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STRUCTURES DE DONNÉES ET ALGORITHMES 

FONDAMENTAUX

Initiation au développement (DEV)
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RAPPELS DES ÉPISODES PRÉCÉDENTS

Tableaux
● stockage contigu d’un ensemble d’éléments
● Accès en O(1)
● Insertion/suppression en O(n)

Listes chaînées
● Liens entre des éléments « éparpillés » en mémoire
● Accès en O(n)
● Insertion/suppression en O(1)

Dans les deux cas
● Recherche en O(n) (O(log(n)) si tableau trié)
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DEUX NOUVELLES STRUCTURES DE 
DONNÉES

Arbres binaires (de recherche!)

Extension de la liste chaînée, version simple de graphes

Tables de hachage

Permet en particulier de créer des tableaux associatifs

Objectif : Temps de recherche réduit
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STRUCTURES ARBORESCENTES



 DEV - CM6 - Erwan Kerrien5

STRUCTURES ARBORESCENTES

Cf commande Unix tree

/

etc bin home lib var

hosts network kjcole jelkner rorellana

interfaces public_html public_html webappdev public_html

index.html

hosts

index.html

lesson2.txtlesson1.txt

css html unix vim

examples notes
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STRUCTURES ARBORESCENTES
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VOCABULAIRE

Nœud (node)
Cellule de base de l’arbre. Contient des données

Branche (branch)
Lien entre deux cellules. Dirigée du parent vers l’enfant

Enfant (child)
Nœud à l’extrémité finale d’une arête 

Parent (parent)
Nœud à l’extrémité initiale d’une arête

Racine (root)
Nœud sans parent

Feuille (leaf)
Nœud sans enfant

/

etc bin home lib var

hosts network kjcole jelkner rorellana

interfaces public_html public_html webappdev public_html

index.html

hosts

index.html

lesson2.txtlesson1.txt

css html unix vim

examples notes
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VOCABULAIRE

Chemin (path)

Séquence de nœuds N1,N2,...Nk tels que Ni est parent de Ni+1

Parcours (traversal)

Algorithme qui passe en revue tous les nœuds d’un arbre 

Ancêtre (ou ascendant) (ancestor)

Nœud : Na est un ancêtre de Nd s’il existe un chemin allant de Na vers Nd

Descendant (descendant)

Nœud : Nd est un descendant de Na si Na est un ancêtre de Nd

Arbre (tree)

A une racine et hormis la racine, tout nœud a un et un seul parent

Sous-arbre (subtree)

Arbre formé par tous les descendants d’un nœud

/

etc bin home lib var

hosts network kjcole jelkner rorellana

interfaces public_html public_html webappdev public_html

index.html

hosts

index.html

lesson2.txtlesson1.txt

css html unix vim

examples notes

home

jelkner

webappdev

unix

examples
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ATTENTION

Ceci n’est pas un arbre !!!
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ARBRE BINAIRE

B-Tree
Chaque nœud a au 
plus deux enfants

Chaque enfant est soit 
vide, soit un arbre binaire
Tous les sous-arbres sont 
disjoints
Ex : tournoi

Tout arbre peut être 
représenté par un 
arbre binaire

Fils aîné – Frère droit
Non vu dans ce cours
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ARBRE BINAIRE

Arbre d’expression (expression tree)

(x-2*y) + 3*(y/z+x)
+

*

2 y

-

x

*

3

x

+

y z

/
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DÉFINITION RÉCURSIVE

+

-

x

*

3*

2 y x

+

y z

/Ø Ø

Ø

Ø Ø Ø Ø

Ø Ø

Ø Ø

Ø Ø Ø

Sous-arbre gauche Sous-arbre droit

Racine
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DÉFINITION RÉCURSIVE

Sous-arbre gauche Sous-arbre droit

Racine
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TYPE ABSTRAIT DE DONNÉES

Signature
Sorte : 

ABin, Nœud

Utilise : 
Élément (élément_vide), Booléen

Opérations :
arbre_binaire_vide (Ø) : → Abin

estVide : ABin → Booléen

créer : Élément x ABin x ABin → ABin

Racine : ABin → Nœud

Contenu : Nœud → Élément

SAG : Nœud → ABin

SAD : Nœud → ABin

estDans : Nœud x ABin → Booléen

Propriétés/axiomes
Racine(A) défini ssi non estVide(A)

Contenu(Racine(Créer(E,G,D))) = E

SAG(Racine(Créer(E,G,D))) = G

SAD(Racine(Créer(E,G,D))) = D

Créer(E,G,D) est valide ssi G et D sont disjoints :

estDans(N,G) implique non estDans(N,D)
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EXEMPLE DE CRÉATION

G1=Créer(2,Ø,Ø)
G2=Créer(y,Ø,Ø)
G3=Créer(*,G1,G2)
G4=Créer(x,Ø,Ø)
G5=Créer(-,G4,G3)

D1=Créer(y,Ø,Ø)
D2=Créer(z,Ø,Ø)
D3=Créer(/,D1,D2)
D4=Créer(x,Ø,Ø)
D5=Créer(+,D3,D4)
D6=Créer(3,Ø,Ø)
D7=Créer(*,D6,D5)

A=Créer(+,G5,D7)

+

-

x

*

3*

2 y x

+

y z

/
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ARBRES VALUÉS ET NON VALUÉS

Arbre valué
Un arbre A est valué si Contenu(N)≠élément_vide 
pour tout N tel que estDans(N,A)=Vrai  

En général, un arbre non valué est tel que seules ses 
feuilles contiennent une valeur. Les autres nœuds 
sont des nœuds d’orientation

Exemple d’arbre non valué : Qui est-ce ?

http://concours.castor-informatique.fr/?tab=home
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QUELQUES MESURES SUR LES ARBRES

Taille (ex : 13)
Nombre de nœuds
Définition récursive :

Taille(Ø) = 0
Taille(Créer(E,G,D)) = 1 + Taille(G) + Taille(D)

Niveau (ou hauteur, ou profondeur) d’un nœud
Longueur du chemin (nombre de nœuds) depuis la racine
Définition récursive

L(Racine(A)) = 1
L(N

e
) = 1+L(N

p
) si N

p
 est parent de N

e

Hauteur (ou profondeur) d’un arbre (Ex : 5)
Longueur du chemin maximal
Deux définitions possibles (et équivalentes)

H(Ø) = 0 ; H(Créer(E,G,D)) = 1+max{H(G),H(D)} 
H(A) = max{L(N) ; avec N nœud de A, A≠Ø}

+

-

x

*

3*

2 y x

+

y z

/

Niveau 3
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NOEUDS EXTERNES ET INTERNES

N est un nœud externe ssi SAG(N)=Ø ou SAD(N)=Ø

N est un nœud interne ssi SAG(N)≠Ø et SAD(N)≠Ø

(autrement dit ssi N n’est pas externe)

d

a i

g t

q

m



 DEV - CM6 - Erwan Kerrien19

ARBRES BINAIRES PARTICULIERS

Arbre filiforme : tous ses nœuds sont externes

a

b

c

d

e

Liste chaînée...
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ARBRES BINAIRES PARTICULIERS

Arbre peigne (droit) : tous les fils gauches sont 
des feuilles

b

d

f

h

i

a

c

e

g
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ARBRES BINAIRES PARTICULIERS

Arbre complet : tous ses nœuds externes ont 
même profondeur

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o
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ARBRES BINAIRES PARTICULIERS

Arbre parfait : tous les niveaux sont remplis, 
sauf éventuellement le dernier

a

b

c

d

f

g

h

j

l

n

o

Complet
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PARCOURS D’UN ARBRE

Parcours : visite de tous les nœuds
En pratique, on applique un traitement à chaque nœud visité

Exemple : TRAITEMENT(N) = Afficher(Contenu(N))

Deux types de parcours
Parcours en profondeur d’abord à main gauche (resp. 
droite): 

on visite le sous-arbre gauche (resp. droit) intégralement avant de visiter 
le sous-arbre droit (resp. gauche)

→ Trois ordres de traitement : préfixe, postfixe, infixe

Parcours en largeur d’abord (main gauche ou droite)
On visite tous les nœuds d’un niveau avant de passer au niveau suivant 
(de gauche à droite ou de droite à gauche)



 DEV - CM6 - Erwan Kerrien24

PARCOURS EN PROFONDEUR D’ABORD (MAIN 
GAUCHE)

Racine



 DEV - CM6 - Erwan Kerrien25

PARCOURS EN PROFONDEUR D’ABORD (MAIN 
GAUCHE)

a

b

c

d

f

g

h

j

l

n

o

Algorithme récursif : 
Procédure ParcoursProf(A:ABin)

Début
Si non estVide(A) alors

ParcoursProf(SAG(Racine(A)))
ParcoursProf(SAD(Racine(A)))

FinSi
Fin

Remarque : 
où placer le traitement des nœuds ?
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ParcoursProfPref(f)ParcoursProfPref(n)

PARCOURS EN PROFONDEUR D’ABORD (MAIN 
GAUCHE) : ORDRE PRÉFIXE

a

b

c

d

f

g

h

j

l

n

o

Algorithme : Ordre préfixe
Procédure ParcoursProfPref(A:Abin)

Début
Si non estVide(A) alors

TRAITEMENT(Racine(A))
ParcoursProfPref(SAG(Racine(A)))
ParcoursProfPref(SAD(Racine(A)))

FinSi
Fin

Nœuds traités

Pile d’appel

Note : k est l’arbre ayant le 
nœud contenant k pour racine

ParcoursProfPref(h)

ParcoursProfPref(d)

ParcoursProfPref(b)

ParcoursProfPref(a)

ParcoursProfPref(Ø)

h d b a

ParcoursProfPref(c)

c f

ParcoursProfPref(Ø)ParcoursProfPref(g)

g

ParcoursProfPref(l)

l j n

ParcoursProfPref(j)

ParcoursProfPref(o)

o
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PARCOURS EN PROFONDEUR D’ABORD (MAIN 
GAUCHE) : ORDRE POSTFIXE

a

b

c

d

f

g

h

j

l

n

o

Algorithme : Ordre postfixe
Procédure ParcoursProfPost(A:ABin)

Début
Si non estVide(A) alors

ParcoursProfPost(SAG(Racine(A)))
ParcoursProfPost(SAD(Racine(A)))
TRAITEMENT(Racine(A))

FinSi
Fin

Nœuds traités

a c b g f d j o n l h
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PARCOURS EN PROFONDEUR D’ABORD (MAIN 
GAUCHE) : ORDRE INFIXE

a

b

c

d

f

g

h

j

l

n

o

Algorithme : Ordre infixe
Procédure ParcoursProfInf(A:ABin)

Début
Si non estVide(A) alors

ParcoursProfInf(SAG(Racine(A)))
TRAITEMENT(Racine(A))
ParcoursProfInf(SAD(Racine(A)))

FinSi
Fin

Nœuds traités

a b c d f g h j l n o

Ordre lexicographique !
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PARCOURS EN LARGEUR D’ABORD

a

b

c

d

f

g

h

j

l

n

o

Algorithme : 
Procédure ParcoursLarg(A:ABin)

Variable : F:File, tA:ABin 
Début

F ← file_vide
F ← Ajoute(F,A)
Tant que non estVide(F) faire

tA ← Premier(F)
F ← Retirer(F)
Si non estVide(tA) alors

TRAITEMENT(Racine(tA))
F ← Ajoute(F,SAG(Racine(tA)))
F ← Ajoute(F,SAD(Racine(tA)))

Fin Si
Fin Tant que

Fin

Nœuds traités

h d l b f j n a c g o

Remplacer la pile d’appel par une 
file de nœuds
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ARBRES BINAIRES DE RECHERCHE (ABR)

Ordre local à chaque nœud :
Contenu(Racine(SAG(N)) < Contenu(N) < Contenu(Racine(SAD(N))

Parcours infixe
Ordre lexicographique

Longueur chemin max = hauteur (h = 4)

Nombre de nœuds maximaux (arbre complet) : 15 = 24 – 1 → 2h-1

Recherche : pire cas = visite de h nœuds 
→ complexité en O(log(taille(A))) si arbre complet (ou parfait)

→ complexité en O(taille(A)) si arbre filiforme

a

b

c

d

f

g

h

j

l

n

o
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Tableau trié : [3 4 7 9 13 15 18]

LIENS AVEC LA DICHOTOMIE

9

4 15

13 183 7

Recherche en trois visites maximum (7 valeurs) : 3 ≈ log(7)
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PROPRIÉTÉS D’UN ABR

Si ABR non vide
● Arbre valué
● Les SAG et SAD sont des ABR
● Les valeurs stockées dans le SAG sont strictement inférieures 

au contenu de la racine
● Les valeurs stockées dans le SAD sont strictement 

supérieures au contenu de la racine

Théorème
Un arbre binaire valué est un ABR ssi son parcours infixe 
produit des nœuds dont les valeurs sont strictement 
croissantes
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OPÉRATIONS SUR LES ABR : RECHERCHE

Recherche d’un élément
estDans : Elément x ABR → Booléen

Fonction estDans(E:Elément, A:ABR):Booléen
Début

Si estVide(A) alors
Renvoyer Faux

Sinon Si E < Contenu(Racine(A)) alors
Renvoyer(estDans(E,SAG(Racine(A)))

Sinon Si E > Contenu(Racine(A)) alors
Renvoyer(estDans(E,SAD(Racine(A)))

Fin Si
Renvoyer Vrai

Fin

Complexité : pire cas, on atteint la feuille la plus basse → hauteur de l’arbre
O(taille) si ABR filiforme, O(log(taille)) si parfait
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OPÉRATIONS SUR LES ABR : INSERTION

Insertion d’un élément : insertion dans une feuille
ajoute : Élément x ABR → ABR

Fonction ajoute(E:Elément, A:ABR):ABR
Début

Si estVide(A) alors
A ← Créer(E,Ø,Ø)

Sinon Si E < Contenu(Racine(A)) alors
SAG(Racine(A)) ← ajoute(E,SAG(Racine(A))

Sinon Si E > Contenu(Racine(A)) alors
SAD(Racine(A)) ← ajoute(E,SAD(Racine(A))

Fin Si
Renvoyer A

Fin

Complexité : pire cas, on ajoute comme enfant de la feuille la plus basse → hauteur de l’arbre
O(taille) si ABR filiforme, O(log(taille)) si parfait

2

1 6

4 8

53

Ex : ajoute(3,A)
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OPÉRATIONS SUR LES ABR : SUPPRESSION

Suppression d’un élément : 3 cas
1) L’élément est dans une feuille (ex : 3)

→ on détruit cette feuille 

2

1 6

4 8

53

Fonction supprimeFeuille(E:Élément, A:ABR):ABR
Début

Si non estVide(A) alors
Si E < Contenu(Racine(A)) alors

SAG (Racine(A)) ← supprimeFeuille(E,SAG(Racine(A))
Sinon Si E > Contenu(Racine(A)) alors

SAD(Racine(A)) ← supprimeFeuille(E,SAD(Racine(A))
Sinon

Désallouer(Racine(A))
A ← Ø 

Fin Si
Fin Si
{ Sinon, estVide(A) implique que l’élément n’est pas dans A 
  → On ne fait rien }
Renvoyer A

Fin
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OPÉRATIONS SUR LES ABR : SUPPRESSION

Suppression d’un élément : 3 cas
2) L’élément a un seul enfant (nœud externe, par ex : 4)

→ on remplace le nœud par son enfant 

2

1 6

4 8

5

Fonction supprimeExterne(E:Élément, A:ABR):ABR
Variable : tA:ABR
Début

Si non estVide(A) alors
Si E < Contenu(Racine(A)) alors

SAG (Racine(A)) ← supprimeExterne(E,SAG(Racine(A))
Sinon Si E > Contenu(Racine(A)) alors

SAD(Racine(A)) ← supprimeExterne(E,SAD(Racine(A))
Sinon 

tA ← Ø
Si non estVide(SAG(Racine(A))) alors

tA ← SAG(Racine(A))
Sinon

tA ← SAD(Racine(A))
Fin Si
Désallouer(Racine(A))
A ← tA

Fin Si
Fin Si
{ Sinon, estVide(A) implique que l’élément n’est pas dans A 
  → On ne fait rien }
Renvoyer A

Fin

{ remplace 
Désallouer(Racine(A)
A ←Ø 

} 
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Fonction supprime(E:Élément, A:ABR) :ABR
Variable : tA:ABR, tE:Elément
Début

Si non estVide(A) alors
Si E < Contenu(Racine(A)) alors

SAG (Racine(A)) ← supprime(E,SAG(Racine(A))
Sinon Si E > Contenu(Racine(A)) alors

SAD(Racine(A)) ← supprime(E,SAD(Racine(A))
Sinon 

Si non estVide(SAG(Racine(A))) et non estVide(SAD(Racine(A))) alors
tE ← ContenuMin(SAD(Racine(A)))
Contenu(Racine(A)) ← tE
SAD(Racine(A)) ← supprime(tE,SAD(Racine(A)))

Sinon 
tA ← Ø
Si non estVide(SAG(Racine(A))) alors

tA ← SAG(Racine(A))
Sinon

tA ← SAD(Racine(A))
Fin Si
Désallouer(Racine(A))
A ← tA

Fin Si
Fin Si

Fin Si
{ Sinon, estVide(A) implique que l’élément n’est pas dans A 
  → On ne fait rien }
Renvoyer A

Fin

OPÉRATIONS SUR LES ABR : SUPPRESSION
Suppression d’un élément : 3 cas
3) L’élément a deux enfants (nœud plein, ex : 2)

→ on remplace le nœud par le plus petit 
élément de SAD 

2

1 6

8

5
ContenuMin 

(feuille la plus 
à gauche 

dans SAD)

5
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ÉQUILIBRE D’UN ARBRE

Ex : création par insertions successives de 
[1,2,3,4,5]

1

2

3

4

5

Équivalent à une liste chaînée, donc recherche en O(taille) (taille=hauteur)
→ déséquilibre des SAG et SAD
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ÉQUILIBRE D’UN ARBRE

Définition : Équilibre d’un arbre A 
(H-équilibre)

0 si pour un arbre vide → E(Ø)=0

Différence des hauteurs des sous-arbres G et D 
→ E(A)=H(SAG(Racine(A)))-H(SAD(Racine(A)))

Définition : Arbre équilibré

Un arbre binaire est équilibré si l’équilibre de 
tous ses sous-arbres est -1, 0, ou 1

3

2

1 4 6

7

5

0

00

1

-1

-1

-1

Équilibré

D

C F

GEA

B 0

0 0-1

02

1

Déséquilibré
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ROTATIONS

Droite

Gauche-Droite

Gauche

Droite-Gauche

D

B E

CA

B

A D

EC

B

A D

EC

D

B E

CA

FA

D

EC

B

G

B

A D

EC

F

G

D

B F

GECA

D

B F

GECA
1

2
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ROTATIONS

Proposition

Après une insertion ou suppression 2 rotations suffisent au 
maximum pour ré-équilibrer un arbre.

Ces opérations se font en temps constant (O(1))
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BILAN SUR LES ARBRES BINAIRES

Tout arbre peut se représenter par un arbre 
binaire (admis)

Arbre binaire de recherche

Arbre valué

ContenuMax(SAG) < Contenu < ContenuMin(SAD)

Accès, insertion, suppression, recherche :O(log(taille))
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TABLES DE HACHAGE

Structure de données : mélange tableau et liste 
chaînée (ou arbre si ordre)

Fonction de hachage : h : Élément → Entier

Injective (unicité de l’entier retourné)

Non nécessairement bijective (plusieurs éléments peuvent correspondre 
au même entier)

Principe

T : tableau de listes chaînées

E:Elément ; i ← h(E) ;  ajouter E à la liste chaînée T[i]
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EXEMPLE TRIVIAL

E:Entier ; h(E)=chiffre des unités

Ajouter 45,-37,135,80,15,77,98

80 -37 9845

77135

15
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HACHAGE ET TABLEAUX ASSOCIATIFS

Fonctions de hachage
● Autre fonction triviale : h(mot)=(somme des codes ASCII)%20
● Critère : répartition équilibrée des éléments
● Il existe des fonctions très efficaces
● Implémentées dans Python en tant que set ou dict (temps 

d’édition/recherche quasi constant)

Tableaux associatifs
● « indice »=mot (clé)
● Table de hachage : hachage de la clé, stockage du couple 

clé/valeur
● Implémentation aussi possible en arbre binaire de recherche 

(ordre sur clé)
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