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STRUCTURES DE DONNÉES ET ALGORITHMES 

FONDAMENTAUX

Initiation au développement (DEV)
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OBJECTIFS

Structures de données : 
stocker et manipuler plusieurs (un grand 
nombre) d’éléments d’un même type

1.Impact sur la performance

2.Algorithmes spécifiques

3.Implantation en C

Deux structures de base : 
● le tableau (structure à accès direct) 
● la liste chaînée (structure à accès séquentiel)
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DE QUOI VA-T-ON PARLER AUJOURD’HUI ?

Complexité 
Complexité en temps vs espace
Quelques exemples
Principe de mesure (ordre polynomial)

Type
Type abstrait de données
Liste itérative

Première structure de données : la table (aka le 
tableau)

Définition (rappels)
Opérations de base
Impact sur la mémoire
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COÛT D’UN ALGORITHME

Un algorithme applique des opérations sur des 
données

Son exécution consomme donc des ressources
● En temps CPU pour les opérations 

→ complexité en temps

● En mémoire pour le stockage des données 

→ complexité en mémoire
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EXEMPLE #1

Problème : 
déterminer la parité d’un nombre entier n

Algorithme : (test sur le bit de poids faible)
Si n&1 = 0 alors 

renvoyer Vrai 

sinon 

renvoyer Faux

fin si

Complexité en temps : 
1 opération et 1 test pour tout n (et renvoie ?) → k (=2 ou …)

k ne dépend pas de la valeur de n
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EXEMPLE #2

Problème :
Calculer la factorielle d’un nombre entier n (n!=n*(n-1)*(n-2)*...*2*1)

Algorithme :
Sortie : f : entier
f ← 1
pour i allant de 1 à n faire

f ← f * i
fin pour
renvoyer f

Complexité en temps :
n multiplications et n affectations (+ opérations sur i…) → k*n (k=2, 
3 ou...)
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PREMIÈRE CONCLUSION

La complexité peut dépendre de la valeur du 
paramètre d’un algorithme.

Le nombre exact d’opérations importe peu : 
ordre de grandeur (constant, linéaire…).
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EXEMPLE #3

Problème :

Extraire le premier élément d’un ensemble indexé 

Entrée : tab[n] : réels, n : entier

Algorithme :
Sortie : réel

renvoyer tab[1]

Complexité en temps :

1 opération (?)

ne dépend pas de la longueur n (nombre de données)
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EXEMPLE #4

Problème :
Extraire le plus grand élément d’un ensemble indexé 
Entrée : tab[n] : réels, n : entier

Algorithme :
Sortie : max : réel ; VI : i entier

max ← tab[1]

pour i allant de 2 à n, faire

si tab[i] > max, alors 
max ← tab[i]

fin si

fin pour

renvoyer max

Complexité en temps :
Potentiellement n tests et affectations (pire cas : ensemble trié de manière 
croissante)
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DEUXIÈME CONCLUSION

La complexité peut dépendre du nombre de 
données passées en paramètre (taille de 

l’ensemble).

On s’intéresse ici à la complexité dans le pire 
cas.
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POURQUOI MESURER LA COMPLEXITÉ ?

Dépendance à « n » 
Valeur de paramètre ou nombre de données

Évaluer le comportement d’un algorithme
Comment évolue son temps d’exécution ?

Comparer deux algorithmes
Deux algorithmes résolvent le même problème : lequel choisir ? 
Lequel prend le plus de temps d’exécution

Impact sensible quand le temps devient 
important

ordre de grandeur pour des grandes valeurs de n
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EXEMPLE #2 : DÉTAILS DU CALCUL

Problème :

Calculer la factorielle d’un nombre 
entier n

Algorithme :
Sortie : f : entier
f ← 1
pour i allant de 1 à n, faire

f ← f * i
fin pour
renvoyer f

Règles

● Commencer par « l’intérieur »

● Remonter vers « l’extérieur »

Complexité : 
2

1

n
C(n) = 1 + n*2 = 2*n+1

n∗2=2+2+…+2⏟
n fois

=∑
i=1

n

2Mais :

Donc C(n) =  ∑
i=1

n

2+1

→ boucles du code ↔ sommes sur même intervalle
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LIEN BOUCLE – SOMME : CAS CONSTANT

Cas général d’une boucle simple
Variables intermédiaires : a,b,i : entier

pour i allant de a à b, faire
Traitement(i)

fin pour

Hypothèse : Traitement(i) demande P opérations (P constant)

Complexité :

C= P⏟
i=a

+ P⏟
i=a+1

+…+ P⏟
i=b=a+b−a

=∑
i=a

b

P=P∑
i=a

b

1=P(b−a+1)
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LIEN BOUCLE – SOMME : CAS VARIABLE

Cas général d’une boucle simple
Variables intermédiaires : a,b,i : entier

pour i allant de a à b, faire
Traitement(i)

fin pour

Hypothèse : Traitement(i) demande i opérations

Complexité :

C= a⏟
i=a

+(a+1)⏟
i=a+1

+…+ b⏟
i=b=a+b−a

=∑
i=a

b

i ∑
k=1

n

k=
n(n+1)

2

C=∑
i=a

b

i =∑
i=1

b

i−∑
i=1

a−1

i =
b(b+1)

2
−

(a−1)a
2

Vérification : a=5, b=7
C =5+6+7=18
  =28-10 = (7x8)/2 – (4x5)/2
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Énoncé :
Étant donné A1,A2,…,An réels (potentiellement négatifs), trouver la 
valeur maximale pour

Exemple
Pour la séquence -2, 11, -4, 13, -5, -2
La réponse est 20 (=11-4+13)

Algorithme naïf
On considère chaque nombre à tour de rôle : début de séquence
On considère chaque nombre suivant à tour de rôle : fin de séquence
On calcule la somme entre le début et la fin + test si max

(Voir « Data Structures and Algorithm Analysis in C » de Mark Allen 
Weiss) 

EXEMPLE : SOMME PARTIELLE MAXIMALE

∑k=i

j
Ak=A i+…+A j
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ALGORITHME #1

Entrée : 

A[n] : Réels

Sortie :

max : Réel // valeur maximale

Variables intermédiaires : 

part : Réel // somme partielle

i,j,k : entier // variables de boucles

max ← A[1]

pour i allant de 1 à n faire

pour j allant de i à n faire

part ← 0

pour k allant de i à j faire

part ← part + A[k]

fin pour

si part > max alors

max ← part

fin si

fin pour

fin pour

Renvoyer max

2∑
k=i

j

2∑
k=i

j

2+1∑
k=i

j

2+3∑
j=i

n

(∑
k=i

j

2+3)∑
i=1

n

∑
j=i

n

(∑
k=i

j

2+3)(∑
i=1

n

∑
j=i

n

(∑
k=i

j

2+3))+1
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ALGORITHME #1 : CALCUL

C (n)=(∑
i=1

n

∑
j=i

n

(∑
k=i

j

2+3))+1

∑
k=i

j

2 =2 ∑
k=i

j

1

=2( ∑
k=1

j

1− ∑
k=1

i−1

1)

=2( j−(i−1))
=2( j−i+1)

Rappels

∑
k=1

n

1=n

∑
k=1

n

k=
n(n+1)

2

∑
k=1

n

k2=
n(n+1)(2n+1)

6
C (n) =(∑

i=1

n

∑
j=i

n

(2( j−i+1)+3))+1

=(∑
i=1

n

∑
j=i

n

(2 j−2 i+2+3))+1

=(∑
i=1

n

∑
j=i

n

(2 j−2 i+5))+1

=(∑
i=1

n

(∑
j=i

n

2 j−∑
j=i

n

2 i+∑
j=i

n

5))+1
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ALGORITHME #1 : CALCUL

C (n)=(∑
i=1

n

(∑
j=i

n

2 j−∑
j=i

n

2 i+∑
j=i

n

5))+1
Rappels

∑
k=1

n

1=n

∑
k=1

n

k=
n(n+1)

2

∑
k=1

n

k2=
n(n+1)(2n+1)

6

C (n)=(∑
i=1

n

i2−(2n+6)∑
i=1

n

i+(n2+6 n+5)∑
i=1

n

1)+1

∑
j=i

n

5=5∑
j=i

n

1=5(n−i+1)=5n−5 i+5

∑
j=i

n

2 i=2 i∑
j=i

n

1=2 i (n−i+1)=2n i−2 i2+2 i

∑
j=i

n

2 j =2∑
j=i

n

j

=2(∑
j=1

n

j−∑
j=1

i−1

j)

=2(
n(n+1)

2
−

(i−1)i
2

)

=n2+n−i2+i

∑
j=i

n

2 j−∑
j=i

n

2 i+∑
j=i

n

5=n2+n−i2+i−(2n i−2 i2+2 i)+5n−5 i+5=i2−(2n+6)i+(n2+6n+5)
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ALGORITHME #1 : CALCUL

Rappels

∑
k=1

n

1=n

∑
k=1

n

k=
n(n+1)

2

∑
k=1

n

k2=
n(n+1)(2n+1)

6

C (n)=(∑
i=1

n

i2−(2n+6)∑
i=1

n

i+(n2+6 n+5)∑
i=1

n

1)+1

C (n) =
n(n+1)(2n+1)

6
−(2n+6)

n(n+1)
2

+(n2+6n+5)n+1

= n
3

3
+ 5

2
n2+ 13

6
n+1
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ALGORITHME #1

Entrée : 

A[n] : Réels

Variables : 

max, part : Réel

i,j,k : entier // variables de boucles

max ← A[1]

pour i allant de 1 à n faire

pour j allant de i à n faire

part ← 0

pour k allant de i à j faire

part ← part + A[k]

fin pour

si part > max alors

max ← part

fin si

fin pour

fin pour

Renvoyer max

C (n)=n
3

3
+5

2
n2+13

6
n+1

i=2

j=2

j=3

j=5 ...

k=2 part=-4

k=2 part=-4
k=3 part=-4+13=9

j=4
k=2 part=-4
k=3 part=-4+13=9
k=4 part=-4+13-5=9-5=4

Séquence : -2, 11, -4, 13, -5, -2 
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ALGORITHME #2

Entrée : 

A[n] : Réels

Variables : 

max, part : Réel

i,j,k : entier // variables de boucles

max ← A[1]

pour i allant de 1 à n faire

part ← 0

pour j allant de i à n faire

part ← part + A[j]

si part > max alors

max ← part

fin si

fin pour

fin pour

Renvoyer max

4 (pire cas) 4 (n-i+1) +1 C2(n) =(∑
i=1

n

4 (n−i+1)+1)+1

=2n2+3n+1
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COMPARAISON

n n=100 n=1000 n=10000 n=100000

C(n)=n³/3+5/2 n² +13/6 n + 1 358551 335835501 333583355001 333358333550001

C2(n)=2n² + 3n + 1 20301 2003001 200030001 20000300001

C(n)/C2(n) 17,66 167,67 1667,67 16667,67

(n³/3)/(2n²)=n/6 16,67 166,67 1666,67 16666,67

C (n)
C2(n)

=n
3 /3+5/2n2+13 /6n+1

2n2+3n+1
≈ n

3 /3
2n2 =n

6
Pour n grand :

Et, quand n ← n*10, alors C(n)/C2(n) ← C(n)/C2(n) * 10
→ le rapport de complexité évolue de manière linéaire, proportionnelle à n, soit comme n3/n2
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COMPLEXITÉ POLYNOMIALE : RÈGLES

Complexité polynomiale
Exemple :

On néglige tous les termes sauf le plus fort
i.e de plus grande puissance
Exemple :

On néglige les facteurs multiplicatifs
Exemple :

Note : une complexité en nombre constant d’opérations sera considérée 
comme de complexité proportionnelle à 1

Notation en O(.) 

 

f (n)=∑i=0

k
ain

i

f (n)≈ak n
k

f (n)∝nk

f (n)=O (nk)⇔ limn→∞
f (n)
nk

=constante non nulle

C (n)= n
3

3
+ 5

2
n2+ 13

6
n+1

C (n)≈ n
3

3

C (n)∝n3

C (n)=O (n3)  avec 1/3 comme constante



 DEV - CM4 - Erwan Kerrien27/51

CLASSES DE COMPLEXITÉ

Fonction Appellation

1

log n

n

n log n

n²

n³

nk

2n ou an ou exp(n)=en

n!

Constante

Logarithmique ou sous-linéaire

Linéaire

Linéarithmique ou quasi-linéaire

Quadratique (polynomiale)
 
Cubique (polynomiale)

Polynomiale (k>3)

Exponentielle (a>1)

factorielle

Complexité 
croissante
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DES ALGORITHMES EFFICACES, OU PAS

Avec un ordinateur exécutant 109 instructions par seconde

Note : (Xc) → nombre à X chiffres
On situe le big bang à environ 13,8 . 109 années, soit (9c) siècles !

(Source : « Algorithmics, the spirit of computing », D. Harel)

n= 20 40 60 100 300

n2 1/2500 
millisecondes

1/625 
millisecondes

1/278 
millisecondes

1/100 
millisecondes

1/11 
millisecondes

n5 1/300 
secondes

1/10 
secondes

78/100 
secondes

10 
secondes

40,5 
minutes

2n 1/1000 
secondes

18,3
minutes

36,5
années

400 . 109

siècles
(72c)
siècles

nn 3,3 . 109

années
(46c)
siècles

(89c)
siècles

(182c)
siècles

(725c)
siècles
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RÈGLES DE CALCUL THÉORIQUE

Règle 1 (addition)
Si c

1
(n)=O(f(n)) et c

2
(n) =O(g(n)) 

Alors (c
1
+c

2
)(n) = max{O(f(n)),O(g(n))} → on garde la complexité dominante

Règle 2 (multiplication)
Si c

1
(n)=O(f(n)) et c

2
(n) =O(g(n)) 

alors (c
1
*c

2
)(n) = O(f(n)*g(n))

Règle 3 (complexité polynomiale)
Si c(n) est une fonction polynomiale de degré k 
alors c(n)=O(nk)

nk-1 est dominée par nk pour tout k (voir tableau précédent)

Règle 4 (complexité logarithmique)
Logk n est dominée par n pour toute constante k
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RÈGLES DE CALCUL PRATIQUE

Règle 5 (instruction consécutives)
La complexité de blocs d’instructions consécutifs est donnée par le bloc le plus complexe (cela 
correspond à une somme, voir aussi règle 1).

Règle 6 (boucles)
La complexité d’une boucle est égale à la complexité du bloc d’instructions internes fois le nombre 
d’exécutions de la boucle. (cela correspond à un produit, voir aussi règle 2).

Règle 7 (boucles imbriquées)
Les boucles imbriquées s’analysent de l’intérieur vers l’extérieur : chaque boucle multiplie la complexité 
par le nombre de répétitions qu’elle implique (cas particulier de la précédente).

Règle 8 (Si/Alors)
Dans une instruction

Si Condition Alors
S1

Sinon
S2

Fin si

La complexité est donnée par la complexité maximum entre Condition, S1, et S2 (expression du pire 
cas)
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FOCUS SUR LES BOUCLES

Regarder les boucles

Une boucle dont une borne dépend de n a un nombre d’exécutions en O(n).
Une boucle dont les bornes sont fixes a un nombre d’exécutions en O(1).

Exemples

Pour i allant de 0 à n-1 → O(n)

Pour j allant de 2 à 20 → O(1)

Pour k allant de i à n → O(n)

Pour l allant de 0 à i → O(n) (si i peut varier jusque n)

 → O(1) (si i ne peut varier que
dans des bornes constantes
(ex : 2 à 20))
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ALGORITHME #2

Entrée : 

A[n] : Réels

Variables : 

max, part : Réel

i,j,k : entier // variables de boucles

max ← A[1]

pour i allant de 1 à n faire

part ← 0

pour j allant de i à n faire

part ← part + A[j]

si part > max alors

max ← part

fin si

fin pour

fin pour

Renvoyer max

O(1)

O(1)
O(1) + O(1) = O(1)O(1) O(n) * O(1) = O(n)

O(1)

O(n)+O(1) = O(n)O(n) O(n) * O(n) = O(n2)O(n2)

O(1)

O(1)

O(n2)

Rappel : on avait trouvé
C(n) = 2n² + 3n + 1

O(n2) + O(1) + O(1) = O(n2)
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Définition (rappels)
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Impact sur la mémoire
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PRENONS UN PEU DE RECUL

Pourquoi une structure de données ?
Stockage et manipulation de nombreuses données

Notion générique d’ensemble
• Accéder à un élément
• Ajouter un élément
• Supprimer un élément
• Tester l’appartenance d’un élément
• Définir l’ensemble vide
• Compter le nombre d’éléments
… (on peut ajouter les opérations d’union, intersection, sous-ensemble...)

→ Conception centrée sur les valeurs et les opérations : 
Type Abstrait de Données
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TYPE ABSTRAIT DE DONNÉES

Changement de focalisation

Implantation (représentation) → opérations

Deux éléments de définition

Signature : 

nom (sorte), sortes utilisées, ensemble de valeurs valides,  prototype des 
opérations

Préconditions/axiomes

Définissent le comportement des opérations
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BOOLÉEN COMMME TAD (PROPOSITION)

Signature

Sorte : Booléen

Utilise : (nil)

Opérations

Vrai  : → Booléen

Faux : → Booléen

¬ (not)  : Booléen → Booléen

˄ (and) : Booléen x Booléen → Booléen

˅ (or) : Booléen x Booléen → Booléen

Préconditions/axiomes
¬ Vrai = Faux

¬¬b = b

(b=Vrai ˅ b=Faux) = Vrai

(b ˄ Faux) = Faux 

(b ˅ Vrai) = Vrai 

¬ (a ˄ b) = ¬a ˅ ¬b

Commutativité
a ˄ b = b ˄ a
a ˅ b = b ˅ a

Distributivité
a ˄ (b ˅ c) = (a˄b) ˅ (a˄c)

Représentation ? Peut être quelconque (0/1, ‘V’/’F’, « VRAI »/« FAUX », 3/-18...)
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UTILISATION DU TAD

Rappel des opérations/valeurs

Vrai, Faux, ¬ (not),  (and),  (or)˄ ˅

Définition de nouvelles fonctions (algorithmes)
Fonction xor
  Entrées : a, b : Booléen
  Sortie :  Booléen
  Début
    Renvoyer (a ˅ b) ˄ ¬(a ˄ b) 
  Fin

(a ˅ b) ˄ ¬(a ˄ b)=
et(ou(a,b),not(et(a,b))

Fonction nand
  Entrées : a, b : Booléen
  Sortie :  Booléen
  Début
    Renvoyer ¬(a ˄ b) 
  Fin

¬(a ˄ b) = not(and(a,b))
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INTÉRÊT D’UN TAD

Séparer algorithme et programmation
Algorithme décrit en utilisant les opérations définies pour le TAD
Programmation implante ces opérations sur une structure de données, 
puis implante l’algorithme

Conception modulaire de programmes
Workflow : Algorithme → opérations → TAD → structure de données
Écrire plein de petites fonctions est bien
Écrire plein de petites fonctions est bien (répétition voulue)
Bon pour

→ conception et réalisation de tests unitaires
→ maintenance du code
→ réutilisation du code
→ identification et correction de bugs
→ structuration de la documentation
→ ...
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EXEMPLE IMPLANTATION BOOLÉEN

Fonction Vrai
  Sortie : Booléen
  Début
    Renvoyer -18
  Fin

Fonction Faux
  Sortie : Booléen
  Début
    Renvoyer 3
  Fin

Fonction not
  Entrée : b : Booléen
  Sortie : Booléen
  Début
    Si b = Faux() alors
      Renvoyer Vrai()
    Sinon
      Renvoyer Faux()
    FinSi
  Fin

Fonction and
  Entrée : a,b : Booléen
  Sortie : Booléen
  Début
    Si a=Faux() alors
      Renvoyer Faux()
    Sinon Si b=Faux() alors 

 Renvoyer Faux() 
    Sinon

 Renvoyer Vrai()
    Finsi
  Fin

Fonction or
  Entrée : a,b : Booléen
  Sortie : Booléen
  Début
    Si a=Vrai() alors
      Renvoyer Vrai()
    Sinon Si b=Vrai() alors

 Renvoyer Vrai()
    Sinon
     Renvoyer Faux()
    FinSi
  Fin
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TAD ENSEMBLE

Signature

Sorte : Ensemble
Utilise : Élément, Booléen, Entier
Opérations :
  ensemble_vide : → Ensemble
  EstVide  : Ensemble → Booléen
  Ajouter  : Ensemble x Élément → Ensemble
  Supprimer  : Ensemble x Élément → Ensemble
  EstDans  : Ensemble x Élément → Booléen
  Taille : Ensemble → Entier

Axiomes (E:Élément, S:Ensemble) 
- EstVide(ensemble_vide) = Vrai
- Si (EstVide(S) = Vrai) alors S=ensemble_vide
- Si Taille(S) > 0 alors EstVide(S) = Faux
  Sinon EstVide(S)=Vrai
- EstDans(ensemble_vide, E)=Faux
- EstDans(Ajouter(S,E),E) = Vrai
- Si EstDans(S,E)=Faux alors 

Taille(Ajouter(S,E)) = Taille(S)+1
- Si EstDans(S,E)=Vrai alors 

Taille(Supprimer(S,E)) = Taille(S)-1
- Si EstDans(S,E)=Faux alors 

Taille(Supprimer(S,E)) = Taille(S)

Cas sans répétition (cas avec répétition = 
multi-ensemble)
- EstDans(Supprimer(S,E),E) = Faux
- Si EstDans(S,E)=Vrai alors 

Taille(Ajouter(S,E)) = Taille(S)
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TAD ENSEMBLE

Signature

Sorte : Ensemble
Utilise : Élément, Booléen, Entier
Opérations :

ensemble_vide : → Ensemble
EstVide  : Ensemble → Booléen
Ajouter  : Ensemble x Élément → Ensemble
Supprimer  : Ensemble x Élément → Ensemble
EstDans  : Ensemble x Élément → Booléen
Taille : Ensemble → Entier

Problème

Cette définition ne permet pas d’accéder à un élément !

Par exemple : comment lister les éléments pour les afficher ? (fonction 
Afficher(Ensemble))
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TAD LISTE ITÉRATIVE

Liste
Ensemble d’éléments rangés

Rangé ≠ trié → Rangé = chaque élément a un rang

Liste itérative : rang=entier

Signature
Sorte : ListeIter

Utilise : Élément, Booléen, Entier

Opérations :

liste_vide : → ListeIter
EstVide : ListeIter → Booléen
Ajouter  : ListerIter x Entier x Élément → Ensemble
Supprimer : ListeIter x Entier → ListeIter
EstDans  : ListeIter x Élément → Booléen
Taille : ListeIter → Entier
Contenu  : ListeIter x Entier → Élément 

Procédure Afficher
  Entrée : L : ListeIter
  Variables : i,T : entier
  Début
    T ← Taille(L)
    Pour i allant de 1 à T faire
      Afficher(Contenu(L,i))
    FinPour
  Fin
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STRUCTURE DE DONNÉES : LE TABLEAU

Définition
Un tableau est une structure de données servant à stocker plusieurs 
éléments d’un même type, sur une zone contiguë de la mémoire (=plage 
mémoire).

Notation
nom[taille] : type

Exemples : 
tab[10] : réel
data[20] : entier
chaine[15] : caractère // chaîne de 14 caractères en C
Tableau[ ] : booléen // si la taille n’est pas connue a priori

Rappel : nous prenons comme convention d’indexer le premier élément du 
tableau par l’entier 1. Un tableau à N éléments sera donc indexé de 1 à N 
inclus.
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TABLEAU=PLAGE MÉMOIRE

^tab[10]^tab[1]

^tab[20]

tab[20] : entiers

Notes : 
- dans ce schéma, une case = un entier = 4 octets
(en règle générale, une case mémoire = 1 octet)
- ^ renvoie l’adresse d’une variable (comme & en C)
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TABLEAU MULTIDIMENSIONNEL

tab[3][7] : entiers

^tab[1][1] ^tab[1][7] ^tab[2][1] ^tab[2][7]

^tab[3][1]^tab[3][7]
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OPÉRATIONS ET COMPLEXITÉ

Accès à un élément (en lecture ou écriture : 
Contenu)

Coût = calcul de l’adresse 
         = adresse tableau + indice * taille du type

→ O(1)

Exemple : ^tab[i] = ^tab[1] + (i-1) * taille(entier)  

Note: La formule est légèrement différente en C (voir TP sur 
les pointeurs)

Ajout et suppression d’un élément ?



 DEV - CM4 - Erwan Kerrien47/51

AJOUT D’UN ÉLÉMENT (AJOUTER)

?
TOTO

Pire cas : réallocation et recopie des n éléments → O(n)
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AJOUT D’UN ÉLÉMENT (AJOUTER V2)

Pire cas : ajout du premier élément = copie de n éléments → O(n)
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SUPPRESSION D’UN ÉLÉMENT (SUPPRIMER)

Pire cas : retrait du premier élément = copie de n-1 éléments → O(n)
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CONCLUSION

Chaque bloc d’instructions a une complexité
Se calcule avec des règles simples

Instruction élémentaire → O(1)

Boucle dépendant de la taille de l’entrée (n) → O(n)

2 boucles imbriquées dépendant de n → O(n2)

k boucles imbriquées dépendant de n → O(nk)

Tableaux
Occupent une zone contiguë en mémoire (même 
multidimensionnels)

Accès en O(1)

ajout/suppression en O(n)
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CONCLUSION

Analyse à moduler avec les langages et 
architectures modernes

Allocation par « chunks » (blocs, voir allocators) : 
allouer de la mémoire coûte cher et prend un temps variable → on alloue 
systématiquement des blocs de mémoire pour minimiser le nombre 
d’allocations

Mémoire bon marché
La mémoire étant bon marché à l’heure actuelle, une solution simple pour 
accélérer son code est souvent (et si possible) d’allouer un gros espace 
mémoire pour tout le programme

Cela reste des cas particuliers : La structure de 
données impacte la complexité

Il en existe d’autres que le tableau, dont les opérations sont de 
complexités différentes → objet des prochains cours
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