
 DEV - CM6 - Erwan Kerrien 1 / 45

STRUCTURES DE DONNÉES ET ALGORITHMES

FONDAMENTAUX

Initiation au développement (DEV)

 DEV - CM6 - Erwan Kerrien2

RAPPELS DES ÉPISODES PRÉCÉDENTS

Tableaux
● stockage contigu d’un ensemble d’éléments
● Accès en O(1)
● Insertion/suppression en O(n)

Listes chaînées
● Liens entre des éléments « éparpillés » en mémoire
● Accès en O(n)
● Insertion/suppression en O(1)

Dans les deux cas
● Recherche en O(n) (O(log(n)) si tableau trié)

 DEV - CM6 - Erwan Kerrien3

DEUX NOUVELLES STRUCTURES DE
DONNÉES

Arbres binaires (de recherche!)

Extension de la liste chaînée, version simple de graphes

Tables de hachage

Permet en particulier de créer des tableaux associatifs

Objectif : Temps de recherche réduit

 DEV - CM6 - Erwan Kerrien4

STRUCTURES ARBORESCENTES

 DEV - CM6 - Erwan Kerrien5

STRUCTURES ARBORESCENTES

Cf commande Unix tree

/

etc bin home lib var

hosts network kjcole jelkner rorellana

interfaces public_html public_html webappdev public_html

index.html

hosts

index.html

lesson2.txtlesson1.txt

css html unix vim

examples notes

 DEV - CM6 - Erwan Kerrien6

STRUCTURES ARBORESCENTES

 DEV - CM6 - Erwan Kerrien7

VOCABULAIRE

Nœud (node)
Cellule de base de l’arbre. Contient des données

Branche (branch)
Lien entre deux cellules. Dirigée du parent vers l’enfant

Enfant (child)
Nœud à l’extrémité finale d’une arête

Parent (parent)
Nœud à l’extrémité initiale d’une arête

Racine (root)
Nœud sans parent

Feuille (leaf)
Nœud sans enfant

/

etc bin home lib var

hosts network kjcole jelkner rorellana

interfaces public_html public_html webappdev public_html

index.html

hosts

index.html

lesson2.txtlesson1.txt

css html unix vim

examples notes

 DEV - CM6 - Erwan Kerrien8

VOCABULAIRE

Chemin (path)

Séquence de nœuds N1,N2,...Nk tels que Ni est parent de Ni+1

Parcours (traversal)

Algorithme qui passe en revue tous les nœuds d’un arbre

Ancêtre (ou ascendant) (ancestor)

Nœud : Na est un ancêtre de Nd s’il existe un chemin allant de Na vers Nd

Descendant (descendant)

Nœud : Nd est un descendant de Na si Na est un ancêtre de Nd

Arbre (tree)

A une racine et hormis la racine, tout nœud a un et un seul parent

Sous-arbre (subtree)

Arbre formé par tous les descendants d’un nœud

/

etc bin home lib var

hosts network kjcole jelkner rorellana

interfaces public_html public_html webappdev public_html

index.html

hosts

index.html

lesson2.txtlesson1.txt

css html unix vim

examples notes

home

jelkner

webappdev

unix

examples

 DEV - CM6 - Erwan Kerrien9

ATTENTION

Ceci n’est pas un arbre !!!

 DEV - CM6 - Erwan Kerrien10

ARBRE BINAIRE

B-Tree
Chaque nœud a au
plus deux enfants

Chaque enfant est soit
vide, soit un arbre binaire
Tous les sous-arbres sont
disjoints
Ex : tournoi

Tout arbre peut être
représenté par un
arbre binaire

Fils aîné – Frère droit
Non vu dans ce cours

 DEV - CM6 - Erwan Kerrien11

ARBRE BINAIRE

Arbre d’expression (expression tree)

(x-2*y) + 3*(y/z+x)
+

*

2 y

-

x

*

3

x

+

y z

/

 DEV - CM6 - Erwan Kerrien12

DÉFINITION RÉCURSIVE

+

-

x

*

3*

2 y x

+

y z

/Ø Ø

Ø

Ø Ø Ø Ø

Ø Ø

Ø Ø

Ø Ø Ø

Sous-arbre gauche Sous-arbre droit

Racine

 DEV - CM6 - Erwan Kerrien13

DÉFINITION RÉCURSIVE

Sous-arbre gauche Sous-arbre droit

Racine

 DEV - CM6 - Erwan Kerrien14

TYPE ABSTRAIT DE DONNÉES

Signature
Sorte :

ABin, Nœud

Utilise :
Élément (élément_vide), Booléen

Opérations :
arbre_binaire_vide (Ø) : → Abin

estVide : ABin → Booléen

créer : Élément x ABin x ABin → ABin

Racine : ABin → Nœud

Contenu : Nœud → Élément

SAG : Nœud → ABin

SAD : Nœud → ABin

estDans : Nœud x ABin → Booléen

Propriétés/axiomes
Racine(A) défini ssi non estVide(A)

Contenu(Racine(Créer(E,G,D))) = E

SAG(Racine(Créer(E,G,D))) = G

SAD(Racine(Créer(E,G,D))) = D

Créer(E,G,D) est valide ssi G et D sont disjoints :

estDans(N,G) implique non estDans(N,D)

 DEV - CM6 - Erwan Kerrien15

EXEMPLE DE CRÉATION

G1=Créer(2,Ø,Ø)
G2=Créer(y,Ø,Ø)
G3=Créer(*,G1,G2)
G4=Créer(x,Ø,Ø)
G5=Créer(-,G4,G3)

D1=Créer(y,Ø,Ø)
D2=Créer(z,Ø,Ø)
D3=Créer(/,D1,D2)
D4=Créer(x,Ø,Ø)
D5=Créer(+,D3,D4)
D6=Créer(3,Ø,Ø)
D7=Créer(*,D6,D5)

A=Créer(+,G5,D7)

+

-

x

*

3*

2 y x

+

y z

/

 DEV - CM6 - Erwan Kerrien16

ARBRES VALUÉS ET NON VALUÉS

Arbre valué
Un arbre A est valué si Contenu(N)≠élément_vide
pour tout N tel que estDans(N,A)=Vrai

En général, un arbre non valué est tel que seules ses
feuilles contiennent une valeur. Les autres nœuds
sont des nœuds d’orientation

Exemple d’arbre non valué : Qui est-ce ?

http://concours.castor-informatique.fr/?tab=home

 DEV - CM6 - Erwan Kerrien17

QUELQUES MESURES SUR LES ARBRES

Taille (ex : 13)
Nombre de nœuds
Définition récursive :

Taille(Ø) = 0
Taille(Créer(E,G,D)) = 1 + Taille(G) + Taille(D)

Niveau (ou hauteur, ou profondeur) d’un nœud
Longueur du chemin (nombre de nœuds) depuis la racine
Définition récursive

L(Racine(A)) = 1
L(N

e
) = 1+L(N

p
) si N

p
 est parent de N

e

Hauteur (ou profondeur) d’un arbre (Ex : 5)
Longueur du chemin maximal
Deux définitions possibles (et équivalentes)

H(Ø) = 0 ; H(Créer(E,G,D)) = 1+max{H(G),H(D)}
H(A) = max{L(N) ; avec N nœud de A, A≠Ø}

+

-

x

*

3*

2 y x

+

y z

/

Niveau 3

 DEV - CM6 - Erwan Kerrien18

NOEUDS EXTERNES ET INTERNES

N est un nœud externe ssi SAG(N)=Ø ou SAD(N)=Ø

N est un nœud interne ssi SAG(N)≠Ø et SAD(N)≠Ø

(autrement dit ssi N n’est pas externe)

d

a i

g t

q

m

 DEV - CM6 - Erwan Kerrien19

ARBRES BINAIRES PARTICULIERS

Arbre filiforme : tous ses nœuds sont externes

a

b

c

d

e

Liste chaînée...

 DEV - CM6 - Erwan Kerrien20

ARBRES BINAIRES PARTICULIERS

Arbre peigne (droit) : tous les fils gauches sont
des feuilles

b

d

f

h

i

a

c

e

g

 DEV - CM6 - Erwan Kerrien21

ARBRES BINAIRES PARTICULIERS

Arbre complet : tous ses nœuds externes ont
même profondeur

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

 DEV - CM6 - Erwan Kerrien22

ARBRES BINAIRES PARTICULIERS

Arbre parfait : tous les niveaux sont remplis,
sauf éventuellement le dernier

a

b

c

d

f

g

h

j

l

n

o

Complet

 DEV - CM6 - Erwan Kerrien23

PARCOURS D’UN ARBRE

Parcours : visite de tous les nœuds
En pratique, on applique un traitement à chaque nœud visité

Exemple : TRAITEMENT(N) = Afficher(Contenu(N))

Deux types de parcours
Parcours en profondeur d’abord à main gauche (resp.
droite):

on visite le sous-arbre gauche (resp. droit) intégralement avant de visiter
le sous-arbre droit (resp. gauche)

→ Trois ordres de traitement : préfixe, postfixe, infixe

Parcours en largeur d’abord (main gauche ou droite)
On visite tous les nœuds d’un niveau avant de passer au niveau suivant
(de gauche à droite ou de droite à gauche)

 DEV - CM6 - Erwan Kerrien24

PARCOURS EN PROFONDEUR D’ABORD (MAIN
GAUCHE)

Racine

 DEV - CM6 - Erwan Kerrien25

PARCOURS EN PROFONDEUR D’ABORD (MAIN
GAUCHE)

a

b

c

d

f

g

h

j

l

n

o

Algorithme récursif :
Procédure ParcoursProf(A:ABin)

Début
Si non estVide(A) alors

ParcoursProf(SAG(Racine(A)))
ParcoursProf(SAD(Racine(A)))

FinSi
Fin

Remarque :
où placer le traitement des nœuds ?

 DEV - CM6 - Erwan Kerrien26

ParcoursProfPref(f)ParcoursProfPref(n)

PARCOURS EN PROFONDEUR D’ABORD (MAIN
GAUCHE) : ORDRE PRÉFIXE

a

b

c

d

f

g

h

j

l

n

o

Algorithme : Ordre préfixe
Procédure ParcoursProfPref(A:Abin)

Début
Si non estVide(A) alors

TRAITEMENT(Racine(A))
ParcoursProfPref(SAG(Racine(A)))
ParcoursProfPref(SAD(Racine(A)))

FinSi
Fin

Nœuds traités

Pile d’appel

Note : k est l’arbre ayant le
nœud contenant k pour racine

ParcoursProfPref(h)

ParcoursProfPref(d)

ParcoursProfPref(b)

ParcoursProfPref(a)

ParcoursProfPref(Ø)

h d b a

ParcoursProfPref(c)

c f

ParcoursProfPref(Ø)ParcoursProfPref(g)

g

ParcoursProfPref(l)

l j n

ParcoursProfPref(j)

ParcoursProfPref(o)

o

 DEV - CM6 - Erwan Kerrien27

PARCOURS EN PROFONDEUR D’ABORD (MAIN
GAUCHE) : ORDRE POSTFIXE

a

b

c

d

f

g

h

j

l

n

o

Algorithme : Ordre postfixe
Procédure ParcoursProfPost(A:ABin)

Début
Si non estVide(A) alors

ParcoursProfPost(SAG(Racine(A)))
ParcoursProfPost(SAD(Racine(A)))
TRAITEMENT(Racine(A))

FinSi
Fin

Nœuds traités

a c b g f d j o n l h

 DEV - CM6 - Erwan Kerrien28

PARCOURS EN PROFONDEUR D’ABORD (MAIN
GAUCHE) : ORDRE INFIXE

a

b

c

d

f

g

h

j

l

n

o

Algorithme : Ordre infixe
Procédure ParcoursProfInf(A:ABin)

Début
Si non estVide(A) alors

ParcoursProfInf(SAG(Racine(A)))
TRAITEMENT(Racine(A))
ParcoursProfInf(SAD(Racine(A)))

FinSi
Fin

Nœuds traités

a b c d f g h j l n o

Ordre lexicographique !

 DEV - CM6 - Erwan Kerrien29

PARCOURS EN LARGEUR D’ABORD

a

b

c

d

f

g

h

j

l

n

o

Algorithme :
Procédure ParcoursLarg(A:ABin)

Variable : F:File, tA:ABin
Début

F ← file_vide
F ← Ajoute(F,A)
Tant que non estVide(F) faire

tA ← Premier(F)
F ← Retirer(F)
Si non estVide(tA) alors

TRAITEMENT(Racine(tA))
F ← Ajoute(F,SAG(Racine(tA)))
F ← Ajoute(F,SAD(Racine(tA)))

Fin Si
Fin Tant que

Fin

Nœuds traités

h d l b f j n a c g o

Remplacer la pile d’appel par une
file de nœuds

 DEV - CM6 - Erwan Kerrien30

ARBRES BINAIRES DE RECHERCHE (ABR)

Ordre local à chaque nœud :
Contenu(Racine(SAG(N)) < Contenu(N) < Contenu(Racine(SAD(N))

Parcours infixe
Ordre lexicographique

Longueur chemin max = hauteur (h = 4)

Nombre de nœuds maximaux (arbre complet) : 15 = 24 – 1 → 2h-1

Recherche : pire cas = visite de h nœuds
→ complexité en O(log(taille(A))) si arbre complet (ou parfait)

→ complexité en O(taille(A)) si arbre filiforme

a

b

c

d

f

g

h

j

l

n

o

 DEV - CM6 - Erwan Kerrien31

Tableau trié : [3 4 7 9 13 15 18]

LIENS AVEC LA DICHOTOMIE

9

4 15

13 183 7

Recherche en trois visites maximum (7 valeurs) : 3 ≈ log(7)

 DEV - CM6 - Erwan Kerrien32

PROPRIÉTÉS D’UN ABR

Si ABR non vide
● Arbre valué
● Les SAG et SAD sont des ABR
● Les valeurs stockées dans le SAG sont strictement inférieures

au contenu de la racine
● Les valeurs stockées dans le SAD sont strictement

supérieures au contenu de la racine

Théorème
Un arbre binaire valué est un ABR ssi son parcours infixe
produit des nœuds dont les valeurs sont strictement
croissantes

 DEV - CM6 - Erwan Kerrien33

OPÉRATIONS SUR LES ABR : RECHERCHE

Recherche d’un élément
estDans : Elément x ABR → Booléen

Fonction estDans(E:Elément, A:ABR):Booléen
Début

Si estVide(A) alors
Renvoyer Faux

Sinon Si E < Contenu(Racine(A)) alors
Renvoyer(estDans(E,SAG(Racine(A)))

Sinon Si E > Contenu(Racine(A)) alors
Renvoyer(estDans(E,SAD(Racine(A)))

Fin Si
Renvoyer Vrai

Fin

Complexité : pire cas, on atteint la feuille la plus basse → hauteur de l’arbre
O(taille) si ABR filiforme, O(log(taille)) si parfait

 DEV - CM6 - Erwan Kerrien34

OPÉRATIONS SUR LES ABR : INSERTION

Insertion d’un élément : insertion dans une feuille
ajoute : Élément x ABR → ABR

Fonction ajoute(E:Elément, A:ABR):ABR
Début

Si estVide(A) alors
A ← Créer(E,Ø,Ø)

Sinon Si E < Contenu(Racine(A)) alors
SAG(Racine(A)) ← ajoute(E,SAG(Racine(A))

Sinon Si E > Contenu(Racine(A)) alors
SAD(Racine(A)) ← ajoute(E,SAD(Racine(A))

Fin Si
Renvoyer A

Fin

Complexité : pire cas, on ajoute comme enfant de la feuille la plus basse → hauteur de l’arbre
O(taille) si ABR filiforme, O(log(taille)) si parfait

2

1 6

4 8

53

Ex : ajoute(3,A)

 DEV - CM6 - Erwan Kerrien35

OPÉRATIONS SUR LES ABR : SUPPRESSION

Suppression d’un élément : 3 cas
1) L’élément est dans une feuille (ex : 3)

→ on détruit cette feuille

2

1 6

4 8

53

Fonction supprimeFeuille(E:Élément, A:ABR):ABR
Début

Si non estVide(A) alors
Si E < Contenu(Racine(A)) alors

SAG (Racine(A)) ← supprimeFeuille(E,SAG(Racine(A))
Sinon Si E > Contenu(Racine(A)) alors

SAD(Racine(A)) ← supprimeFeuille(E,SAD(Racine(A))
Sinon

Désallouer(Racine(A))
A ← Ø

Fin Si
Fin Si
{ Sinon, estVide(A) implique que l’élément n’est pas dans A
 → On ne fait rien }
Renvoyer A

Fin

 DEV - CM6 - Erwan Kerrien36

OPÉRATIONS SUR LES ABR : SUPPRESSION

Suppression d’un élément : 3 cas
2) L’élément a un seul enfant (nœud externe, par ex : 4)

→ on remplace le nœud par son enfant

2

1 6

4 8

5

Fonction supprimeExterne(E:Élément, A:ABR):ABR
Variable : tA:ABR
Début

Si non estVide(A) alors
Si E < Contenu(Racine(A)) alors

SAG (Racine(A)) ← supprimeExterne(E,SAG(Racine(A))
Sinon Si E > Contenu(Racine(A)) alors

SAD(Racine(A)) ← supprimeExterne(E,SAD(Racine(A))
Sinon

tA ← Ø
Si non estVide(SAG(Racine(A))) alors

tA ← SAG(Racine(A))
Sinon

tA ← SAD(Racine(A))
Fin Si
Désallouer(Racine(A))
A ← tA

Fin Si
Fin Si
{ Sinon, estVide(A) implique que l’élément n’est pas dans A
 → On ne fait rien }
Renvoyer A

Fin

{ remplace
Désallouer(Racine(A)
A ←Ø

}

 DEV - CM6 - Erwan Kerrien37

Fonction supprime(E:Élément, A:ABR) :ABR
Variable : tA:ABR, tE:Elément
Début

Si non estVide(A) alors
Si E < Contenu(Racine(A)) alors

SAG (Racine(A)) ← supprime(E,SAG(Racine(A))
Sinon Si E > Contenu(Racine(A)) alors

SAD(Racine(A)) ← supprime(E,SAD(Racine(A))
Sinon

Si non estVide(SAG(Racine(A))) et non estVide(SAD(Racine(A))) alors
tE ← ContenuMin(SAD(Racine(A)))
Contenu(Racine(A)) ← tE
SAD(Racine(A)) ← supprime(tE,SAD(Racine(A)))

Sinon
tA ← Ø
Si non estVide(SAG(Racine(A))) alors

tA ← SAG(Racine(A))
Sinon

tA ← SAD(Racine(A))
Fin Si
Désallouer(Racine(A))
A ← tA

Fin Si
Fin Si

Fin Si
{ Sinon, estVide(A) implique que l’élément n’est pas dans A
 → On ne fait rien }
Renvoyer A

Fin

OPÉRATIONS SUR LES ABR : SUPPRESSION
Suppression d’un élément : 3 cas
3) L’élément a deux enfants (nœud plein, ex : 2)

→ on remplace le nœud par le plus petit
élément de SAD

2

1 6

8

5
ContenuMin

(feuille la plus
à gauche

dans SAD)

5

 DEV - CM6 - Erwan Kerrien38

ÉQUILIBRE D’UN ARBRE

Ex : création par insertions successives de
[1,2,3,4,5]

1

2

3

4

5

Équivalent à une liste chaînée, donc recherche en O(taille) (taille=hauteur)
→ déséquilibre des SAG et SAD

 DEV - CM6 - Erwan Kerrien39

ÉQUILIBRE D’UN ARBRE

Définition : Équilibre d’un arbre A
(H-équilibre)

0 si pour un arbre vide → E(Ø)=0

Différence des hauteurs des sous-arbres G et D
→ E(A)=H(SAG(Racine(A)))-H(SAD(Racine(A)))

Définition : Arbre équilibré

Un arbre binaire est équilibré si l’équilibre de
tous ses sous-arbres est -1, 0, ou 1

3

2

1 4 6

7

5

0

00

1

-1

-1

-1

Équilibré

D

C F

GEA

B 0

0 0-1

02

1

Déséquilibré

 DEV - CM6 - Erwan Kerrien40

ROTATIONS

Droite

Gauche-Droite

Gauche

Droite-Gauche

D

B E

CA

B

A D

EC

B

A D

EC

D

B E

CA

FA

D

EC

B

G

B

A D

EC

F

G

D

B F

GECA

D

B F

GECA
1

2

 DEV - CM6 - Erwan Kerrien41

ROTATIONS

Proposition

Après une insertion ou suppression 2 rotations suffisent au
maximum pour ré-équilibrer un arbre.

Ces opérations se font en temps constant (O(1))

 DEV - CM6 - Erwan Kerrien42

BILAN SUR LES ARBRES BINAIRES

Tout arbre peut se représenter par un arbre
binaire (admis)

Arbre binaire de recherche

Arbre valué

ContenuMax(SAG) < Contenu < ContenuMin(SAD)

Accès, insertion, suppression, recherche :O(log(taille))

 DEV - CM6 - Erwan Kerrien43

TABLES DE HACHAGE

Structure de données : mélange tableau et liste
chaînée (ou arbre si ordre)

Fonction de hachage : h : Élément → Entier

Injective (unicité de l’entier retourné)

Non nécessairement bijective (plusieurs éléments peuvent correspondre
au même entier)

Principe

T : tableau de listes chaînées

E:Elément ; i ← h(E) ; ajouter E à la liste chaînée T[i]

 DEV - CM6 - Erwan Kerrien44

EXEMPLE TRIVIAL

E:Entier ; h(E)=chiffre des unités

Ajouter 45,-37,135,80,15,77,98

80 -37 9845

77135

15

 DEV - CM6 - Erwan Kerrien45

HACHAGE ET TABLEAUX ASSOCIATIFS

Fonctions de hachage
● Autre fonction triviale : h(mot)=(somme des codes ASCII)%20
● Critère : répartition équilibrée des éléments
● Il existe des fonctions très efficaces
● Implémentées dans Python en tant que set ou dict (temps

d’édition/recherche quasi constant)

Tableaux associatifs
● « indice »=mot (clé)
● Table de hachage : hachage de la clé, stockage du couple

clé/valeur
● Implémentation aussi possible en arbre binaire de recherche

(ordre sur clé)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45

