
 DEV - CM5 - Erwan Kerrien 1 / 33

STRUCTURES DE DONNÉES ET ALGORITHMES

FONDAMENTAUX

Initiation au développement (DEV)

 DEV - CM5 - Erwan Kerrien2/33

STRUCTURE DE DONNÉES : LE TABLEAU

Définition
Un tableau est une structure de données servant à stocker plusieurs
éléments d’un même type, sur une zone contiguë de la mémoire (=plage
mémoire).

Notation
nom[taille] : type ou nom : type[taille] (← utilisée dans ce
cours)
Exemples :

tab[10] : réel
data : entier[20]
chaine[15] : caractère // chaîne de 14 caractères en C
Tableau : booléen[] // si la taille n’est pas connue a priori

Rappel : nous prenons comme convention d’indexer le premier élément du
tableau par l’entier 1. Un tableau à N éléments sera donc indexé de 1 à N
inclus.

 DEV - CM5 - Erwan Kerrien3/33

TABLEAU=PLAGE MÉMOIRE

^tab[10]^tab[1]

^tab[20]

tab : entier[20]

Note : dans ce schéma, une case = un entier = 4 octets
(en règle générale, une case mémoire = 1 octet)
Et ^var signifie « l’adresse de la variable » var

 DEV - CM5 - Erwan Kerrien4/33

TABLEAU MULTIDIMENSIONNEL

tab : entiers[3][7]

^tab[1][1] ^tab[1][7] ^tab[2][1] ^tab[2][7]

^tab[3][1]^tab[3][7]

 DEV - CM5 - Erwan Kerrien5/33

OPÉRATIONS ET COMPLEXITÉ

Accès à un élément (en lecture ou écriture : Contenu)

Coût = calcul de l’adresse
 = adresse tableau + indice * taille du type

→ O(1)

Exemple : ^tab[i] = ^tab[1] + (i-1) * taille(entier)

Note: pas exactement du C !!!

En C, on écrirait : &tab[i] = &tab[0] + i (= tab + i)

Ajout et suppression d’un élément ?

 DEV - CM5 - Erwan Kerrien6/33

AJOUT D’UN ÉLÉMENT (AJOUTER)

?
TOTO

Pire cas : réallocation et recopie des n éléments → O(n)

 DEV - CM5 - Erwan Kerrien7/33

AJOUT D’UN ÉLÉMENT (AJOUTER V2)

Pire cas : ajout du premier élément = copie de n éléments → O(n)

 DEV - CM5 - Erwan Kerrien8/33

SUPPRESSION D’UN ÉLÉMENT (SUPPRIMER)

Pire cas : retrait du premier élément = copie de n-1 éléments → O(n)

 DEV - CM5 - Erwan Kerrien9/33

SYNTHÈSE

Tableaux

Occupent une zone contiguë en mémoire (même multidimensionnels)

Accès en O(1)

ajout/suppression en O(n)

Peut-on faire différemment ? Mieux ?

 DEV - CM5 - Erwan Kerrien10/33

PRENONS UN PEU DE RECUL

Pourquoi une structure de données ?
Stockage et manipulation de nombreuses données

Notion générique d’ensemble
• Accéder à un élément
• Ajouter un élément
• Supprimer un élément
• Tester l’appartenance d’un élément
• Définir l’ensemble vide
• Compter le nombre d’éléments

… (on peut ajouter les opérations d’union, intersection, sous-ensemble...)

→ Analyse centrée sur les opérations : Type Abstrait de Données

 DEV - CM5 - Erwan Kerrien11/33

TAD ENSEMBLE

Signature

Sorte : Ensemble
Utilise : Élément, Booléen, Entier
Opérations :

ensemble_vide : → Ensemble
EstVide : Ensemble → Booléen
EstDans : Ensemble x Élément → Booléen
Taille : Ensemble → Entier
Ajouter : Ensemble x Élément → Ensemble
Supprimer : Ensemble x Élément → Ensemble

Problème

Cette définition de permet pas d’accéder à un élément !

Par exemple : comment lister les éléments pour les afficher ? (fonction
Afficher(Ensemble))

 DEV - CM5 - Erwan Kerrien12/33

TAD LISTE ITÉRATIVE

Liste
Ensemble d’éléments rangés (chaque élément a un rang)

Liste itérative : rang=entier → STRUCTURE À ACCÈS DIRECT
Signature

Sorte : ListeIter

Utilise : Élément, Booléen, Entier

Opérations :

liste_vide : → ListeIter
EstVide : ListeIter → Booléen
EstDans : ListeIter x Élément → Booléen
Taille : ListeIter → Entier
Contenu : ListeIter x Entier → Élément
Ajouter : ListerIter x Entier x Élément → Ensemble
Supprimer : ListeIter x Entier → ListeIter

Implémentation privilégiée : tableau → Contenu(L,i) : L[i]

Procédure Afficher
 Entrée : L : ListeIter
 Variables : i,T : entier
 Début
 T ← Taille(L)
 Pour i allant de 1 à T faire
 Afficher(Contenu(L,i))
 FinPour
 Fin

 DEV - CM5 - Erwan Kerrien13/33

COMMENT FAIRE AUTREMENT ?

Brique de
base : cellule

Information
(ex : entier)

Adresse (pointeur)
de la cellule

suivante

Problème : données contiguës

Utiliser des cases dispersées en mémoire

 DEV - CM5 - Erwan Kerrien14/33

CRÉATION

Ensemble d’entiers : [3,2,0,7,8]

3

2

0

7

8 ø

Nouvelle structure de données : liste chaînée

Itérer sur :
● Allocation cellule
● Remplissage cellule
● Mise à jour adresse cellule

précédente

 DEV - CM5 - Erwan Kerrien15/33

Ensemble d’entiers : [3,2,5,0,7,8]

INSERTION

Ensemble d’entiers : [3,2,0,7,8]

3

2

0

7

8 ø
Insertion de l’élément 5 en
position 3

5

Même coût dans chaque cas → O(1)

 DEV - CM5 - Erwan Kerrien16/33

SUPPRESSION

Ensemble d’entiers : [3,2,5,0,7,8]

3

2

0

7

8 ø
Suppression de l’élément 0

5

Ensemble d’entiers : [3,2,5,7,8]

Même coût dans chaque cas → O(1)

 DEV - CM5 - Erwan Kerrien17/33

ACCÈS

3

2

7

8 ø

5

Ensemble d’entiers : [3,2,5,7,8]

Accès au 3e élément (5)

Pire cas : accéder au dernier → O(n)

STRUCTURE À ACCÈS SÉQUENTIEL

 DEV - CM5 - Erwan Kerrien18/33

REPRÉSENTATION D’UNE LISTE CHAÎNÉE

3

2

7

8 ø

5

Ensemble d’entiers : [3,2,5,7,8]

3 2 5 7 8 ø

Remarque : une cellule = liste à un seul élément

3 ø

 DEV - CM5 - Erwan Kerrien19/33

TAD LISTE RÉCURSIVE

Signature
Sorte : ListeRec

Utilise : Élément, Booléen // Note : Élément définit la valeur element_invalide

Opérations :

liste_vide : → ListeRec // liste sans aucun élément (ø)
EstVide : ListRec → Booléen // équivalent au test L=liste_vide
Contenu : ListeRec → Élément // element_invalide si EstVide(L)
Succ : ListeRec → ListeRec // si EstVide(L), renvoie L
Créer : Élément x ListeRec → ListeRec // crée une cellule avec un élément et la liste suivante
Détruire : ListeRec → ListeRec // détruit la première cellule de la liste et renvoie le reste

 DEV - CM5 - Erwan Kerrien20/33

LIEN AVEC LISTE ITÉRATIVE

Rappel : dans ListeRec, sont disponibles

liste_vide, Créer, Détruire, Contenu, Succ, EstVide

Rappel signature ListeIter
Sorte : ListeIter

Utilise : Élément, Booléen, Entier

Opérations :

liste_vide : → ListeIter
EstVide : ListeIter → Booléen
EstDans : ListeIter x Élément → Booléen
Taille : ListeIter → Entier
Contenu : ListeIter x Entier → Élément
Ajouter : ListerIter x Entier x Élément → Ensemble
Supprimer : ListeIter x Entier → ListeIter

 DEV - CM5 - Erwan Kerrien21/33

LIENS AVEC LISTE ITÉRATIVE

Rappel : dans ListeRec, sont disponibles

liste_vide, Créer, Détruire, Contenu, Succ, EstVide

Rappel signature ListeIter
Sorte : ListeIter

Utilise : Élément, Booléen, Entier

Opérations :

liste_vide : → ListeIter
EstVide : ListeIter → Booléen
EstDans : ListeIter x Élément → Booléen
Taille : ListeIter → Entier
Contenu : ListeIter x Entier → Élément
Ajouter : ListerIter x Entier x Élément → Ensemble
Supprimer : ListeIter x Entier → ListeIter

Fonction Taille
 Entrée : L : ListeRec
 Variables : i:entier, tl:ListeRec
 Sortie : entier
 Début

i ← 0
tl ← L

 TantQue EstVide(tl) = Faux faire
 tl ← Succ(tl)
 i ← i+1
 FinTantQue
 Renvoyer i

 DEV - CM5 - Erwan Kerrien22/33

LIENS AVEC LISTE ITÉRATIVE

Rappel : dans ListeRec, sont disponibles

liste_vide, Créer, Détruire, Contenu, Succ, EstVide

Rappel signature ListeIter
Sorte : ListeIter

Utilise : Élément, Booléen, Entier

Opérations :

liste_vide : → ListeIter
EstVide : ListeIter → Booléen
EstDans : ListeIter x Élément → Booléen
Taille : ListeIter → Entier
Contenu : ListeIter x Entier → Élément
Ajouter : ListerIter x Entier x Élément → Ensemble
Supprimer : ListeIter x Entier → ListeIter

Fonction ContenuIter
 Entrée : L : ListeRec, r:entier
 Variables : i:entier, tl:ListeRec
 Sortie : Élément
 Début

i ← 0
tl ← L

 TantQue EstVide(tl) = Faux
et i < r faire

 tl ← Succ(tl)
 i ← i+1
 FinTantQue
 Renvoyer Contenu(tl)Ajouter, Supprimer, EstDans → voir TD9&10

 DEV - CM5 - Erwan Kerrien23/33

LISTE CHAÎNÉE

Stockage de données
Avantage : pas de contiguïté, flexibilité

Inconvénient : surplus de mémoire (en O(n))

Opérations
Insertion/suppression : 0(1) (sans compter le temps d’accès, qui peut souvent être évité en pratique)

Accès : O(n)

Rappel tableau
Insertion/suppression : O(n)

Accès : O(1)

Enumération
O(n) pour les deux

A noter
Liste itérative : représentation type comme tableau, structure à accès direct

Liste Récursive : représentation type comme liste chaînée, structure à accès séquentiel

Mais ce n’est pas obligatoire : voir TP piles, avec représentation comme tableau

 DEV - CM5 - Erwan Kerrien24/33

BILAN

Stockage de données

plusieurs possibilités d’implantation: tableaux, listes chaînées, … ?

Différence = Complexité des opérations

Si beaucoup d’accès aléatoires et peu d’ajouts/suppressions
→ tableau

Si peu d’accès aléatoires et beaucoup d’ajouts/suppressions
→ liste chaînée

Le choix de la représentation est guidé par les opérations
que l’algorithme requiert d’effectuer.

 DEV - CM5 - Erwan Kerrien25/33

LISTE DOUBLEMENT CHAÎNÉE

3 2 5 7 8 ø3 2 5 7 8 øø

Problème : Parcours malaisé car juste successeur et pas prédécesseur

Ajout d’une opération Préd (prédecesseur) Avantage :
accès plus aisé à un élément quelconque, parcours dans les deux sens,
suppression simplifiée

Inconvénient :
Plus de place mémoire nécessaire

Exemples :
Stockage de structures hiérarchiques
historique d’opérations

Voir TD13&15 pour leur étude

 DEV - CM5 - Erwan Kerrien26/33

LISTE CIRCULAIRE

3 2 5 7 8 ø

Problème : Fin et début de liste à gérer : l’opération Succ n’est pas toujours valide

Avantage :
Succ toujours valide.

Inconvénient :
Gestion de la fin de boucle lors de l’énumération

→ fin quand on boucle sur la première cellule

Exemples
Menu circulant
Polygone fermé (e.g. calcul du milieu de chaque arête)

0

1

23

4

 DEV - CM5 - Erwan Kerrien27/33

STRUCTURE PILE

Usage
Opération d’ajout : en tête (ou en fin) de liste

Opération de lecture de contenu : dernier élément ajouté

Opération de suppression de contenu : dernier élément ajouté

Liste LIFO (Last In First Out)

Exemple
Pile d’assiette

Annulation d’une séquence de commandes dans une interface graphique (Ctrl-Z,
« Undo »)

Pile d’appels d’une fonction récursive

Parcours d’arbre en profondeur

Parseur XML

 DEV - CM5 - Erwan Kerrien28/33

PARSER UN FICHIER XML
<company>
 <staff id="1">
 <firstname>

yong
 </firstname>

 <lastname>
mook kim

 </lastname>
 <salary>

1000000
 </salary>

 <age>
29

 </age>
<extra>

<test>123</test>
</extra>

 </staff>
 <staff id="2">
 <firstname>

low
 </firstname>

 <lastname>
yin fong

 </lastname>
 <salary>

500000
 </salary>

 </staff>
</company>

company

staff

firstnamelastnamesalaryageextra

test

 DEV - CM5 - Erwan Kerrien29/33

DÉFINITION PILE

Signature
Sorte : Pile
Utilise : Élément, Booléen
Opérations

pile_vide : → Pile
Empiler : Pile x Élément → Pile // push()
Dépiler : Pile → Pile // pop()
Sommet : Pile → Élément
EstVide : Pile → Booléen

Voir TP22&23 pour l’implantation de ces opérations avec une représentation en
tableau

Axiomes
- EstVide(pile_vide) = Vrai
- EstVide(Empiler(P,e)) = Faux
- Sommet(pile_vide) non défini (=élément_invalide)
- Sommet(Empiler(P,e)) = e
- EstVide(Dépiler(pile_vide)) = Vrai
- Dépiler(Empiler(P,e)) = P

 DEV - CM5 - Erwan Kerrien30/33

STRUCTURE FILE

Usage :
Ajout en fin de liste (pas comme Pile), et suppression en tête de liste
(comme Pile)

→ Lecture et suppression de l’élément le plus ancien de la liste

Liste FIFO (First In, First Out)

Exemples
File d’attente

Gestion de file d’impression

Gestion des processus dans une machine (accès processeur)

Parcours d’arbre en largeur
(Note : on peut aussi implémenter une file où on ajoute en tête de liste (comme Pile),
mais alors on supprime en fin de liste (pas comme Pile).

 DEV - CM5 - Erwan Kerrien31/33

DÉFINITION FILE

Signature
Sorte : File
Utilise : Élément, Booléen
Opérations

file_vide : → File
Enfiler : File x Élément → File (enqueue)
Défiler : File → File (dequeue)
EstVide : File → Booléen
Premier : File → Élément

Par rapport à Pile :
Accès fréquent à la fin de liste (soit pour l’ajout, soit pour la suppression)

Accès en O(n)

D’où nécessité de maintenir l’information de position de fin de liste

- soit en implémentant sous forme de tableau (comme la Pile dans le TD22&23)
- soit en implémentant comme un enregistrement qui contient la référence vers le début et la fin de la liste
chaînée

Axiomes
- EstVide(file_vide) = Vrai
- EstVide(Enfiler(F,e)) = Faux
- Premier(file_vide) non défini (=élément_invalide)
- Premier(Enfiler(F,e)) = e si EstVide(F) ;

Premier(F) sinon
- EstVide(Défiler(file_vide)) = Vrai
- Défiler(Enfiler(F,e)) = file_vide si EstVide(F) ;

 Enfiler(Défiler(F),e) sinon

 DEV - CM5 - Erwan Kerrien32/33

CONCLUSION

Nouvelle structure de données : Liste Chaînée

Accès séquentiel en O(n)

Ajout/suppression en O(1)

Recherche d’élément en O(n)

Surtout utilisé dans ses versions pile et file (+ hachage).

Sinon, une implantation intelligente du tableau est souvent plus efficace.

Type Ensemble

Recherche pas très efficace sous forme de tableau ou de liste, si données
non rangées

Prochain cours : arbres (binaires) et tables de hachage

 DEV - CM5 - Erwan Kerrien33/33

LISTE CHAÎNÉE HUMAINE

Expérimentation IRL !!!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33

