

STRUCTURES DE DONNÉES ET ALGORITHMES FONDAMENTAUX

Algorithmique - Programmation – Langages 2 (APL2)

MODALITÉS DU COURS

- Volume d'enseignement : 3 CM, 7 TD, 9 TP
- Évaluation :
 - 1 note moyenne de TD
 - Test au début de chaque TD (hormis #1)
 - 10 min, 1 question cours, 1 exercice du TD précédent
 - 1 note moyenne de TP
 - Chaque TP est noté (hormis #1), à rendre pour le lendemain (8h)
 - 1 évaluation sur table (2h) : le 20 janvier
- Langage (TP) : C → les indices de tableaux commenceront à 0

OBJECTIFS

Structures de données :

stocker et manipuler plusieurs (un grand nombre) d'éléments d'un même type

- 1.Impact sur la performance
- 2. Algorithmes spécifiques
- 3.Implantation en C

Une structure de base : la liste chaînée

PLAN DU MODULE

CM#1 (rappels +)

Complexité (principe de mesure, ordre polynomial) ; Tableaux (rappels, impact sur la mémoire)

CM#2

Type abstrait de données (ADT, exemple de l'ensemble); Listes chaînées (pile, queue, liste circulaire, liste doublement chaînée; algorithmes de base)

CM#3

Arbres binaires; Tableaux associatifs; Algorithmes de base

TD x7

Exercices sur ces notions

TP_{x9}

Implantation en C; Initiation au C

COÛT D'UN ALGORITHME

Un algorithme applique des opérations sur des données

Son exécution consomme donc des ressources

- En temps CPU pour les opérations
 - → complexité en temps
- En mémoire pour le stockage des données
 - → complexité en mémoire

EXEMPLE #1

Problème:

déterminer la parité d'un nombre entier n

Algorithme: (test sur le bit de poids faible)

```
Si[n&1 = 0, alors
renvoie Vrai,
sinon
renvoie Faux
fin si
```

Complexité en temps :

1 opération et 1 test pour tout n (et renvoie ?) → k (=2 ou ...) k ne dépend pas de la valeur de n

EXEMPLE #2

Problème:

Calculer la factorielle d'un nombre entier n (n!=n*(n-1)*(n-2)*...*2*1)

Algorithme:

```
Sortie : f : entier
f ← 1
pour i allant de 1 à n, faire
fin pour
renvoie f
```

Complexité en temps :

[n] multiplications et [n] affectations [+] opérations sur $\pm ...$ $\rightarrow k^*n$ (k=2, 3 ou...)

PREMIÈRE CONCLUSION

La complexité peut dépendre de la valeur du paramètre d'un algorithme.

Le nombre exact d'opérations importe peu : ordre de grandeur (constant, linéaire...).

EXEMPLE #3

Problème:

Extraire le premier élément d'un ensemble indexé

```
Entrée : tab[n] : réels, n : entier
```

Algorithme:

Sortie : réel

renvoie tab[0]

Complexité en temps :

1 opération (?)

ne dépend pas de la longueur n (nombre de données)

EXEMPLE #4

Problème:

Extraire le plus grand élément d'un ensemble indexé

```
Entrée : tab[n] : réels, n : entier
```

Algorithme:

```
Sortie : max : réel ; VI : i entier
max ← tab[0]
pour i allant de 1 à n-1, faire
    si tab[i] > max, alors
        max ← tab[i]
    fin si
fin pour
renvoie max
```

Complexité en temps :

Potentiellement n tests et affectations (pire cas : ensemble trié de manière croissante)

DEUXIÈME CONCLUSION

La complexité peut dépendre du nombre de données passées en paramètre (taille de l'ensemble).

On s'intéresse ici à la complexité dans le pire cas.

POURQUOI MESURER LA COMPLEXITÉ?

Dépendance à « n »

Valeur de paramètre ou nombre de données

Évaluer le comportement d'un algorithme

Comment évolue son temps d'exécution?

Comparer deux algorithmes

Deux algorithmes résolvent le même problème : lequel choisir ? Lequel prend le plus de temps d'exécution

Impact sensible quand le temps devient important

ordre de grandeur pour des grandes valeurs de n

EXEMPLE #2 : DÉTAILS DU CALCUL

Problème:

Calculer la factorielle d'un nombre entier n

Algorithme:

```
Sortie : f : entier

1  f ← 1

pour i allant de 1 à n, faire

2  f ← f * i
fin pour
renvoie f
```

Règles

Commencer par « l'intérieur »

Remonter vers « l'extérieur »

Complexité:

$$C(n) = 1 + n*2 = 2*n+1$$

Mais:
$$n*2 = \underbrace{2+2+...+2}_{n \text{ fois}} = \sum_{i=1}^{n} 2$$

Donc C(n) =
$$\sum_{i=1}^{n} 2+1$$

→ boucles du code ↔ sommes sur même intervalle

LIEN BOUCLE – SOMME : CAS CONSTANT

Cas général d'une boucle simple

Variables intermédiaires : a,b,i : entier

pour i allant de a à b, faire
 Traitement(i)
fin pour

Hypothèse : Traitement(i) demande P opérations (P constant)

Complexité:

$$C = P + P + \dots + P = \sum_{i=a}^{b} P = P \sum_{i=a}^{b} 1 = P(b-a+1)$$

LIEN BOUCLE – SOMME : CAS VARIABLE

Cas général d'une boucle simple

Variables intermédiaires : a,b,i : entier

pour i allant de a à b, faire
 Traitement(i)
fin pour

Hypothèse: Traitement(i) demande i opérations

Complexité:

$$C = \underbrace{a}_{i=a} + \underbrace{(a+1)}_{i=a+1} + \dots + \underbrace{b}_{i=b=a+b-a} = \sum_{i=a}^{b} i$$

$$C = \sum_{i=a}^{b} i = \sum_{i=0}^{b} i - \sum_{i=0}^{a-1} i = \frac{(b+1)b}{2} - \frac{a(a-1)}{2}$$

$$\sum_{k=0}^{n-1} k = \frac{n(n-1)}{2}$$

EXEMPLE: SOMME PARTIELLE MAXIMALE

Énoncé:

Étant donné $A_0, A_2, ..., A_{n-1}$ réels (potentiellement négatifs), trouver la valeur maximale pour ;

 $\sum_{k=i}^{J} A_k = A_i + \ldots + A_j$

Exemple

Pour la séquence -2, 11, -4, 13, -5, -2

La réponse est 20 (=11-4+13)

Algorithme naïf

On considère chaque nombre à tour de rôle : début de séquence

On considère chaque nombre suivant à tour de rôle : fin de séquence

On calcule la somme entre le début et la fin + test si max

(Voir « Data Structures and Algorithm Analysis in C » de Mark Allen Weiss)

ALGORITHME #1

```
n-1 \, n-1
Entrée :
                                                                       (\sum 2 \pm 3)) \pm 1
  A[n] : Réels
                                                            i=0 j=i k=1
Sortie :
  max : Réel // valeur maximale
Variables intermédiaires :
  part : Réel // somme partielle
  i, j, k : entier // variables de boucles
max \leftarrow A[0]
pour i allant de 0 à n-1, faire
  pour j allant de j a n-1, faire
     part ← 0
     pour k allant de i à j, faire
        part \leftarrow part + A[k]
     fin pour
     si part > max alors
       max ← part
     fin si
   fin pour
fin pour
Renvoie max
```

ALGORITHME #1: CALCUL

$$C(n) = \left(\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \left(\sum_{k=i}^{j} 2+3\right)\right) + 1$$

$$\sum_{k=i}^{j} 2 = 2\sum_{k=i}^{j} 1$$

$$= 2\left(\sum_{k=0}^{j} 1 - \sum_{k=0}^{i-1} 1\right)$$

$$= 2\left(\left(j+1\right) - i\right)$$

$$= 2\left(j-i+1\right)$$

$$C(n) = \left(\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \left(2\left(j-i+1\right) + 3\right)\right) + 1$$

$$= \left(\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \left(2j-2i+2+3\right)\right) + 1$$

$$= \left(\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} \left(2j-2i+5\right)\right) + 1$$

$$= \left(\sum_{i=0}^{n-1} \left(\sum_{j=i}^{n-1} 2j - \sum_{j=i}^{n-1} 2i + \sum_{j=i}^{n-1} 5\right)\right) + 1$$

Rappels

$$\sum_{k=0}^{n-1} 1 = n$$

$$\sum_{k=0}^{n-1} k = \frac{n(n-1)}{2}$$

$$\sum_{k=0}^{n-1} k^2 = \frac{n(n-1)(2n-1)}{6}$$

ALGORITHME #1: CALCUL

$$C(n) = \left(\sum_{i=0}^{n-1} \left(\sum_{j=i}^{n-1} 2j\right) \left(\sum_{j=i}^{n-1} 2i\right) \left(\sum_{j=i}^{n-1} 5j\right) + 1$$

$$\sum_{j=i}^{n-1} 5 = 5 \sum_{j=i}^{n-1} 1 = 5(n-i) = 5n - 5i$$

$$\sum_{j=i}^{n-1} 2i = 2i \sum_{j=i}^{n-1} 1 = 2i(n-i) = 2ni - 2i^{2}$$

$$\sum_{j=i}^{n-1} 2j = 2 \sum_{j=i}^{n-1} j$$

$$= 2\left(\sum_{j=0}^{n-1} j - \sum_{j=0}^{n-1} j\right)$$

$$= 2\left(\frac{n(n-1)}{2} - \frac{i(i-1)}{2}\right)$$

$$= n^{2} - n - i^{2} + i$$

$$\sum_{j=i}^{n-1} 2j - \sum_{j=i}^{n-1} 2i + \sum_{j=i}^{n-1} 5 = n^{2} - n - i^{2} + i - (2ni - 2i^{2}) + 5n - 5i = i^{2} - i(2n + 4) + n^{2} + 4n$$

$$C(n) = \left(\sum_{i=0}^{n-1} i^{2} - (2n + 4)\sum_{i=0}^{n-1} i + (n^{2} + 4n)\sum_{i=0}^{n-1} 1\right) + 1$$

Rappels

$$\sum_{k=0}^{n-1} 1 = n$$

$$\sum_{k=0}^{n-1} k = \frac{n(n-1)}{2}$$

$$\sum_{k=0}^{n-1} k^2 = \frac{n(n-1)(2n-1)}{6}$$

ALGORITHME #1: CALCUL

$$C(n) = \left(\sum_{i=0}^{n-1} i^2 - (2n+4)\sum_{i=0}^{n-1} i + (n^2+4n)\sum_{i=0}^{n-1} 1\right) + 1$$

$$C(n) = \frac{n(n-1)(2n-1)}{6} - (2n+4)\frac{n(n-1)}{2} + (n^2+4n)n+1$$
$$= \frac{n^3}{3} + \frac{5}{2}n^2 + \frac{13}{6}n+1$$

Rappels

$$\sum_{k=0}^{n-1} 1 = n$$

$$\sum_{k=0}^{n-1} k = \frac{n(n-1)}{2}$$

$$\sum_{k=0}^{n-1} k^2 = \frac{n(n-1)(2n-1)}{6}$$

ALGORITHME #1

```
Entrée :
  A[n] : Réels
Variables:
  max, part : Réel
  i, j, k : entier // variables de boucles
max \leftarrow A[0]
pour i allant de 0 à n-1, faire
  pour j allant de i à n-1, faire
     part ← 0
     pour k allant de i à j, faire
        part \leftarrow part + A[k]
     fin pour
     si part > max alors
        max ← part
     fin si
  fin pour
fin pour
Renvoie max
```

$$C(n) = \frac{n^3}{3} + \frac{5}{2}n^2 + \frac{13}{6}n + 1$$
Séquence : -2, 11, -4, 13, -5, -2
i=2
$$j=2$$

$$k=2 \quad part=-4$$

$$j=3$$

$$k=2 \quad part=-4$$

$$k=3 \quad part=-4+13=9$$

$$j=4$$

$$k=2 \quad part=-4$$

$$k=3 \quad part=-4+13=9$$

$$k=4 \quad part=-4+13-5=9-5=4$$

$$j=5 \dots$$

ALGORITHME #2

```
Entrée :
  A[n] : Réels
Variables:
  max, part : Réel
  i,j,k : entier // variables de boucles
max \leftarrow A[0]
pour i allant de 0 à n-1, faire
  part ← 0
  pour j allant de i à n-1, faire
     part \leftarrow part + A[j]
                                               4 (n-i) +1
     si part > max alors
                               4 (pire cas)
        max ← part
     fin si
  fin pour
fin pour
```

$$C_{2}(n) = (\sum_{i=0}^{n-1} 4(n-i)+1)+1$$
$$= 2n^{2}+3n+1$$

Renvoie max

COMPARAISON

n	n=100	n=1000	n=10000	n=100000
C(n)=n ³ /3+5/2 n ² +13/6 n + 1	358551	335835501	333583355001	333358333550001
$C2(n)=2n^2 + 3n + 1$	20301	2003001	200030001	20000300001
C(n)/C2(n)	17,66	167,67	1667,67	16667,67
(n ³ /3)/(2n ²)=n/6	16,67	166,67	1666,67	16666,67

Pour n grand :
$$\frac{C(n)}{C_2(n)} = \frac{n^3/3 + 5/2 n^2 + 13/6 n + 1}{2 n^2 + 3 n + 1} \approx \frac{n^3/3}{2 n^2} = \frac{n}{6}$$

Et, quand $n \leftarrow n*10$, alors $C(n)/C2(n) \leftarrow C(n)/C2(n) * 10$

→ le rapport de complexité évolue de manière linéaire, proportionnelle à n, soit comme n³/n²

COMPLEXITÉ POLYNOMIALE: RÈGLES

Complexité polynomiale $f(n) = \sum_{i=0}^{k} a_i n^i$

$$f(n) = \sum_{i=0}^{k} a_i n^i$$

Exemple: $C(n) = \frac{n^3}{3} + \frac{5}{2}n^2 - \frac{13}{6}n + 1$

On néglige tous les termes sauf le plus fort $f(n) \approx a_{\nu} n^{k}$

i.e de plus grande puissance

Exemple: $C(n) \approx \frac{n}{3}$

On néglige les facteurs multiplicatifs $f(n) \propto n^k$

Exemple: $C(n) \propto n^3$

Note: une complexité en nombre constant d'opérations sera considérée comme de complexité proportionnelle à 1

Notation en O(.)

$$f(n) = O(n^k) \Leftrightarrow \lim_{n \to \infty} \frac{f(n)}{n^k} = \text{constante non nulle}$$

$$C(n)=O(n^3)$$

CLASSES DE COMPLEXITÉ

Complexité croissante

Fonction	Appellation		
1	Constante		
log n	Logarithmique ou sous-linéaire		
n	Linéaire		
n log n	Linéarithmique ou quasi-linéaire		
n²	Quadratique (polynomiale)		
n³	Cubique (polynomiale)		
n ^k	Polynomiale (k>3)		
2 ⁿ ou a ⁿ ou exp(n)=e ⁿ	Exponentielle (a>1)		
n!	factorielle		

DES ALGORITHMES EFFICACES, OU PAS

Avec un ordinateur exécutant 109 instructions par seconde

n=	20	40	60	100	300
n ²	1/2500 millisecondes	1/625 millisecondes	1/278 millisecondes	1/100 millisecondes	1/11 millisecondes
n ⁵	1/300 secondes	1/10 secondes	78/100 secondes	10 secondes	40,5 minutes
2 ⁿ	1/1000 secondes	18,3 minutes	36,5 années	400 . 10 ⁹ siècles	(72c) siècles
n ⁿ	3,3 . 10 ⁹ années	(46c) siècles	(89c) siècles	(182c) siècles	(725c) siècles

Note: $(Xc) \rightarrow nombre \ a \ X \ chiffres$

On situe le big bang à environ 13,8 . 109 années, soit (9c) siècles !

(Source : « Algorithmics, the spirit of computing », D. Harel)

RÈGLES DE CALCUL THÉORIQUE

Règle 1 (addition)

Si $c_1(n) = O(f(n))$ et $c_2(n) = O(g(n))$

Alors $(c_1+c_2)(n) = \max\{O(f(n)),O(g(n))\} \rightarrow \text{ on garde la complexité dominante}$

Règle 2 (multiplication)

Si $c_1(n)=O(f(n))$ et $c_2(n)=O(g(n))$ alors $(c_1*c_2)(n)=O(f(n)*g(n))$

Règle 3 (complexité polynomiale)

Si c(n) est une fonction polynomiale de degré k alors $c(n)=O(n^k)$

n^{k-1} est dominée par n^k pour tout k (voir tableau précédent)

Règle 4 (complexité logarithmique)

Log^k n est dominée par n pour toute constante k

RÈGLES DE CALCUL PRATIQUE

Règle 5 (instruction consécutives)

La complexité de blocs d'instructions consécutifs est donnée par le bloc le plus complexe (cela correspond à une somme, voir aussi règle 1).

Règle 6 (boucles)

La complexité d'une boucle est égale à la complexité du bloc d'instructions internes fois le nombre d'exécutions de la boucle. (cela correspond à un produit, voir aussi règle 2).

Règle 7 (boucles imbriquées)

Les boucles imbriquées s'analysent de l'intérieur vers l'extérieur : chaque boucle multiplie la complexité par le nombre de répétitions qu'elle implique (cas particulier de la précédente).

Règle 8 (Si/Alors)

Dans une instruction

```
Si Condition Alors
S1
Sinon
S2
Fin si
```

La complexité est donnée par la complexité maximum entre Condition, S1, et S2 (expression du pire cas)

FOCUS SUR LES BOUCLES

Regarder les boucles

Une boucle dont une borne dépend de n a un nombre d'exécutions en O(n). Une boucle dont les bornes sont fixes a un nombre d'exécutions en O(1).

Exemples

```
Pour i allant de 0 à n-1 \rightarrow O(n)

Pour j allant de 2 à 20 \rightarrow O(1)

Pour k allant de i à n \rightarrow O(n)

Pour l allant de 0 à i \rightarrow O(n) (si i peut varier jusque n) \rightarrow O(1) (si i ne peut varier que dans des bornes constantes (ex : 2 à 20))
```

ALGORITHME #2

```
Entrée :
  A[n] : Réels
Variables :
  max, part : Réel
  i, j, k : entier // variables de boucles
max \leftarrow A[0] O(1)
pour i allant de 0 à n-1, faire
  part ← 0 | O(1)
  pour j allant de i à n-1, faire
     part ← part + A[j]
                          O(1)
                          O(1) + O(1) = O(n) + O(1) = O(n^2)
     si part > max alors
                          O(1)
       max ← part
                                                         Rappel: on avait trouvé
     fin si
                                                         C(n) = 2n^2 + 3n + 1
  fin pour
fin pour
Renvoie max | O(1)
```

RAPPELS SUR LES TABLEAUX: IMPACT MÉMOIRE

Définition

Un tableau est une structure de données servant à stocker plusieurs éléments d'un même type, sur une zone contiguë de la mémoire (=plage mémoire).

Notation

nom[taille]: type

Exemples:

tab[10] : réel

data[20]: entier

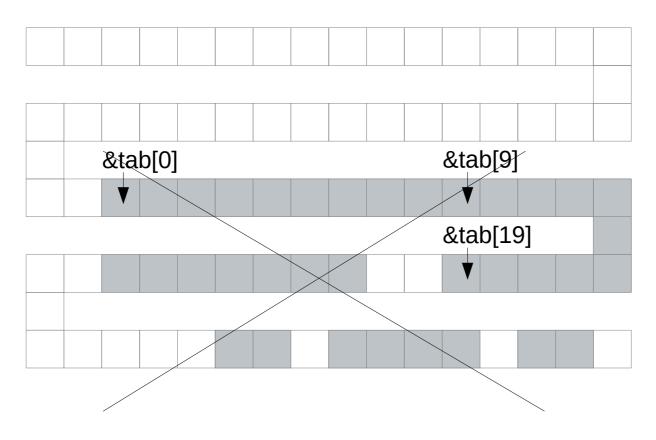
chaine[15] : caractère // chaîne de 14 caractères en C

Tableau[]: booléen // si la taille n'est pas connue a priori

Rappel : le C étant le langage employé dans ce cours, nous prenons comme convention d'indexer le premier élément du tableau par l'entier 0

TABLEAU=PLAGE MÉMOIRE

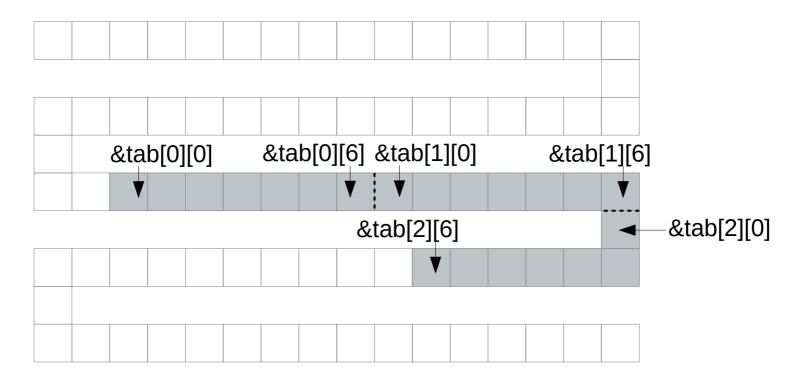
tab[20]: entiers



Note: dans ce schéma, une case = un entier = 4 octets (en règle générale, une case mémoire = 1 octet)

TABLEAU MULTIDIMENSIONNEL

tab[3][7]: entiers



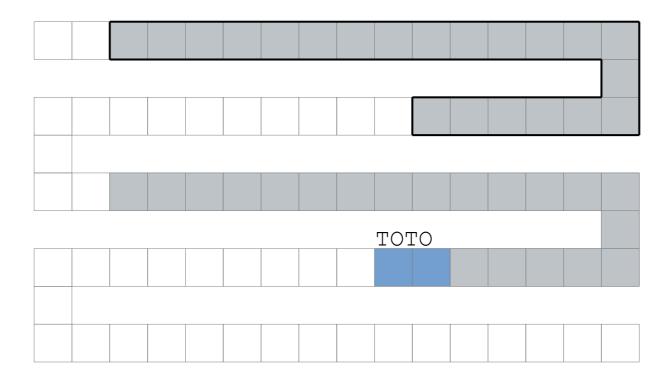
OPÉRATIONS ET COMPLEXITÉ

Accès à un élément (en lecture ou écriture)

```
Coût = calcul de l'adresse
= adresse tableau + indice * taille du type
→ O(1)
Exemple : &tab[i] = &tab[0] + i * taille(entier)
Note: pas exactement du C!!! (voir prochain TP)
```

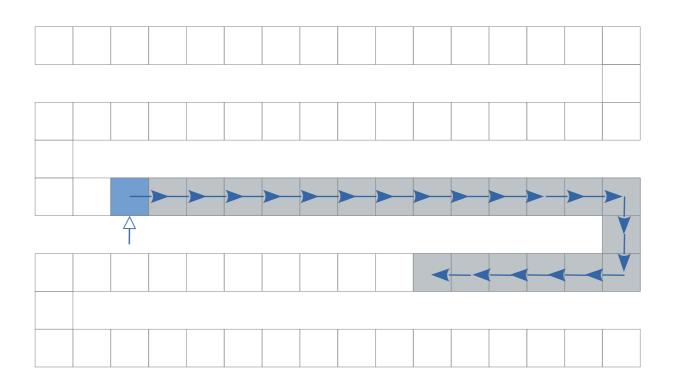
Ajout et retrait d'un élément ?

AJOUT D'UN ÉLÉMENT



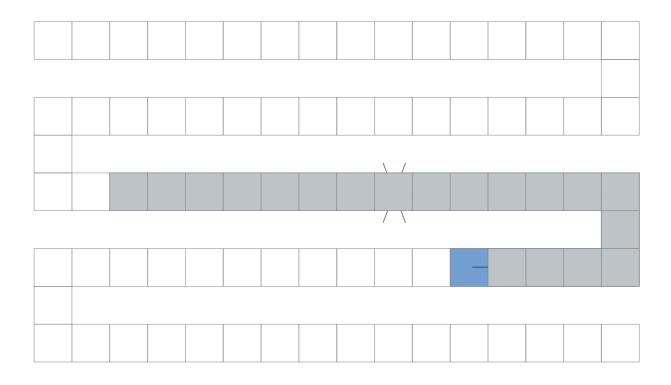
Pire cas : réallocation et recopie des n éléments → O(n)

AJOUT D'UN ÉLÉMENT (V2)



Pire cas : ajout du premier élément = copie de n éléments \rightarrow O(n)

RETRAIT D'UN ÉLÉMENT



Pire cas : retrait du premier élément = copie de n-1 éléments \rightarrow O(n)

CONCLUSION

Chaque bloc d'instructions a une complexité

Se calcule avec des règles simples

Instruction élémentaire → O(1)

Boucle dépendant de la taille de l'entrée (n) → O(n)

2 boucles imbriquées dépendant de n → O(n²)

k boucles imbriquées dépendant de n → O(nk)

Tableaux

Occupent une zone contiguë en mémoire (même multidimensionnels)

Accès en O(1)

ajout/retrait en O(n)

CONCLUSION

Analyse à moduler avec les langages et architectures modernes

Allocation par « chunks » (blocs, voir *allocators*):

allouer de la mémoire coûte cher et prend un temps variable → on alloue systématiquement des blocs de mémoire pour minimiser le nombre d'allocations

Mémoire bon marché

La mémoire étant bon marché à l'heure actuelle, une solution simple pour accélérer son code est souvent (et si possible) d'allouer un gros espace mémoire pour tout le programme

Cela reste des cas particuliers : La structure de données impacte la complexité

Il en existe d'autres que le tableau, dont les opérations sont de complexités différentes → objet des prochains cours