obvious axioms

What becomes the prop of matrices when we add a loop ?

Theorem

Let M and N two matrices, represented as diagrams. If we completely trace both matrices (we link all outputs to all inputs), then
trM $=\operatorname{tr} N$ iff M and N are flow equivalent.
Flow equivalence is an equivalence notion on matrices (technically on SFTs) coming from symbolic dynamics.

We have reformulated a notion from symbolic dynamics into a category notion. This is great!

Why is this great?

- Suppose we know of mathematical objects in some structure \mathcal{C} that satisfy all properties I gave
- By the universal property, there is a morphism from (traced) matrices to these objects
- If we start from two matrices that are flow equivalent, then they should correspond to the same thing in \mathcal{C}
We have produced an invariant of flow equivalence!

Axioms again

Axioms: (co)associativity, (co)commutativity, (co)unit and:

And there is a trace.
These equations are incredibly common, and appear in many parts of math.

Monoids

Let \mathcal{M} be a commutative monoid. Inputs and outputs are elements of \mathcal{M} :

For the trace to make sense, we have to go with monoids with multiplicities rather than monoids.

Theorem

The number of solutions in \mathcal{M} of the equation $M x=x$ is an invariant of flow equivalence.
If M and N are flow equivalent, the equations $M x=x$ and $N x=x$ have the same number of solutions.

The binomial bialgebra

Inputs/Outputs are polynomials in n / m variables

- Green node: identify two variables $X_{1}^{k} X_{2}^{m} \rightarrow X^{k+m}$
- White node: divide two variables $X^{n} \rightarrow \sum_{k}\binom{n}{k} X_{1}^{k} X_{2}^{n-k}$
- Trace: sum over all n of the coefficient of X^{n} of the output if the input is X^{n}

Theorem

$\operatorname{det}(I-M)$ is an invariant of flow equivalence.

Cospans

- A box with m inputs and n outputs is a commutative group, with at least $n+m$ generators
- Composition = identifying generators
- Green node: Group with three generators x, y, z s.t. the output z is the sum of the two inputs.
- White node: Group with three generators x, y, z s.t. the outputs y and z are equal to x

Theorem

The group

$$
G=\langle x \mid x=M x\rangle
$$

is an invariant of flow equivalence
(This is the Bowen-Franks group)

Partial Conclusion

- Many invariants of symbolic dynamics can be recovered by trying to find structures (traced bialgebras) in some unrelated objects.
- This can also be done for conjugacy (strong shift equivalence)
- We can recover the Zeta function
- We can recover the dimension group

Now: test other categories, to obtain new invariants!

