
 DEV - CM4 - Erwan Kerrien 1 / 51

STRUCTURES DE DONNÉES ET ALGORITHMES

FONDAMENTAUX

Initiation au développement (DEV)

 DEV - CM4 - Erwan Kerrien2/51

OBJECTIFS

Structures de données :
stocker et manipuler plusieurs (un grand
nombre) d’éléments d’un même type

1.Impact sur la performance

2.Algorithmes spécifiques

3.Implantation en C

Deux structures de base :
● le tableau (structure à accès direct)
● la liste chaînée (structure à accès séquentiel)

 DEV - CM4 - Erwan Kerrien3/51

DE QUOI VA-T-ON PARLER AUJOURD’HUI ?

Complexité
Complexité en temps vs espace
Quelques exemples
Principe de mesure (ordre polynomial)

Type
Type abstrait de données
Liste itérative

Première structure de données : la table (aka le
tableau)

Définition (rappels)
Opérations de base
Impact sur la mémoire

 DEV - CM4 - Erwan Kerrien4/51

COÛT D’UN ALGORITHME

Un algorithme applique des opérations sur des
données

Son exécution consomme donc des ressources
● En temps CPU pour les opérations

→ complexité en temps

● En mémoire pour le stockage des données

→ complexité en mémoire

 DEV - CM4 - Erwan Kerrien5/51

COÛT D’UN ALGORITHME

Un algorithme applique des opérations sur des
données

Son exécution consomme donc des ressources
● En temps CPU pour les opérations

→ complexité en temps

● En mémoire pour le stockage des données

→ complexité en mémoire

 DEV - CM4 - Erwan Kerrien6/51

EXEMPLE #1

Problème :
déterminer la parité d’un nombre entier n

Algorithme : (test sur le bit de poids faible)
Si n&1 = 0 alors

renvoyer Vrai

sinon

renvoyer Faux

fin si

Complexité en temps :
1 opération et 1 test pour tout n (et renvoie ?) → k (=2 ou …)

k ne dépend pas de la valeur de n

 DEV - CM4 - Erwan Kerrien7/51

EXEMPLE #1

Problème :
déterminer la parité d’un nombre entier n

Algorithme : (test sur le bit de poids faible)
Si n&1 = 0 alors

renvoyer Vrai

sinon

renvoyer Faux

fin si

Complexité en temps :
1 opération et 1 test pour tout n (et renvoie ?) → k (=2 ou …)

k ne dépend pas de la valeur de n

 DEV - CM4 - Erwan Kerrien8/51

EXEMPLE #1

Problème :
déterminer la parité d’un nombre entier n

Algorithme : (test sur le bit de poids faible)
Si n&1 = 0 alors

renvoyer Vrai

sinon

renvoyer Faux

fin si

Complexité en temps :
1 opération et 1 test pour tout n (et renvoie ?) → k (=2 ou …)

k ne dépend pas de la valeur de n

 DEV - CM4 - Erwan Kerrien9/51

EXEMPLE #2

Problème :
Calculer la factorielle d’un nombre entier n (n!=n*(n-1)*(n-2)*...*2*1)

Algorithme :
Sortie : f : entier
f ← 1
pour i allant de 1 à n faire

f ← f * i
fin pour
renvoyer f

Complexité en temps :
n multiplications et n affectations (+ opérations sur i…) → k*n (k=2,
3 ou...)

 DEV - CM4 - Erwan Kerrien10/51

PREMIÈRE CONCLUSION

La complexité peut dépendre de la valeur du
paramètre d’un algorithme.

Le nombre exact d’opérations importe peu :
ordre de grandeur (constant, linéaire…).

 DEV - CM4 - Erwan Kerrien11/51

EXEMPLE #3

Problème :

Extraire le premier élément d’un ensemble indexé

Entrée : tab[n] : réels, n : entier

Algorithme :
Sortie : réel

renvoyer tab[1]

Complexité en temps :

1 opération (?)

ne dépend pas de la longueur n (nombre de données)

 DEV - CM4 - Erwan Kerrien12/51

EXEMPLE #4

Problème :
Extraire le plus grand élément d’un ensemble indexé
Entrée : tab[n] : réels, n : entier

Algorithme :
Sortie : max : réel ; VI : i entier

max ← tab[1]

pour i allant de 2 à n, faire

si tab[i] > max, alors
max ← tab[i]

fin si

fin pour

renvoyer max

Complexité en temps :
Potentiellement n tests et affectations (pire cas : ensemble trié de manière
croissante)

 DEV - CM4 - Erwan Kerrien13/51

DEUXIÈME CONCLUSION

La complexité peut dépendre du nombre de
données passées en paramètre (taille de

l’ensemble).

On s’intéresse ici à la complexité dans le pire
cas.

 DEV - CM4 - Erwan Kerrien14/51

POURQUOI MESURER LA COMPLEXITÉ ?

Dépendance à « n »
Valeur de paramètre ou nombre de données

Évaluer le comportement d’un algorithme
Comment évolue son temps d’exécution ?

Comparer deux algorithmes
Deux algorithmes résolvent le même problème : lequel choisir ?
Lequel prend le plus de temps d’exécution

Impact sensible quand le temps devient
important

ordre de grandeur pour des grandes valeurs de n

 DEV - CM4 - Erwan Kerrien15/51

EXEMPLE #2 : DÉTAILS DU CALCUL

Problème :

Calculer la factorielle d’un nombre
entier n

Algorithme :
Sortie : f : entier
f ← 1
pour i allant de 1 à n, faire

f ← f * i
fin pour
renvoyer f

Règles

● Commencer par « l’intérieur »

● Remonter vers « l’extérieur »

Complexité :
2

1

n
C(n) = 1 + n*2 = 2*n+1

n∗2=2+2+…+2⏟
n fois

=∑
i=1

n

2Mais :

Donc C(n) = ∑
i=1

n

2+1

→ boucles du code ↔ sommes sur même intervalle

 DEV - CM4 - Erwan Kerrien16/51

LIEN BOUCLE – SOMME : CAS CONSTANT

Cas général d’une boucle simple
Variables intermédiaires : a,b,i : entier

pour i allant de a à b, faire
Traitement(i)

fin pour

Hypothèse : Traitement(i) demande P opérations (P constant)

Complexité :

C= P⏟
i=a

+ P⏟
i=a+1

+…+ P⏟
i=b=a+b−a

=∑
i=a

b

P=P∑
i=a

b

1=P(b−a+1)

 DEV - CM4 - Erwan Kerrien17/51

LIEN BOUCLE – SOMME : CAS VARIABLE

Cas général d’une boucle simple
Variables intermédiaires : a,b,i : entier

pour i allant de a à b, faire
Traitement(i)

fin pour

Hypothèse : Traitement(i) demande i opérations

Complexité :

C= a⏟
i=a

+(a+1)⏟
i=a+1

+…+ b⏟
i=b=a+b−a

=∑
i=a

b

i ∑
k=1

n

k=
n(n+1)

2

C=∑
i=a

b

i =∑
i=1

b

i−∑
i=1

a−1

i =
b(b+1)

2
−

(a−1)a
2

Vérification : a=5, b=7
C =5+6+7=18
 =28-10 = (7x8)/2 – (4x5)/2

 DEV - CM4 - Erwan Kerrien18/51

Énoncé :
Étant donné A1,A2,…,An réels (potentiellement négatifs), trouver la
valeur maximale pour

Exemple
Pour la séquence -2, 11, -4, 13, -5, -2
La réponse est 20 (=11-4+13)

Algorithme naïf
On considère chaque nombre à tour de rôle : début de séquence
On considère chaque nombre suivant à tour de rôle : fin de séquence
On calcule la somme entre le début et la fin + test si max

(Voir « Data Structures and Algorithm Analysis in C » de Mark Allen
Weiss)

EXEMPLE : SOMME PARTIELLE MAXIMALE

∑k=i

j
Ak=A i+…+A j

 DEV - CM4 - Erwan Kerrien19/51

ALGORITHME #1

Entrée :

A[n] : Réels

Sortie :

max : Réel // valeur maximale

Variables intermédiaires :

part : Réel // somme partielle

i,j,k : entier // variables de boucles

max ← A[1]

pour i allant de 1 à n faire

pour j allant de i à n faire

part ← 0

pour k allant de i à j faire

part ← part + A[k]

fin pour

si part > max alors

max ← part

fin si

fin pour

fin pour

Renvoyer max

2∑
k=i

j

2∑
k=i

j

2+1∑
k=i

j

2+3∑
j=i

n

(∑
k=i

j

2+3)∑
i=1

n

∑
j=i

n

(∑
k=i

j

2+3)(∑
i=1

n

∑
j=i

n

(∑
k=i

j

2+3))+1

 DEV - CM4 - Erwan Kerrien20/51

ALGORITHME #1 : CALCUL

C (n)=(∑
i=1

n

∑
j=i

n

(∑
k=i

j

2+3))+1

∑
k=i

j

2 =2 ∑
k=i

j

1

=2(∑
k=1

j

1− ∑
k=1

i−1

1)

=2(j−(i−1))
=2(j−i+1)

Rappels

∑
k=1

n

1=n

∑
k=1

n

k=
n(n+1)

2

∑
k=1

n

k2=
n(n+1)(2n+1)

6
C (n) =(∑

i=1

n

∑
j=i

n

(2(j−i+1)+3))+1

=(∑
i=1

n

∑
j=i

n

(2 j−2 i+2+3))+1

=(∑
i=1

n

∑
j=i

n

(2 j−2 i+5))+1

=(∑
i=1

n

(∑
j=i

n

2 j−∑
j=i

n

2 i+∑
j=i

n

5))+1

 DEV - CM4 - Erwan Kerrien21/51

ALGORITHME #1 : CALCUL

C (n)=(∑
i=1

n

(∑
j=i

n

2 j−∑
j=i

n

2 i+∑
j=i

n

5))+1
Rappels

∑
k=1

n

1=n

∑
k=1

n

k=
n(n+1)

2

∑
k=1

n

k2=
n(n+1)(2n+1)

6

C (n)=(∑
i=1

n

i2−(2n+6)∑
i=1

n

i+(n2+6 n+5)∑
i=1

n

1)+1

∑
j=i

n

5=5∑
j=i

n

1=5(n−i+1)=5n−5 i+5

∑
j=i

n

2 i=2 i∑
j=i

n

1=2 i (n−i+1)=2n i−2 i2+2 i

∑
j=i

n

2 j =2∑
j=i

n

j

=2(∑
j=1

n

j−∑
j=1

i−1

j)

=2(
n(n+1)

2
−

(i−1)i
2

)

=n2+n−i2+i

∑
j=i

n

2 j−∑
j=i

n

2 i+∑
j=i

n

5=n2+n−i2+i−(2n i−2 i2+2 i)+5n−5 i+5=i2−(2n+6)i+(n2+6n+5)

 DEV - CM4 - Erwan Kerrien22/51

ALGORITHME #1 : CALCUL

Rappels

∑
k=1

n

1=n

∑
k=1

n

k=
n(n+1)

2

∑
k=1

n

k2=
n(n+1)(2n+1)

6

C (n)=(∑
i=1

n

i2−(2n+6)∑
i=1

n

i+(n2+6 n+5)∑
i=1

n

1)+1

C (n) =
n(n+1)(2n+1)

6
−(2n+6)

n(n+1)
2

+(n2+6n+5)n+1

= n
3

3
+ 5

2
n2+ 13

6
n+1

 DEV - CM4 - Erwan Kerrien23/51

ALGORITHME #1

Entrée :

A[n] : Réels

Variables :

max, part : Réel

i,j,k : entier // variables de boucles

max ← A[1]

pour i allant de 1 à n faire

pour j allant de i à n faire

part ← 0

pour k allant de i à j faire

part ← part + A[k]

fin pour

si part > max alors

max ← part

fin si

fin pour

fin pour

Renvoyer max

C (n)=n
3

3
+5

2
n2+13

6
n+1

i=2

j=2

j=3

j=5 ...

k=2 part=-4

k=2 part=-4
k=3 part=-4+13=9

j=4
k=2 part=-4
k=3 part=-4+13=9
k=4 part=-4+13-5=9-5=4

Séquence : -2, 11, -4, 13, -5, -2

 DEV - CM4 - Erwan Kerrien24/51

ALGORITHME #2

Entrée :

A[n] : Réels

Variables :

max, part : Réel

i,j,k : entier // variables de boucles

max ← A[1]

pour i allant de 1 à n faire

part ← 0

pour j allant de i à n faire

part ← part + A[j]

si part > max alors

max ← part

fin si

fin pour

fin pour

Renvoyer max

4 (pire cas) 4 (n-i+1) +1 C2(n) =(∑
i=1

n

4 (n−i+1)+1)+1

=2n2+3n+1

 DEV - CM4 - Erwan Kerrien25/51

COMPARAISON

n n=100 n=1000 n=10000 n=100000

C(n)=n³/3+5/2 n² +13/6 n + 1 358551 335835501 333583355001 333358333550001

C2(n)=2n² + 3n + 1 20301 2003001 200030001 20000300001

C(n)/C2(n) 17,66 167,67 1667,67 16667,67

(n³/3)/(2n²)=n/6 16,67 166,67 1666,67 16666,67

C (n)
C2(n)

=n
3 /3+5/2n2+13 /6n+1

2n2+3n+1
≈ n

3 /3
2n2 =n

6
Pour n grand :

Et, quand n ← n*10, alors C(n)/C2(n) ← C(n)/C2(n) * 10
→ le rapport de complexité évolue de manière linéaire, proportionnelle à n, soit comme n3/n2

 DEV - CM4 - Erwan Kerrien26/51

COMPLEXITÉ POLYNOMIALE : RÈGLES

Complexité polynomiale
Exemple :

On néglige tous les termes sauf le plus fort
i.e de plus grande puissance
Exemple :

On néglige les facteurs multiplicatifs
Exemple :

Note : une complexité en nombre constant d’opérations sera considérée
comme de complexité proportionnelle à 1

Notation en O(.)

f (n)=∑i=0

k
ain

i

f (n)≈ak n
k

f (n)∝nk

f (n)=O (nk)⇔ limn→∞
f (n)
nk

=constante non nulle

C (n)= n
3

3
+ 5

2
n2+ 13

6
n+1

C (n)≈ n
3

3

C (n)∝n3

C (n)=O (n3) avec 1/3 comme constante

 DEV - CM4 - Erwan Kerrien27/51

CLASSES DE COMPLEXITÉ

Fonction Appellation

1

log n

n

n log n

n²

n³

nk

2n ou an ou exp(n)=en

n!

Constante

Logarithmique ou sous-linéaire

Linéaire

Linéarithmique ou quasi-linéaire

Quadratique (polynomiale)

Cubique (polynomiale)

Polynomiale (k>3)

Exponentielle (a>1)

factorielle

Complexité
croissante

 DEV - CM4 - Erwan Kerrien28/51

DES ALGORITHMES EFFICACES, OU PAS

Avec un ordinateur exécutant 109 instructions par seconde

Note : (Xc) → nombre à X chiffres
On situe le big bang à environ 13,8 . 109 années, soit (9c) siècles !

(Source : « Algorithmics, the spirit of computing », D. Harel)

n= 20 40 60 100 300

n2 1/2500
millisecondes

1/625
millisecondes

1/278
millisecondes

1/100
millisecondes

1/11
millisecondes

n5 1/300
secondes

1/10
secondes

78/100
secondes

10
secondes

40,5
minutes

2n 1/1000
secondes

18,3
minutes

36,5
années

400 . 109

siècles
(72c)
siècles

nn 3,3 . 109

années
(46c)
siècles

(89c)
siècles

(182c)
siècles

(725c)
siècles

 DEV - CM4 - Erwan Kerrien29/51

RÈGLES DE CALCUL THÉORIQUE

Règle 1 (addition)
Si c

1
(n)=O(f(n)) et c

2
(n) =O(g(n))

Alors (c
1
+c

2
)(n) = max{O(f(n)),O(g(n))} → on garde la complexité dominante

Règle 2 (multiplication)
Si c

1
(n)=O(f(n)) et c

2
(n) =O(g(n))

alors (c
1
*c

2
)(n) = O(f(n)*g(n))

Règle 3 (complexité polynomiale)
Si c(n) est une fonction polynomiale de degré k
alors c(n)=O(nk)

nk-1 est dominée par nk pour tout k (voir tableau précédent)

Règle 4 (complexité logarithmique)
Logk n est dominée par n pour toute constante k

 DEV - CM4 - Erwan Kerrien30/51

RÈGLES DE CALCUL PRATIQUE

Règle 5 (instruction consécutives)
La complexité de blocs d’instructions consécutifs est donnée par le bloc le plus complexe (cela
correspond à une somme, voir aussi règle 1).

Règle 6 (boucles)
La complexité d’une boucle est égale à la complexité du bloc d’instructions internes fois le nombre
d’exécutions de la boucle. (cela correspond à un produit, voir aussi règle 2).

Règle 7 (boucles imbriquées)
Les boucles imbriquées s’analysent de l’intérieur vers l’extérieur : chaque boucle multiplie la complexité
par le nombre de répétitions qu’elle implique (cas particulier de la précédente).

Règle 8 (Si/Alors)
Dans une instruction

Si Condition Alors
S1

Sinon
S2

Fin si

La complexité est donnée par la complexité maximum entre Condition, S1, et S2 (expression du pire
cas)

 DEV - CM4 - Erwan Kerrien31/51

FOCUS SUR LES BOUCLES

Regarder les boucles

Une boucle dont une borne dépend de n a un nombre d’exécutions en O(n).
Une boucle dont les bornes sont fixes a un nombre d’exécutions en O(1).

Exemples

Pour i allant de 0 à n-1 → O(n)

Pour j allant de 2 à 20 → O(1)

Pour k allant de i à n → O(n)

Pour l allant de 0 à i → O(n) (si i peut varier jusque n)

 → O(1) (si i ne peut varier que
dans des bornes constantes
(ex : 2 à 20))

 DEV - CM4 - Erwan Kerrien32/51

ALGORITHME #2

Entrée :

A[n] : Réels

Variables :

max, part : Réel

i,j,k : entier // variables de boucles

max ← A[1]

pour i allant de 1 à n faire

part ← 0

pour j allant de i à n faire

part ← part + A[j]

si part > max alors

max ← part

fin si

fin pour

fin pour

Renvoyer max

O(1)

O(1)
O(1) + O(1) = O(1)O(1) O(n) * O(1) = O(n)

O(1)

O(n)+O(1) = O(n)O(n) O(n) * O(n) = O(n2)O(n2)

O(1)

O(1)

O(n2)

Rappel : on avait trouvé
C(n) = 2n² + 3n + 1

O(n2) + O(1) + O(1) = O(n2)

 DEV - CM4 - Erwan Kerrien33/51

DE QUOI VA-T-ON PARLER AUJOURD’HUI ?

Complexité
Complexité en temps vs espace
Quelques exemples
Principe de mesure (ordre polynomial)

Type
Type abstrait de données
Liste itérative

Première structure de données : la table (aka le
tableau)

Définition (rappels)
Opérations de base
Impact sur la mémoire

 APL2 - Erwan Kerrien34

PRENONS UN PEU DE RECUL

Pourquoi une structure de données ?
Stockage et manipulation de nombreuses données

Notion générique d’ensemble
• Accéder à un élément
• Ajouter un élément
• Supprimer un élément
• Tester l’appartenance d’un élément
• Définir l’ensemble vide
• Compter le nombre d’éléments
… (on peut ajouter les opérations d’union, intersection, sous-ensemble...)

→ Conception centrée sur les valeurs et les opérations :
Type Abstrait de Données

 APL2 - Erwan Kerrien35

TYPE ABSTRAIT DE DONNÉES

Changement de focalisation

Implantation (représentation) → opérations

Deux éléments de définition

Signature :

nom (sorte), sortes utilisées, ensemble de valeurs valides, prototype des
opérations

Préconditions/axiomes

Définissent le comportement des opérations

 APL2 - Erwan Kerrien36

BOOLÉEN COMMME TAD (PROPOSITION)

Signature

Sorte : Booléen

Utilise : (nil)

Opérations

Vrai : → Booléen

Faux : → Booléen

¬ (not) : Booléen → Booléen

˄ (and) : Booléen x Booléen → Booléen

˅ (or) : Booléen x Booléen → Booléen

Préconditions/axiomes
¬ Vrai = Faux

¬¬b = b

(b=Vrai ˅ b=Faux) = Vrai

(b ˄ Faux) = Faux

(b ˅ Vrai) = Vrai

¬ (a ˄ b) = ¬a ˅ ¬b

Commutativité
a ˄ b = b ˄ a
a ˅ b = b ˅ a

Distributivité
a ˄ (b ˅ c) = (a˄b) ˅ (a˄c)

Représentation ? Peut être quelconque (0/1, ‘V’/’F’, « VRAI »/« FAUX », 3/-18...)

 APL2 - Erwan Kerrien37

UTILISATION DU TAD

Rappel des opérations/valeurs

Vrai, Faux, ¬ (not), (and), (or)˄ ˅

Définition de nouvelles fonctions (algorithmes)
Fonction xor
 Entrées : a, b : Booléen
 Sortie : Booléen
 Début
 Renvoyer (a ˅ b) ˄ ¬(a ˄ b)
 Fin

(a ˅ b) ˄ ¬(a ˄ b)=
et(ou(a,b),not(et(a,b))

Fonction nand
 Entrées : a, b : Booléen
 Sortie : Booléen
 Début
 Renvoyer ¬(a ˄ b)
 Fin

¬(a ˄ b) = not(and(a,b))

 APL2 - Erwan Kerrien38

INTÉRÊT D’UN TAD

Séparer algorithme et programmation
Algorithme décrit en utilisant les opérations définies pour le TAD
Programmation implante ces opérations sur une structure de données,
puis implante l’algorithme

Conception modulaire de programmes
Workflow : Algorithme → opérations → TAD → structure de données
Écrire plein de petites fonctions est bien
Écrire plein de petites fonctions est bien (répétition voulue)
Bon pour

→ conception et réalisation de tests unitaires
→ maintenance du code
→ réutilisation du code
→ identification et correction de bugs
→ structuration de la documentation
→ ...

 APL2 - Erwan Kerrien39

EXEMPLE IMPLANTATION BOOLÉEN

Fonction Vrai
 Sortie : Booléen
 Début
 Renvoyer -18
 Fin

Fonction Faux
 Sortie : Booléen
 Début
 Renvoyer 3
 Fin

Fonction not
 Entrée : b : Booléen
 Sortie : Booléen
 Début
 Si b = Faux() alors
 Renvoyer Vrai()
 Sinon
 Renvoyer Faux()
 FinSi
 Fin

Fonction and
 Entrée : a,b : Booléen
 Sortie : Booléen
 Début
 Si a=Faux() alors
 Renvoyer Faux()
 Sinon Si b=Faux() alors

 Renvoyer Faux()
 Sinon

 Renvoyer Vrai()
 Finsi
 Fin

Fonction or
 Entrée : a,b : Booléen
 Sortie : Booléen
 Début
 Si a=Vrai() alors
 Renvoyer Vrai()
 Sinon Si b=Vrai() alors

 Renvoyer Vrai()
 Sinon
 Renvoyer Faux()
 FinSi
 Fin

 APL2 - Erwan Kerrien40

TAD ENSEMBLE

Signature

Sorte : Ensemble
Utilise : Élément, Booléen, Entier
Opérations :
 ensemble_vide : → Ensemble
 EstVide : Ensemble → Booléen
 Ajouter : Ensemble x Élément → Ensemble
 Supprimer : Ensemble x Élément → Ensemble
 EstDans : Ensemble x Élément → Booléen
 Taille : Ensemble → Entier

Axiomes (E:Élément, S:Ensemble)
- EstVide(ensemble_vide) = Vrai
- Si (EstVide(S) = Vrai) alors S=ensemble_vide
- Si Taille(S) > 0 alors EstVide(S) = Faux
 Sinon EstVide(S)=Vrai
- EstDans(ensemble_vide, E)=Faux
- EstDans(Ajouter(S,E),E) = Vrai
- Si EstDans(S,E)=Faux alors

Taille(Ajouter(S,E)) = Taille(S)+1
- Si EstDans(S,E)=Vrai alors

Taille(Supprimer(S,E)) = Taille(S)-1
- Si EstDans(S,E)=Faux alors

Taille(Supprimer(S,E)) = Taille(S)

Cas sans répétition (cas avec répétition =
multi-ensemble)
- EstDans(Supprimer(S,E),E) = Faux
- Si EstDans(S,E)=Vrai alors

Taille(Ajouter(S,E)) = Taille(S)

 APL2 - Erwan Kerrien41

TAD ENSEMBLE

Signature

Sorte : Ensemble
Utilise : Élément, Booléen, Entier
Opérations :

ensemble_vide : → Ensemble
EstVide : Ensemble → Booléen
Ajouter : Ensemble x Élément → Ensemble
Supprimer : Ensemble x Élément → Ensemble
EstDans : Ensemble x Élément → Booléen
Taille : Ensemble → Entier

Problème

Cette définition ne permet pas d’accéder à un élément !

Par exemple : comment lister les éléments pour les afficher ? (fonction
Afficher(Ensemble))

 APL2 - Erwan Kerrien42

TAD LISTE ITÉRATIVE

Liste
Ensemble d’éléments rangés

Rangé ≠ trié → Rangé = chaque élément a un rang

Liste itérative : rang=entier

Signature
Sorte : ListeIter

Utilise : Élément, Booléen, Entier

Opérations :

liste_vide : → ListeIter
EstVide : ListeIter → Booléen
Ajouter : ListerIter x Entier x Élément → Ensemble
Supprimer : ListeIter x Entier → ListeIter
EstDans : ListeIter x Élément → Booléen
Taille : ListeIter → Entier
Contenu : ListeIter x Entier → Élément

Procédure Afficher
 Entrée : L : ListeIter
 Variables : i,T : entier
 Début
 T ← Taille(L)
 Pour i allant de 1 à T faire
 Afficher(Contenu(L,i))
 FinPour
 Fin

 DEV - CM4 - Erwan Kerrien43/51

STRUCTURE DE DONNÉES : LE TABLEAU

Définition
Un tableau est une structure de données servant à stocker plusieurs
éléments d’un même type, sur une zone contiguë de la mémoire (=plage
mémoire).

Notation
nom[taille] : type

Exemples :
tab[10] : réel
data[20] : entier
chaine[15] : caractère // chaîne de 14 caractères en C
Tableau[] : booléen // si la taille n’est pas connue a priori

Rappel : nous prenons comme convention d’indexer le premier élément du
tableau par l’entier 1. Un tableau à N éléments sera donc indexé de 1 à N
inclus.

 DEV - CM4 - Erwan Kerrien44/51

TABLEAU=PLAGE MÉMOIRE

^tab[10]^tab[1]

^tab[20]

tab[20] : entiers

Notes :
- dans ce schéma, une case = un entier = 4 octets
(en règle générale, une case mémoire = 1 octet)
- ^ renvoie l’adresse d’une variable (comme & en C)

 DEV - CM4 - Erwan Kerrien45/51

TABLEAU MULTIDIMENSIONNEL

tab[3][7] : entiers

^tab[1][1] ^tab[1][7] ^tab[2][1] ^tab[2][7]

^tab[3][1]^tab[3][7]

 DEV - CM4 - Erwan Kerrien46/51

OPÉRATIONS ET COMPLEXITÉ

Accès à un élément (en lecture ou écriture :
Contenu)

Coût = calcul de l’adresse
 = adresse tableau + indice * taille du type

→ O(1)

Exemple : ^tab[i] = ^tab[1] + (i-1) * taille(entier)

Note: La formule est légèrement différente en C (voir TP sur
les pointeurs)

Ajout et suppression d’un élément ?

 DEV - CM4 - Erwan Kerrien47/51

AJOUT D’UN ÉLÉMENT (AJOUTER)

?
TOTO

Pire cas : réallocation et recopie des n éléments → O(n)

 DEV - CM4 - Erwan Kerrien48

AJOUT D’UN ÉLÉMENT (AJOUTER V2)

Pire cas : ajout du premier élément = copie de n éléments → O(n)

 DEV - CM4 - Erwan Kerrien49/51

SUPPRESSION D’UN ÉLÉMENT (SUPPRIMER)

Pire cas : retrait du premier élément = copie de n-1 éléments → O(n)

 DEV - CM4 - Erwan Kerrien50/51

CONCLUSION

Chaque bloc d’instructions a une complexité
Se calcule avec des règles simples

Instruction élémentaire → O(1)

Boucle dépendant de la taille de l’entrée (n) → O(n)

2 boucles imbriquées dépendant de n → O(n2)

k boucles imbriquées dépendant de n → O(nk)

Tableaux
Occupent une zone contiguë en mémoire (même
multidimensionnels)

Accès en O(1)

ajout/suppression en O(n)

 DEV - CM4 - Erwan Kerrien51/51

CONCLUSION

Analyse à moduler avec les langages et
architectures modernes

Allocation par « chunks » (blocs, voir allocators) :
allouer de la mémoire coûte cher et prend un temps variable → on alloue
systématiquement des blocs de mémoire pour minimiser le nombre
d’allocations

Mémoire bon marché
La mémoire étant bon marché à l’heure actuelle, une solution simple pour
accélérer son code est souvent (et si possible) d’allouer un gros espace
mémoire pour tout le programme

Cela reste des cas particuliers : La structure de
données impacte la complexité

Il en existe d’autres que le tableau, dont les opérations sont de
complexités différentes → objet des prochains cours

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51

