Dan Mary Ben Amy Zach Ann

STRUCTURES DE DONNEES ET ALGORITHMES
FONDAMENTAUX

Initiation au développement (DEV)

DEV - CM5 - Erwan Kerrien 1/33

STRUCTURE DE DONNEES : LE TABLEAU

Définition
Un tableau est une structure de données servant a stocker plusieurs

éléments d’'un méme type, sur une zone contigué de la mémoire (=plage
memoaoire).

Notation

nomltaille] : type ou nom : typeltaille] (-~ utilisée dans ce
cours)

Exemples :
tab[10] : réel
data : entier[20]
chame[lSL: caractere // chaine de 14 caracteresen C
Tableau : booléen[] // si la taille n’est pas connue a priori

Rappel : nous prenons comme convention d’indexer le premier élement du
tableau par I'entier 1. Un tableau a N éléments sera donc indexé de 1 a N

inclus.

TABLEAU=PLAGE MEMOIRE

tab : entier[20]

"tab[1] “tab[1
v
"tqb[ZO]
\

Note : dans ce schéma, une case = un entier = 4 octets
(en regle générale, une case mémoire = 1 octet)
Et ~var signifie « 'adresse de la variable » var

3133

TABLEAU MULTIDIMENSIONNEL

tab : entiers[3][7]

Mab[L][1] Mab[1][7] Mab[2][1] tab[2][7]
v Vi \
Mabl[3][7] < Mab[3][1]
\

OPERATIONS ET COMPLEXITE

Acceées a un elément (en lecture ou écriture : Contenu)

Cout = calcul de l'adresse
= adresse tableau + indice * taille du type

- 0(1)

Exemple : abli] = Mab[1] + (i-1) * taille(entier)

Note: pas exactement du C !!!

En C, on écrirait : &tabli] = &tab[0] + i (= tab + i)
Ajout et suppression d’un élément ?

5/33

AJOUT D'UN ELEMENT (AJOUTER)

TOTO

Pire cas : réallocation et recopie des n éléments —» O(n)

6/33

AJOUT D'UN ELEMENT (AJOUTER V2)

E))F)))FF%FP—-)—)+
it

Pire cas : ajout du premier élément = copie de n éléments - O(n)

7133

SUPPRESSION D’UN ELEMENT (SUPPRIMER)

Pire cas : retrait du premier élément = copie de n-1 élements - O(n)

8133

SYNTHESE

Tableaux

Occupent une zone contigué en mémoire (méme multidimensionnels)
Acces en O(1)
ajout/suppression en O(n)

Peut-on faire différemment ? Mieux ?

9/33

PRENONS UN PEU DE RECUL

Pourquoi une structure de données ?
Stockage et manipulation de nombreuses données

Notion générique d’ensemble
* Accéder a un élément
* Ajouter un élément
* Supprimer un élément

* Tester 'appartenance d’un élément
* Définir 'ensemble vide

* Compter le nombre d’éléments

... (on peut ajouter les opérations d’union, intersection, sous-ensemble...)

— Analyse centrée sur les opérations : Type Abstrait de Données

TAD ENSEMBLE

Signature

Sorte : Epsemble
Utilise : Elément, Booléen, Entier

Opérations :

ensemble vide : -~ Ensemble

EstVide : Ensemble - Booléen

EstDans : Ensemble x Elément - Booléen

Taille : Ensemble - Entier

Ajouter : Ensemble x Elément - Ensemble

Supprimer : Ensemble x Elément - Ensemble
Probleme

Cette définition de permet pas d’acceder a un élément !

Par exemple : comment lister les éléments pour les afficher ? (fonction
Afficher(Ensemble))

TAD LISTE ITERATIVE

Liste
Ensemble d’éléments rangés (chaque élément a un rang)

Liste itérative : rang=entier —. STRUCTURE A ACCES DIRECT

Signature
Sorte : Listelter
Utilise : Elément, Booléen, Entier Procédure Afficher
Opérations : Entrée : L : ListeIter
liste_vide : _ Listelter Variables : i, T : entier
Est\gde : Il:!ste:ter _>Ell3poléen Bo00lé Début
stDans . Listelter x Elément — Booléen .
Taille : Listelter — Entier T - qulle(L) . _
gpntenu :II__.lsteIIteernt_ler ﬁEIIEIément - ol Pour 1 allant de 1 a T faire
jouter : Listerlter x Entier x Elément — Ensemble : ;
Supprimer : Listelter x Entier - Listelter .AfflCher(Contenu(L’ 1))
FinPour
Fin

Implémentation privilégiée : tableau — Contenu(L,i) : L[i]

COMMENT FAIRE AUTREMENT ?

Brique de
base : cellule

Information
(ex : entier)

Adresse (pointeur)
de la cellule
suivante

Probleme : données contigués

Utiliser des cases dispersées en memoire

13/33

CREATION

Ensemble d’entiers : [3,2,0,7,8]

Itérer sur :

 Allocation cellule

* Remplissage cellule

* Mise a jour adresse cellule
précédente

Nouvelle structure de données : liste chainée

14/33

INSERTION

Ensemble d’entiers : [3,2,6,0,%]8]

Insertion de I'élément 5 en
position 3

Méme colt dans chaque cas - O(1)

15/33

SUPPRESSION

Ensemble d’'entiers : [3,2,5,0,%]8]

Suppression de I'élément O

Méme colt dans chaque cas - O(1)

16/33

Ensemble d’entiers : [3,2,5,7,8]

Acces au 3¢ élément (5)

Pire cas : accéder au dernier —» O(n)

STRUCTURE A ACCES SEQUENTIEL

17133

REPRESENTATION D’UNE LISTE CHAINEE

Ensemble d’entiers : [3,2,5,7,8]

Remarque : une cellule = liste a un seul &

TAD LISTE RECURSIVE

Signhature

Sorte : ListeRec

Utilise : Elément, Booléen // Note : Elément définit la valeur element_invalide

Opérations :
liste_vide : - ListeRec // liste sans aucun élément (@)
EstVide : ListRec — Booléen Il équivalent au test L=liste_vide
Contenu : ListeRec — Elément I/l element_invalide si EstVide(L)
Succ . ListeRec - ListeRec /I si EstVide(L), renvoie L
Créer : Elément x ListeRec — ListeRec // crée une cellule avec un élément et la liste suivante

Détruire : ListeRec - ListeRec Il détruit la premiere cellule de la liste et renvoie le reste

LIEN AVEC LISTE ITERATIVE

Rappel : dans ListeRec, sont disponibles
liste_vide, Créer, Détruire, Contenu, Succ, EstVide

Rappel sighature Listelter

Sorte : Listelter

Utilise : Elément, Booléen, Entier

Opérations :
liste_ vide . - Listelter
EstVide . Listelter — Booléen
EstDans - Listelter x Elément — Booléen
Taille . Listelter — Entier
Contenu . Listelter x Entier — Elément
Ajouter . Listerlter x Entier x Elément — Ensemble

Supprimer : Listelter x Entier - Listelter

20/33

LIENS AVEC LISTE ITERATIVE

Rappel : dans ListeRec, sont disponibles
liste_vide, Créer, Détruire, Contenu, Succ, EstVide

Rappel sighature Listelter

Sorte : Listelter Fonction Taille
Utilise : Elément, Booléen, Entier Entrée : L : ListeRec
o Variables : i:entier, tl:ListeRec
Operations : Sortie : entier
liste_vide : - Listelter Debut
EstVide : Listelter - Booléen 10
EstDans . Listelter x Elément - Booléen tl « L
[Taille . Listelter — Entier TantQue EstVide(tl) = Faux faire
Contenu . Listelter x Entier - Elément tl « Succ(tl)
Ajouter . Listerlter x Entier x Elément — Ensemble i < i+1
Supprimer : Listelter x Entier — Listelter FinTantQue

Renvoyer 1

LIENS AVEC LISTE ITERATIVE

Rappel : dans ListeRec, sont disponibles
liste_vide, Créer, Détruire, Contenu, Succ, EstVide

Rappel sighature Listelter

Sorte : Listelter Fonction Contenulter
Utilise : Elément, Booléen, Entier Entrée : L : ListeRec, r:entier
o . Variables : i:entier, tl:ListeRec
Operations : Sortie : Elément
liste_vide : - Listelter Debut
Estvide :Listelter -~ Booléen 10
EstDans : Listelter x Elément - Booléen tl « L
Taille . Listelter - Entier TantQue EstVide(tl) = Faux
Contenu : Listelter x Entier —» Elément et 1 < r faire
Ajouter . Listerlter x Entier x Elément — Ensemble t1l — Succ(tl)
Supprimer : Listelter x Entier - Listelter i < i+1
FinTantQue
Ajouter, Supprimer, EstDans - voir TD9&10 Renvoyer Contenu(tl)

LISTE CHAINEE

Stockage de données
Avantage : pas de contiguité, flexibilité
Inconvénient : surplus de mémoire (en O(n))
Opérations
Insertion/suppression : 0(1) (sans compter le temps d’acces, qui peut souvent étre évité en pratique)
Acces : O(n)
Rappel tableau
Insertion/suppression : O(n)
Acces : O(1)
Enumération
O(n) pour les deux
A noter
Liste itérative : représentation type comme tableau, structure a acces direct
Liste Récursive : représentation type comme liste chainée, structure a acces séquentiel
Mais ce n’est pas obligatoire : voir TP piles, avec représentation comme tableau

BILAN

Stockage de données
plusieurs possibilités d'implantation: tableaux, listes chainées, ... ?
Différence = Complexité des opérations

Si beaucoup d’acces aléatoires et peu d’ajouts/suppressions
- tableau

Si peu d’acces aleatoires et beaucoup d’ajouts/suppressions
- liste chainée

Le choix de la représentation est guidé par les opérations
que I’algorithme requiert d’effectuer.

LISTE DOUBLEMENT CHAINEE

Probleme : Parcours malaisé car juste successeur et pas predécesseur

Ajout d’'une opération Préd (prédecesseur) Avantage :
acces plus aisé a un elément quelconque, parcours dans les deux sens,
suppression simplifiee

Inconvénient :
Plus de place mémoire nécessaire

Exemples :
Stockage de structures hierarchiques
historique d’opérations

Voir TD13&15 pour leur étude

25/33

LISTE CIRCULAIRE

i

Probleme : Fin et début de liste a gérer : 'opération Succ n’est pas toujours valide

Avantage :
Succ toujours valide.

Inconvénient ;
Gestion de la fin de boucle lors de I'énumération
- fin quand on boucle sur la premiére cellule

Exemples
Menu circulant 4 1
Polygone fermé (e.qg. calcul du milieu de chaque aréte)

26/33

STRUCTURE PILE

Usage
Operation d’'ajout : en téte (ou en fin) de liste
Operation de lecture de contenu : dernier élément ajouté
Opération de suppression de contenu : dernier élément ajouté
Liste LIFO (Last In First Out)

Exemple
Pile d’assiette

Annulation d’'une séquence de commandes dans une interface graphique (Ctrl-Z,
« Undo »)

Pile d’appels d’'une fonction récursive
Parcours d’arbre en profondeur
Parseur XML

PARSER UN FICHIER XML

<company>
<staff id="1">
<firstname>
yong
</firstname>
<lastname>
mook kim
</lastname>
<salary>
1000000
</salary>
<age>
29
</age>
<extra>
<test>123</test> test
</extra>
</staff>
<staff id="2">
<firstname> eXtra
low
</firstname>
<lastname> staff
yin fong
</lastname>
<salary>

500000 company

</salary>

</staff>
</company>

DEFINITION PILE

Sighature Axiomes

Sorte : Pile - EstVide(pile_vide) = Vrai

Utilise : Elément, Booléen - EstVide(Empiler(P,e)) = Faux

Opérations - Sommet(pile_vide) non défini (=élément_invalide)

, , , - Sommet(Empiler(P,e)) = e

pile_vide : - Pile] _ - EstVide(Dépiler(pile_vide)) = Vrai
Empiler : Pile x Elément - Pile // push() - Dépiler(Empiler(P,e)) = P
Dépiler : Pile - Pile Il pop()

Sommet : Pile - Elément
EstVide : Pile — Booléen

Voir TP22&23 pour I'implantation de ces opérations avec une représentation en
tableau

STRUCTURE FILE

Usage :

Ajout en fin de liste (pas comme Pile), et suppression en téte de liste
(comme Pile)

- Lecture et suppression de I'élément le plus ancien de la liste
Liste FIFO (First In, First Out)

Exemples
File d’attente
Gestion de file d'impression
Gestion des processus dans une machine (acces processeur)

Parcours d’arbre en largeur

(Note : on peut aussi implémenter une file ou on ajoute en téte de liste (comme Pile),
mais alors on supprime en fin de liste (pas comme Pile).

DEFINITION FILE

Signature Axiomes

Sorte : File) - EstVide(file_vide) = Vrai

otilise ; Element, Booleen - Estvide(Enfiler(F.e)) = Faux
perations - Premier(file_vide) non défini (=élément_invalide)
file vide . _ File - Premier(Enfiler(F,e)) = e si EstVide(F) ;
Enfiler : File x Elément — File (enqueue) _ o Premier(F) sinon
Défiler : File - File (dequeue) - EstVide(Défiler(file_vide)) = Vrai _
EstVide : File — Booléen - Défiler(Enfiler(F,e)) = file_vide si EstVide(F) ;
Premier : File » Elément Enfiler(Défiler(F),e) sinon

Par rapport a Pile :

Acces fréquent a la fin de liste (soit pour I'ajout, soit pour la suppression)
Acces en O(n)
D’ou nécessité de maintenir I'information de position de fin de liste

- soit en implémentant sous forme de tableau (comme la Pile dans le TD22&23)
- soit en implémentant comme un enregistrement qui contient la référence vers le début et la fin de la liste
chainée

CONCLUSION

Nouvelle structure de données : Liste Chainée

Acces séquentiel en O(n)

Ajout/suppression en O(1)

Recherche d’élément en O(n)

Surtout utilisé dans ses versions pile et file (+ hachage).

Sinon, une implantation intelligente du tableau est souvent plus efficace.
Type Ensemble

Recherche pas tres efficace sous forme de tableau ou de liste, si données
non rangees

Prochain cours : arbres (binaires) et tables de hachage

LISTE CHAINEE HUMAINE

Expérimentation IRL !!!

head
(‘front’) o, S

T,

\

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33

