Dan Mary Ben Amy Zach Ann

STRUCTURES DE DONNEES ET ALGORITHMES
FONDAMENTAUX

Initiation au développement (DEV)

DEV - CM4 - Erwan Kerrien 1/51

OBJECTIFS

Structures de données :

stocker et manipuler plusieurs (un grand
nombre) d’éléments d’'un méme type

1.Impact sur la performance
2 .Algorithmes spécifiques
3. Implantation en C

Deux structures de base :
* le tableau (structure a acces direct)
* la liste chainée (structure a acces séquentiel)

DE QUOI VA-T-ON PARLER AUJOURD’HUI ?

Complexité
Complexité en temps vs espace
Quelques exemples
Principe de mesure (ordre polynomial)
Type
Type abstrait de données
Liste itérative

Premiere structure de données : la table (aka le
tableau)

Définition (rappels)

Opeérations de base

Impact sur la mémoire

CoUT D’UN ALGORITHME

Un algorithme applique des opérations sur des
données

Son exeécution consomme donc des ressources
 En temps CPU pour les opérations
— complexité en temps

« En mémoire pour le stockage des données

— complexité en mémoire

4/51

CoUT D’UN ALGORITHME

Un algorithme applique des opérations sur des
données

Son exeécution consomme donc des ressources
 En temps CPU pour les opérations
— complexité en temps

5/51

EXEMPLE #1

Probleme :
déterminer la parité d'un nombre entier n
Algorithme : (test sur le bit de poids faible)
Si n&l = 0 alors
renvoyer Vral
sinon
renvoyer Faux
fin si
Complexité en temps :
1 opération et 1 test pour tout n (et renvoie ?) - k (=2 ou ...)
k ne dépend pas de la valeur de n

EXEMPLE #1

Probleme :
déterminer la parité d'un nombre entier n

Algorithme : (test sur le bit de poids faible)
Si[n&l) = 0 alors
renvoyer Vral
sinon
renvoyer Faux
fin si
Complexité en temps :
1 opération/et 1 test pour tout n (et renvoie ?) —» k (=2 ou ...)
k ne dépend pas de la valeur de n

EXEMPLE #1

Probleme :
déterminer la parité d'un nombre entier n

Algorithme : (test sur le bit de poids faible)
Si[= O] alors

renvoyer Vral

sinon
renvoyer Faux
fin si
Complexité en temps :
1 opération]etpour tout n (et renvoie ?) = k (=2 ou ...)

k ne dépend pas de la valeur de n

EXEMPLE #2

Probleme :
Calculer la factorielle d'un nombre entier n (n'=n*(n-1)*(n-2)*.. *2*1)

Algorithme :
Sortie : f : entier
f -1
(pour i allant de 1 a n faire |
R
fin pour
renvoyer f

Complexité en temps :

mult;plications et[naffectations)(+ opérations sur i...) - k*n (k=2,
ou. ..

PREMIERE CONCLUSION

La complexité peut dépendre de la valeur du
parametre d’un algorithme.

Le nombre exact d’opérations importe peu :
ordre de grandeur (constant, linéaire...).

EXEMPLE #3

Probleme :
Extraire le premier élément d'un ensemble indexe
Entrée : tab[n] : réels, n : entier

Algorithme :
Sortie : réel
renvoyer tab[1]
Complexité en temps :
1 opération (?)
ne dépend pas de la longueur n (nombre de données)

EXEMPLE #4

Probleme :
Extraire le plus grand élément d'un ensemble indexé
Entrée : tab[n] : réels, n : entier
Algorithme :
Sortie : max : réel ; VI : 1 entier
max — tab[1]
pour i allant de 2 a n, faire

si tab[i] > max, alors
~ max ~ tab[1]
fin si

fin pour
renvoyer max
Complexité en temps :

Potentiellement n tests et affectations (pire cas : ensemble trié de maniere
croissante)

DEUXIEME CONCLUSION

La complexité peut dépendre du nombre de
données passées en parametre (taille de
I’ensemble).

On s’intéresse ici a la complexité dans le pire
cas.

POURQUOI MESURER LA COMPLEXITE ?

Dépendance a « n »
Valeur de parametre ou nombre de données
Evaluer le comportement d’un algorithme
Comment evolue son temps d'exéecution ?

Comparer deux algorithmes

Deux algorithmes résolvent le méme probleme : lequel choisir ?
Lequel prend le plus de temps d'execution

Impact sensible quand le temps devient
important

ordre de grandeur pour des grandes valeurs de n

EXEMPLE #2 : DETAILS DU CALCUL

Probléme : Regles
Calculer la factorielle d'un nombre » Commencer par|« I'intérieur »
entier n

Algorithme : * Remonter vers |« |'extérieur »
Sortie : f : entier

1 f 1

) p;ou%r 1 1f_il*laint de 1 a n, faire Complexité :
fin pour C(n) =1+ n*2=2*n+1

renvoyer f L
y Mais : n*2=2+2+...+2=22

i=1

n fois

n
Donc C(n) = Z 2+1
i=1
— boucles du code « sommes sur méme intervalle

LIEN BOUCLE - SOMME : CAS CONSTANT

Cas général d’une boucle simple

Variables intermédiaires : a,b,1 : entier

pour 1 allant de a a b, faire
Traitement (1)
fin pour

Hypothése : Traitement(i) demande P opérations (P constant)

Complexité :

— —
i=a i=a+1 i=b=a+b—a

b b
C=P+ P +.+ P =) P=P) 1=P(b—a+1)

LIEN BOUCLE - SOMME : CAS VARIABLE

Cas général d’une boucle simple

Variables intermédiaires : a,b,1 : entier
pour 1 allant de a a b, faire

Traitement (1)
fin pour

Hypothése : Traitement(i) demande i opérations

Complexité :

b
C=a+(a+l)+..+ b =D i

Q
|
=l
S
—

b+1) (a—1)a

b b
C=2i =20-2,1 ==5— =

17/51

Vérification : a=5, b=7
C =5+6+7=18
=28-10 = (7x8)/2 — (4x5)/2

EXEMPLE : SOMME PARTIELLE MAXIMALE

Enoncé :
Ftant donné A, A,,...,A_réels (potentiellement négatifs), trouver la

valeur maximale pour
J

k=i

A=A+ A,
Exemple
Pour la séquence —2{11, -4, 13} -5, -2
La réponse est 20 (=11-4+13)
Algorithme naif
On considere chagque nombre a tour de role : début de séguence
On considere chaque nombre suivant a tour de role : fin de séquence

On calcule la somme entre le début et la fin + test si max

(Voir « Data Structures and Algorithm Analysis in C » de MarVI|</ A/Ie)n
eiss

ALGORITHME #1

Entré:[r:] : Réels (Z Z (

Sortie :
max : Réel // valeur maximale
Variables intermédiaires :

part : Réel // somme partiell

i, j,k : entier // ifables de boucles

max — A[1]

(. s .
pour i allant de 1 a n faire

(pour j allant de i an faire

(pour k allant de i a j fair
[part ~ part + A[k]

\fln pour ')

(si part > max alors

max — part

fin si
.

\fln pour y

fin pour
U p

Renvoyer max

ALGORITHME #1 : CALCUL

ZZ (2j—2i+2+3))+1

i=1]—

= ZZ 2]—21+5 +].

Z 22] 221+25

i=1]—

ALGORITHME #1 : CALCUL

4)
C(n)=(Z{ZZJ 221 25} Rappels
1 n
1=
25:52 1=5(n—i+1)=5n—5i+5 k; "
Zzz 2121 2i(n—i+1)=2ni—2i’+2i Zk:”(”z”l)
k=1
221 —221 T
i—1 4 — c
=2(3 -2)) s)
j=1 j=1
:2<n(n2+1)_(i—21)i)
—I’l +n— l+l

22] 221+25:[n n—i+iH{(2ni—2i7+ 20 sn—5i+5E17— (2n+6)i+(n+6n+5)
:(Zl —(2n+6 Zz+ (n°+6n+5 Zl +1

n
i=1 i=1 i=1

ALGORITHME #1 : CALCUL

=Y ?=(2n+6) Y i+(n*+6n+5)>_ 1|+1
i=1 i=1 i=1

C(n) :n(n+1>6(2n+1)—(2n+6)n(n2+1>+(n2+6n+5)n+1
3
N
32076

ALGORITHME #1

3
o - n 5 » 13
Entrée : C<n>:_+_n +—n+1
A[n] : Réels 3 2 6
Variables :
max, part : Réel
i,j,k : entier // variables de boucles Séquence :-2,11,-4,/13, -5, -2
max < A[1] ._2
pour i allant de 1 a n faire 1=
pour j allant de i a n faire j:2
[part - © B k=2 part=-4
pour k allant de i a j faire
=3
part — part + A[k] k:2 part:-4
e peLs k=3 part=-4+13=9
si part > max alors]
max - part J:4
fin si k=2 part=-4
~ o k=3 art=-4+13=9
fin pour - part= -
fin pour k:4 part:'4+13'5:9'5:4
Renvoyer max]:5)

23/51

ALGORITHME #2

Entrée :

A[n] : Réels
Variables :

max, part : Réel

i,j,k : entier // variables de boucles

/max — A[1] I
pour 1 allant de 1 a n faire
(part — 0 N
pour j allant de i a n faire
‘part — part + A[j]
si part > max alors| 4 (nire cas) |4 (n-i+1) +1
max — part
\fin si)
\‘fin pour)
\iln pour)
Renvoyer max

24/51

Cz(n)

=(

=2

=

n

N =

4(n—i+1)+1)+1

+3n+1

COMPARAISON

N n=100 n=1000 n=10000 n=100000
C(n)=n3/3+5/2 n2+13/6 n + 1 358551 335835501 333583355001 333358333550001
C2(n)=2n2 + 3n + 1 20301 2003001 200030001 20000300001
C(n)/C2(n) 17,66 167,67 1667,67 16667,67
(n¥/3)/(2n2)=n/6 16,67 166,67 1666,67 16666,67

5 . C(n) _n’/3+5/2n°+13/6n+1 n’/3 _n
our n grand : = ~ = —

C,(n) 2n°+3n+1 Tn? 6

Et, guand n —~ n*10, alors C(n)/C2(n) —~ C(n)/C2(n) * 10
- le rapport de complexité évolue de maniere linéaire, proportionnelle a n, soit comme n3/n?

COMPLEXITE POLYNOMIALE : REGLES

s - k i
Complexité polynomiale f(n)=2._ an
ExempleC(n):%+%n2+%n+1

On néglige tous les termes sauf le plus fort f(n)~a,n"

|.e de plus grande puissance

Exemple C(n)m%

k

On néglige les facteurs multiplicatifs f(n)xn
Exemple € (n)ocn’

Note : une complexite en nombre constant d'opérations sera considéree
comme de complexité proportionnelle a 1

Notation en O(.)
f(n)

C(n)=0(n’) avec 1/3 comme constante

f(n)

nk

O(n*)elim L% =constante non nulle

CLASSES DE COMPLEXITE

Fonction Appellation
1 Constante
log n Logarithmique ou sous-linéaire
n Linéaire
Complexité | Linéarithmi linéai
croissante nlog n inéarithmique ou quasi-linéaire
n2 Quadratique (polynomiale)
n3 Cubique (polynomiale)
nk Polynomiale (k>3)
2" ou a" ou exp(n)=e" Exponentielle (a>1)

Y n! factorielle

DES ALGORITHMES EFFICACES, OU PAS

Avec un ordinateur executant 10° instructions par seconde

n= 20 40 60 100 300

nz 1/2500 1/625 1/278 1/100 1/11
millisecondes millisecondes millisecondes millisecondes millisecondes

n® 1/300 1/10 78/100 10 40,5
secondes secondes secondes secondes minutes

2" 1/1000 18,3 36,5 400 . 10° (72c)
secondes minutes années siecles siecles

n" 3,3.10° (46¢) (89c¢) (182c¢) (725c¢)
années siecles siecles siecles siecles

Note : (Xc) » nombre a X chiffres
On situe le big bang a environ 13,8 . 10% années, soit (9¢) siecles !
(Source : « Algorithmics, the spirit of computing », D. Harel)

REGLES DE CALCUL THEORIQUE

Regle 1 (addition)

St ¢,(n)=0(f(n)) et ¢,(n) =0(g(n))

Alors (c,+c,)(n) = max{O(f(n)),0(g(n))} — on garde la complexité dominante
Regle 2 (multiplication)

St ¢, (n)=0(f(n)) et c,(n) =O(g(n))

alors (c,*c,)(n) = O(f(n)*g(n))

Regle 3 (complexité polynomiale)

Si c(n) est une fonction polynomiale de degré k
alors ¢(n)=0(n")

n*! est dominée par nk pour tout k (voir tableau précédent)
Regle 4 (complexité logarithmique)
Log* n est dominée par n pour toute constante k

29/51

REGLES DE CALCUL PRATIQUE

Régle 5 (instruction consécutives)

La complexité de blocs d’instructions consécutifs est donnée par le bloc le plus complexe (cela
correspond a une somme, voir aussi regle 1).

Régle 6 (boucles)

La complexité d’'une boucle est égale a la complexité du bloc d’instructions internes fois le nombre
d’exécutions de la boucle. (cela correspond a un produit, voir aussi regle 2).

Régle 7 (boucles imbriquées)

Les boucles imbriquées s’analysent de I'intérieur vers I'extérieur : chaque boucle multiplie la complexité
par le nombre de répétitions qu’elle implique (cas particulier de la precedente).

Régle 8 (Si/Alors)

Dans une instruction
Si Condition Alors

La (;omplexité est donnée par la complexité maximum entre Condition, S1, et S2 (expression du pire
cas

FOCUS SUR LES BOUCLES

Regarder les boucles

Une boucle dont une borne dépend de n a un nombre d’exécutions en O(n).
Une boucle dont les bornes sont fixes a un nombre d’exécutions en O(1).

Exemples
Pour i allant de ® a n-1 - O(n)
Pour j allant de 2 a 20 - 0O(1)
Pour k allant de 1 a n - 0O(n)
Pour 1 allant de 0 a i — O(n) (sI'I peut varier jJusque n)
— O(1) (si1 ne peut varier que

dans des bornes constantes
(ex -2 a20))

ALGORITHME #2

Entrée :
A[n] : Réels
Variables :
max, part : Réel
i,j,k : entier // variables de boucles
max — A[1]] O(1)
‘pour i allant de 1 a n faire
[|part — 0| O(1)
‘pour j allant de i a n faire
part — part + A[j]‘()ﬂ)

s1 part > max alors O(1) + O(m)=GHHOAHHDHS ©@Y) + O(1) = O(n)

max — part O(1)
fin si) Rappel : on avait trouvé
_\fin pour) C(n)=2n2+3n+1

| fin pour
Renvoyer max | O(1)

DE QUOI VA-T-ON PARLER AUJOURD’HUI ?

Complexité
Complexité en temps vs espace
Quelques exemples
Principe de mesure (ordre polynomial)
Type
Type abstrait de données
Liste itérative

Premiere structure de données : la table (aka le
tableau)

Définition (rappels)

Opeérations de base

Impact sur la mémoire

PRENONS UN PEU DE RECUL

Pourquoi une structure de données ?
Stockage et manipulation de nombreuses données

Notion générique d’ensemble
" Accéder a un élément

* Ajouter un élément
* Supprimer un élément

* Tester 'appartenance d'un elément
* Définir 'ensemble vide

* Compter le nombre d’éléments

.. (on peut ajouter les opérations d’union, intersection, sous-ensemble...)

— Conception centrée sur les valeurs et les opérations :
Type Abstrait de Données

TYPE ABSTRAIT DE DONNEES

Changement de focalisation
Implantation (représentation) — opérations

Deux éléments de définition
Signature -

nom (sorte), sortes utilisées, ensemble de valeurs valides, prototype des
opérations

Préconditions/axiomes

Définissent le comportement des opérations

BOOLEEN COMMME TAD (PROPOSITION)

Signature Préconditions/axiom
Sorte : Booléen - Vrai = Faux
—|—|b = b
Utilise : (ml) (b=Vrai v b=Faux) = Vrai
Opérations (b A Faux) = Faux
Vrai . - Booléen (b Vv Vrai) = Vrai
Faux . —» Booléen -(aAb)==aVv-b
, , Commutativité
- (not) : Booléen - Booléen arb=bAa
A (and) : Booléen x Booléen — Booléen avb=bva
. ,) Distributivité
v (or) : Booléen x Booléen - Booléen an (bVc)=(arb) v (anc)

Représentation ? Peut étre quelconque (0/1, ‘V'I'F’, « VRAI »/« FAUX », 3/-18...)

UTILISATION DU TAD

Rappel des opérations/valeurs
Vrai, Faux, = (not), * (and), * (or)
Définition de nouvelles fonctions (algorithmes)

Fonction nand Fonction xor
Entrées : a, b : Booléen Entrées : a, b : Booléen
Sortie : Booléen Sortie : Booléen
Début Début
Renvoyer =(a A b) Renvoyer (a VvV b) A =(a A b)
Fin Fin
-(a A b) = not(and(a,b)) (a v b)A=(anb)=

et(ou(a,b),not(et(a,b))

I

INTERET D’UN TAD

Séparer algorithme et programmation
Algorithme décrit en utilisant les opérations définies pour le TAD

Programmation implante ces opérations sur une structure de donneées,
puis implante ['algorithme

Conception modulaire de programmes
Workflow : Algorithme — opérations — TAD — structure de données
Ecrire plein de petites fonctions est bien
Ecrire plein de petites fonctions est bien (répétition voulue)

Bon pour
— conception et réalisation de tests unitaires
— maintenance du code
— réutilisation du code
— Identification et correction de bugs
— structuration de la documentation

EXEMPLE IMPLANTATION BOOLEEN

Fonction Vrai
Sortie : Booléen
Début

Renvoyer -18
Fin

Fonction Faux
Sortie : Booléen
Début

Renvoyer 3
Fin

Fonction not
Entrée : b : Booléen
Sortie : Booléen
Début
Si b = Faux() alors
Renvoyer Vrai()
Sinon
Renvoyer Faux()
FinSi
Fin

Fonction and
Entrée : a,b : Booléen
Sortie : Booléen
Début
Si a=Faux() alors
Renvoyer Faux()
Sinon Si b=Faux() alors
Renvoyer Faux()
Sinon
Renvoyer Vrai()
Finsi
Fin

Fonction or
Entrée : a,b : Booléen
Sortie : Booléen
Début
Si a=Vrai() alors
Renvoyer Vrai()
Sinon Si b=Vrai() alors
Renvoyer Vrai()
Sinon
Renvoyer Faux()
FinSi
Fin

TAD ENSEMBLE

Signature Axiomes (E:Elément, S:Ensemble)
Sorte : Ensemble - EstVide(ensemble_vide) = Vrai
Utilise : Elément, Booléen, Entier - Si (EstVide(S) = Vrai) alors S=ensemble_vide
Opérations : - Si Taille(S) > 0 alors EstVide(S) = Faux

ensemble_vide : - Ensemble Sinon EstVide(S)=Vrai

EstVide : Ensemble - Booléen - EstDans(ensemble_vide, E)=Faux

Ajouter : Ensemble x Elément — Ensemble - EstDans(Ajouter(S,E),E) = Vrai

Supprimer : Ensemble x Elément - Ensemble - Si EstDans(S,E)=Faux alors

EstDans : Ensemble x Elément — Booléen Taille(Ajouter(S,E)) = Taille(S)+1

Taille : Ensemble - Entier - Si EstDans(S,E)=Vrai alors

Taille(Supprimer(S,E)) = Taille(S)-1
- Si EstDans(S,E)=Faux alors
Taille(Supprimer(S,E)) = Taille(S)

Cas sans répétition (cas avec répétition =
multi-ensemble)

- EstDans(Supprimer(S,E),E) = Faux
- Si EstDans(S,E)=Vrai alors
Taille(Ajouter(S,E)) = Taille(S)

TAD ENSEMBLE

Signature

Sorte : Epsemble
Utilise : Elément, Booléen, Entier

Opérations :

ensemble vide : -~ Ensemble
EstVide : Ensemble - Booléen
Ajouter : Ensemble x Elément - Ensemble
Supprimer : Ensemble x Elément — Ensemble
EstDans : Ensemble x Elément - Booléen
Taille : Ensemble - Entier

Probléme

Cette définition ne permet pas d’acceder a un élément !

Par exemple : comment lister les éléments pour les afficher ? (fonction
Afficher(Ensemble))

TAD LISTE ITERATIVE

Liste
Ensemble d'éléements rangés
Rangé # trie - Rangé = chaque élément a un rang

Liste itérative : rang=entier

Sighature
Sorte : Listelter
Utilise : Elément, Booléen, Entier Procédure Afficher
Operations : Entrée : L : ListeIter
liste_vide : - Listelter Variables : 1,T : entier
EstVide : Listelter — Booléen_ Début
Ajouter . Listerlter x Entier x Elément — Ensemble T « Taille(L)
Supprimer : Listelter x Entier - Listelter . N .
EstDans : Listelter x Elément — Booléen Pour 1 allant de 1 a T faire
Taille : Listelter - Entier Afficher(Contenu(L,1))
Contenu . Listelter x Entier — Elément FinPour
Fin

STRUCTURE DE DONNEES : LE TABLEAU

Définition
Un tableau est une structure de données servant a stocker plusieurs

éléments d’'un méme type, sur une zone contigué de la memoire (=plage
memoire).

Notation
nom[taille] : type

Exemples :
tab[10] : reel
data[20] : entier
chaine[15] : caractere // chaine de 14 caracteres en C
Tableaul] : booléen // si la taille n’est pas connue a priori

Rappel : nous prenons comme convention d’indexer le premier élément du
tableau par I'entier 1. Un tableau a N éléments sera donc indexé de 1 a N
inclus.

TABLEAU=PLAGE MEMOIRE

tab[20] : entiers

"tab[1] “tab[1
v
"tqb[ZO]
\

Notes :

- dans ce schéma, une case = un entier = 4 octets
(en regle générale, une case mémoire = 1 octet)
- " renvoie 'adresse d’une variable (comme & en C)

44/51

TABLEAU MULTIDIMENSIONNEL

tab[3][7] : entiers

Mab[1][1] “Mab[1][7] ~~tab[2][1] tab[2][7]
v \j \
Mabl[3][7] <

\

~ Mab[3][1]

OPERATIONS ET COMPLEXITE

Acces a un éleément (en lecture ou écriture :
Contenu)

CoUt = calcul de I'adresse
= adresse tableau + indice * taille du type

- 0O(1)
Exemple : ~tabli] = ~tab[1] + (i1-1) * taille(entier)

Note: La formule est Iégerement différente en C (voir TP sur
les pointeurs)

Ajout et suppression d’un élément ?

AJOUT D'UN ELEMENT (AJOUTER)

TOTO

Pire cas : réallocation et recopie des n éléments —» O(n)

47/51

AJOUT D'UN ELEMENT (AJOUTER V2)

-

g

<

!

e

ﬂ—

Pire cas : ajout du premier élément = copie de n éléments - O(n)

SUPPRESSION D'UN ELEMENT (SUPPRIMER)

Pire cas : retrait du premier élément = copie de n-1 élements - O(n)

CONCLUSION

Chaque bloc d’instructions a une complexité
Se calcule avec des regles simples
Instruction élémentaire - O(1)
Boucle dépendant de la taille de I'entréee (n) —» O(n)
2 boucles imbriquées dépendant de n = O(n?)
k boucles imbriquées déependant de n —» O(n¥)
Tableaux

Occupent une zone contigue en memoire (méme
multidimensionnels)

Acces en O(1)
ajout/suppression en O(n)

50/51

CONCLUSION

Analyse a moduler avec les langages et
architectures modernes

Allocation par « chunks » (blocs, voir allocators) -

allouer de la mémoire colte cher et prend un temps variable — on alloue
systemaUquement des blocs de mémoire pour minimiser le nombre
d'allocations

Mémoire bon marché

La memoire etant bon marché a I'heure actuelle, une solution simple pour
accelerer son code est souvent (et si possible) d'allouer un gros espace
memolire pour tout le programme

Cela reste des cas particuliers : La structure de
données impacte la complexité

| en existe d'autres que le tableau, dont les opérations sont de
complexités différentes — objet des prochains cours

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51

