Dan Mary Ben Amy Zach Ann

STRUCTURES DE DONNEES ET ALGORITHMES
FONDAMENTAUX

Initiation au développement (DEV)

DEV - CM6 - Erwan Kerrien 1/45

RAPPELS DES EPISODES PRECEDENTS

Tableaux
* stockage contigu d'un ensemble d'éléements
* Acces en O(1)
* Insertion/suppression en O(n)
Listes chainées
* Liens entre des éléments « éparpillés » en mémoire
* Acces en O(n)
* Insertion/suppression en O(1)
Dans les deux cas
* Recherche en O(n) (O(log(n)) si tableau trie)

DEUX NOUVELLES STRUCTURES DE
DONNEES

Arbres binaires (de recherche!)
Extension de la liste chalnée, version simple de graphes

Tables de hachage
Permet en particulier de créer des tableaux associatifs

Objectif : Temps de recherche réeduit

V)
LLl
-
<
LLl
Q
)
LLl
14
®,
1
14
<
)
LLl
a4
=)
-
O
-
14
-
)

STRUCTURES ARBORESCENTES

‘index.htm| index.html

Cf commande Unix tree | Iessonl.txt] lesson2.txt

STRUCTURES ARBORESCENTES

En capitale, les Francais

Nadal
MATHIEU
Qualifié
Gabashvili
Almagro
Johnson
Lajovic
Zopp
Dimitrov
Qualifié
MICHON
ROBERT
Seppi
Monaco
Qualifié
Sijsling
Wawrinka
MANNARINO
Young
Qualifié
MONFILS
OLIVETTI
Becker
Qualifié
GASQUET
Hewitt
Ebden
LLODRA

1€r
tour

Kohlschreiber

Stakhovsky
Matosevic
Golubev

1€r
tour

Ginepri
Thiem
Mayer
Pospisil
Sock
Qualifié
Delbonis
Hass
Karlovic¢
Brands
Klahn
Anderson
Giraldo
POUILLE
Qualifié
Ferrer

Garcia-Lopez
Lu
Sela
Lopez
Hanescu
Struff
Bellucci
Fognigni
Tomic
Belocq
Cuevas
Verdasco
Riba
Istomin
Brown
Murray

2€
tour

2€
tour

3e
tour

3e
tour

Roland-Garros: tableau simple messieurs

1/8 1/8
1/4 1/4
1/2
Finale
dimanche
9 juin
1/2
1/4 1/4
1/8 1/8

3e
tour

3e
tour

2€
tour

2€
tour

1€r
tour

Berdych
Devvarman
Falla
Qualifié
Robredo
Montanes
MAHUT
HERBERT
Youzhny
Stepanek
Qualifié
Kubot
Tursunov
Volandri
Qualifié
Lacko

Raonic
Rosol
Russell
Qualifié
Dolgopolov
Dodig
Haase
Klizan
TSONGA
Goffin
Nieminen
Estrella Burgos
Cilic
Kamke
CHARDY

Qualifié
Nedovyesov
PAIRE
Bautista Agut
Qualifié
DE SCHEPPER
Kukushkin
Isner
Carreno Busta
Arguello
BENNETEAU
Gulbis
Qualifié
Querre
Qualifié
Federer

Kyrgios
Vesely
Gonzalez
SIMON
Ramos
Granollers
Davydenko
Nishikori

ROGER-VASSELIN

Melzer
Przysiezny
Janowicz

Andujar

Qualifié

Gimeno-Traver

1er
tou

Djokovic

r
Source: FFT @

VOCABULAIRE

Noeud (node)| 1 B stbons” el
Cellule de base de I'arbre. Contient des données / _
Branche (branch) lindex.html) (Cess)htmi (Wim) (index.htmi)

Lien entre deux cellules. Dirigée du parent vers I'enfan

Enfant (child) 1
Nceud a I'extrémité finale d'une aréte

Parent (parent)
Nceud a I'extrémité initiale d'une aréte

Racine (root)
Noeud sans parent

Feuille (leaf)

Noeud sans enfant

I

e —

=

2 A — Y pu e
[lessonl.txt { lesson2.txt)
S i ~S—

VOCABULAIRE

jelkner

Chemin (path) webappdev
Séquence de nceuds N, ,N,,...N,_tels que N, est parent de N,
Parcours (traversal)
Algorithme qui passe en revue tous les nceuds d'un arbre

Ancétre (ou ascendant) (ancestor)
Neeud : N_ est un ancétre de N, s'il existe un chemin allant de N_ vers N,

examples

Descendant (descendant)

Noeud : N, est un descendant de N_si N_ est un ancétre de N [Iessonl.txt] [IessonZ.txt]
Arbre (tree)

A une racine et hormis la racine, tout nceud a un et un seul parent

Sous-arbre (subtree)
Arbre formé par tous les descendants d'un nceud

ATTENTION

1991

2001 to 2004
2005

2006 to 2007

2006

2009
2010

U
sion 5 to 6

1978

"

1979

Unix/32v

NS

Unix
(st versions
from

Bell Labs)

BSD NET/2

Mirix
1.x

Ceci n’est pas un arbre !

Roland-Garros: tableau simple messieurs
En capitale, les Francais

1€r 2€ 2€ 1€r
tour tour

3e 3e tour tour
Nadal Ginepri tour tour Berdych Qualifié

ARBRE BINAIRE

MATHIEU Thiem 1/8 1/8 Devvarman Nedovyesov
Qualifié Mayer Falla PAIRE
Gabashvili Pospisil 1/4 1/4 Qualifié Bautista Agut
Almagro Sock Robredo Qualifié
Johnson Qualifié Montanes DE SCHEPPER
- Lajovic Delbonis MAHUT Kukushkin
B Tree Zopp Hass 1/2 HERBERT Isner
Dimitrov Karlovi¢ Youzhn Carreno Busta
c h a q u e n e u d a a u Qualifié Brands Stepanek Arguello
p I u S d e u x e n fa nts MICHON Klahn Qualifié BENNETEAU
ROBERT Anderson Kubot Gulbis
: Seppi Giraldo Tursunov Qualifié
Ch d q ue) en fa nt e St S O | t) Monaco POUILLE Finale Volandri Querre
vide solit un arbre binaire Mz Qualifié dimanche Qualifié Qualifié
Sijsling Ferrer 9 juin Lacko Federer
Tous les sous-arbres sont - rEmEE T TR
d | SJ O N tS MA':::\:;'NO Sela RRuc;iZIII G\éiszilliz
. : Qualifié Lopez Qualifié SIMON
E X to urnol MONFILS Hanescu Dolgopolov Ramos
OLIVETTI Struff Dodig Granollers
Becker Bellucci Haase Davydenko
N Qualifié Fognigni Klizan Nishikori
To ut a rb re pe u t et re GASQUET Tomic 12 TSONGA g ROGER-VASSELIN
7 7 Hewitt Belocq Goffin Melzer
re B rese nte pa r u n Ebden Cuevas Nieminen Przysiezny
H H LLODRA Verdasco Estrella Burgos Janowicz
a r re bl n a I re Kohlschreiber Riba 1/4 1/4 Cilic Andujar
. A s \ . Stakhovsky Istomin Kamke Qualifié
Fl | S a N e - Fre re d ro |t Matosevic Brown 1/8 1/8 CHARDY Gimeno-Traver
Golubev Murray 3e 3e Sousa Djokovic
Non vu dans ce cours rer e tour tour ge per

tour tour tour tour
Source: FFT @

ARBRE BINAIRE

Arbre d’expression (expression tree)

(x2y) +

DEFINITION RECURSIVE

Sous-arbre gauche Sous-arbre droit

E DEV - CM6 - Erwan Kerrien

DEFINITION RECURSIVE

Racine

/‘\

Sous-arbre gauche Sous-arbre droit

TYPE ABSTRAIT DE DONNEES

Signature Propriétés/axiomes

Sorte Racine(A) défini ssi non estVide(A)
ABIn, Nceud Contenu(Racine(Créer(E,G,D))) = E

Utilise : SAG(Racine(Créer(E,G,D))) = G
Elément (élément_vide), Booléen SAD(Racine(Créer(E,G,D))) = D

Opérations :
arbre_binaire_vide (&) : — Abin
estVide : ABin — Booléen
créer : Elément x ABin x ABin — ABIn
Racine : ABin - Noeud
Contenu : Nceud — Elément
SAG : Nceud - ABIn
SAD : Nceud - ABIn
estDans : Noeud X ABin - Booléen

Créer(E,G,D) est valide ssi G et D sont disjoints :
estDans(N,G) impliqgue non estDans(N,D)

EXEMPLE DE CREATION

Gl=Créer(2,9,9) +
G2=Créer(y,9,9)
G3=Créer(*,G1,G2)
G4=Créer(x,9,0)
G5=Créer(-,G4,G3)

D1=Créer(y,d,9)
D2=Créer(z,9,9)
D3=Créer(/,D1,D2)
D4=Créer(x,9,9)
D5=Créer(+,D3,D4)
D6=Créer(3,9,9)
D7=Créer(*,D6,D5)

A=Créer(+,G5,D7)

ARBRES VALUES ET NON VALUES

Arbre valué

Un arbre A est valué si ContenugN zéléement_vide
pour tout N tel que estDans(N,A)=Vrai

En général, un arbre non valué est tel que seules ses
feuilles contiennent une valeur. Les autres nceuds
sont des noeuds d’orientation

Exemple d’arbre non valué : Qui est-ce ?
1SS ?

se trouve sur la.

DECOUVRE LE VICAGE
MYSTERIEUX

http://concours.castor-informatique.fr/?tab=home

QUELQUES MESURES SUR LES ARBRES

Taille (ex : 13) -

Niveau 3

Nombre de noceuds

S , : X * 3 +
Définition récursive []

Taille(@) = 0

Taille(Créer(E,G,D)) = 1 + Taille(G) + Taille(D) 2y / X

Niveau (ou hauteur, ou profondeur) d’'un nceud / \

Longueur du chemin (nombre de nceuds) depuis la racine y z

Définition recursive
L(Racine(A)) =1
L(N,) = 1+L(Np) Si N, est parent de N,
Hauteur (ou profondeur) d’un arbre (Ex : 5)
Longueur du chemin maximal
Deux définitions possibles (et équivalentes)

H(®) = 0 ; H(Créer(E,G,D)) = 1+max{H(G),H(D)}
H(A) = max{L(N) ; avec N nceud de A, AZ@}

NOEUDS EXTERNES ET INTERNES

N est un nceud externe ssi SAG(N)=@ ou SAD(N)=@
N est un nceud interne ssi SAG(N)zd et SAD(N)z@
(autrement dit ssi N n’est pas externe)

ARBRES BINAIRES PARTICULIERS

Arbre filiforme : tous ses noccuds sont externes

Liste chainée...

ARBRES BINAIRES PARTICULIERS

Arbre peigne (droit) : tous les fils gauches sont

des feuilles

a/b \d
c/ \f
e/ \h
g/ \i

ARBRES BINAIRES PARTICULIERS

Arbre complet : tous ses noceuds externes ont
méme profondeur

d/h\l
VA VN

j n
SN N N N
a C e g | m 0

ARBRES BINAIRES PARTICULIERS

Arbre parfait : tous les niveaux sont remplis,
sauf éventuellement le dernier

p

RN
\\b f

d/////////h\\\\\\\\\l

N
j n/

Compb;\\

a

C

0)

PARCOURS D’UN ARBRE

Parcours : visite de tous les nceuds
En pratique, on appligue un traitement a chaque noeud visité
Exemple : TRAITEMENT(N) = Afficher(Contenu(N))

Deux types de parcours

Parcours en profondeur d’abord o main gauche (resp.
droite):

on visite le sous-arbre gauche (resp. droit) intégralement avant de visiter
le sous-arbre droit (resp. gauche)

— Trois ordres de traitement : préfixe, postfixe, infixe
Parcours en largeur d’abord (main gauche ou droite)

On visite tous les nceuds d'un niveau avant de passer au niveau suivant
(de gauche a droite ou de droite a gauche)

PARCOURS EN PROFONDEUR D’ABORD (MAIN
GAUCHE)

Racine

’?‘\:’\‘
A A
N — . .)

PARCOURS EN PROFONDEUR D’ABORD (MAIN

GAUCHE)

/’Y
ZANN

> A
/
FAQ §>

Algorithme récursif :
Procédure ParcoursProf(A:ABin)
Début
Si non estVide(A) alors
ParcoursProf (SAG(Racine(A)))
ParcoursProf (SAD(Racine(A)))
FinSi
Fin

Remarque :
ou placer le traitement des nceuds ?

PARCOURS EN PROFONDEUR D’ABORD (MAIN

GAUCHE) : ORDRE PREFIXE

G Noeuds traités

\ hdbacfgljno

w
o € e

@D/ \GD @ @ Pile d’appel

Algorithme : Ordre préfixe

Procédure ParcoursProfPref(A:Abin) ParcoursProfPref(d)

Début ParcoursProfPref (§)
Si non estVide(A) alors ParcoursProfPref (§)
TRAITEMENT (Racine(A)) ParcoursProfPref (d)
ParcoursProfPref (SAG(Racine(A))) ParcoursProfPref (h)
ParcoursProfPref (SAD(Racine(A)))

FinSi Note : k est 'arbre ayant le
nceud contenant k pour racine

2o | I

PARCOURS EN PROFONDEUR D’ABORD (MAIN

GAUCHE) : ORDRE POSTFIXE

Noeuds traités

d/h\l acbgfdjonlh
NN

/ N\ \ \
a C g 0

Algorithme : Ordre postfixe
Procédure ParcoursProfPost(A:ABin)
Début
Si non estVide(A) alors
ParcoursProfPost (SAG(Racine(A)))
ParcoursProfPost (SAD(Racine(A)))
TRAITEMENT (Racine(A))
FinSi
Fin

PARCOURS EN PROFONDEUR D’ABORD (MAIN

GAUCHE) : ORDRE INFIXE

h Nceuds traités
//////// \\\\\\\\ abcdfghjlno
d | Ordre lexicographique !
b f] n

/ N\ \ \
a C g 0

Algorithme : Ordre infixe
Procédure ParcoursProfInf(A:ABin)
Début
Si non estVide(A) alors
ParcoursProfInf(SAG(Racine(A)))
TRAITEMENT (Racine(A))
ParcoursProfInf (SAD(Racine(A)))
FinSi
Fin

PARCOURS EN LARGEUR D’ABORD

h
Remplacer la pile d’appel par une ’/,/”//, \\\\\\\\\\
file de nceuds A

d |
Algorithme : / / \
Procédure ParcoursLarg(A:ABin) P

Variable : F:File, tA:ABin b » f » | » N
Début VAERN — \\\
F « file vide 2. <=5C » g » 0

F « Ajoute(F,A)
Tant que non estVide(F) faire
tA « Premier(F)
F « Retirer(F) s
Si non estVide(tA) alors Noeuds traites
F « Ajoute(F,SAG(Racine(tA)))
F « Ajoute(F,SAD(Racine(tA)))
Fin Si
Fin Tant que
Fin

ARBRES BINAIRES DE RECHERCHE (ABR)

b
Ordre local a chaque noeud :a/ \C N\ \

Contenu(Racine(SAG(N)) < Contenu(N) < Contenu(Racine(SAD(N))
Parcours infixe

Ordre lexicographique
Longueur chemin max = hauteur (h = 4)
Nombre de nceuds maximaux (arbre complet) : 15 =24-1 - 2"-1
Recherche : pire cas = visite de h nceuds

— complexité en O(log(taille(A))) si arbre complet (ou parfait)
— complexité en O(taille(A)) si arbre filiforme

LIENS AVEC LA DICHOTOMIE

Tableau trié : [34 79 13(15 18]

B
o s
/ \ 13/ \18

3 7

Recherche en trois visites maximum (7 valeurs) : 3 = log(7)

PROPRIETES D’UN ABR

Si ABR non vide
Arbre valué
Les SAG et SAD sont des ABR

Les valeurs Stockéesldans le SAG sont strictement inférieures
au contenu de la racine

Les valeurs stockées dans le SAD sont strictement
supérieures au contenu de la racine

Théoreme

Un arbre binaire valué est un ABR ssi son parcours infixe
prodult des nceuds dont les valeurs sont strictement
croissantes

OPERATIONS SUR LES ABR : RECHERCHE

Recherche d’un élément
estDans : Elément x ABR - Booléen

Fonction estDans(E:Elément, A:ABR):Booléen
Début
Si estVide(A) alors
Renvoyer Faux
Sinon Si E < Contenu(Racine(A)) alors
Renvoyer(estDans(E,SAG(Racine(A)))
Sinon Si E > Contenu(Racine(A)) alors
Renvoyer(estDans(E,SAD(Racine(A)))
Fin Si
Renvoyer Vrail
Fin

Complexité : pire cas, on atteint la feuille la plus basse — hauteur de l'arbre
O(taille) si ABR filiforme, O(log(taille)) si parfait

OPERATIONS SUR LES ABR : INSERTION

Insertion d’un élément : insertion dans une feuille EXx : ajoute(3,A)
ajoute : Elément x ABR - ABR 5
Fonction ajoute(E:Elément, A:ABR):ABR 1/// \\\6

Début
Si estVide(A) alors //\\
A « Créer(E,9,0) 4 8
Sinon Si E < Contenu(Racine(A)) alors 3//\5

SAG(Racine(A)) < ajoute(E,SAG(Racine(A))
Sinon Si E > Contenu(Racine(A)) alors
SAD(Racine(A)) « ajoute(E,SAD(Racine(A))
Fin Si1
Renvoyer A
Fin

Complexité : pire cas, on ajoute comme enfant de la feuille la plus basse - hauteur de l'arbre
O(taille) si ABR filiforme, O(log(taille)) si parfait

OPERATIONS SUR LES ABR : SUPPRESSION

Suppression d’un élément : 3 cas / 2\
1) L’élément est dans une feuille (ex : 3) 1 6
— on détruit cette feuille / \
Fonction supprimeFeuille(E:Elément, A:ABR):ABR
Début 4 8
Si non estVide(A) alors / N\
Si E < Contenu(Racine(A)) alors 3 o

SAG (Racine(A)) « supprimeFeuille(E,SAG(Racine(A))
Sinon Si E > Contenu(Racine(A)) alors

SAD (Racine(A)) « supprimeFeuille(E,SAD(Racine(A))
Sinon

Désallouer(Racine(A))
A0
Fin Si
Fin Si
{ Sinon, estVide(A) implique que 1’'élément n'’est pas dans A
-» On ne fait rien }

Renvoyer A
Fin

OPERATIONS SUR LES ABR : SUPPRESSION

Suppression d’un élément : 3 cas 2
2) L’élément a un seul enfant (hceud externe, par ex : 4) / \
— on remplace le nceud par son enfant 1 6

Fonction supprimeExterne(E:Elément, A:ABR):ABR // \\
Variable : tA:ABR
Début 4 8
Si non estVide(A) alors \\
Si E < Contenu(Racine(A)) alors
SAG (Racine(A)) « supprimeExterne(E,SAG(Racine(A)) o
Sinon Si E > Contenu(Racine(A)) alors
SAD (Racine(A)) « supprimeExterne(E,SAD(Racine(A))
Sinon
tA « 0
Si non estVide(SAG(Racine(A))) alors
tA « SAG(Racine(A)) { remplace
Sinon Désallouer(Racine(A)
tA < SAD(Racine(A)) A <0
Fin Si }
Désallouer(Racine(A))
A « tA
Fin S1
Fin Si
{ Sinon, estVide(A) implique que 1’'élément n’est pas dans A
-» 0On ne fait rien }
Renvoyer A

Fin

OPERATIONS SUR LES ABR : SUPPRESSION

Suppression d’un élément : 3 cas B
3) L’élément a deux enfants (nceud plein, ex : 2) / \
- on remplace le nceud par le plus petit
élément de SAD 1 6

Fonction supprime(E:Elément, A:ABR) :ABR \\
Variable : tA:ABR, tE:Elément
Début 8
Si non estVide(A) alors .
Si E < Contenu(Racine(A)) alors ContenuMin
SAG (Racine(A)) « supprime(E,SAG(Racine(A)) (feuille la plus
Sinon Si E > Contenu(Racine(A)) alors a gauche
SAD(Racine(A)) « supprime(E,SAD(Racine(A)) dans SAD)
Sinon

Si non estVide(SAG(Racine(A))) et non estVide(SAD(Racine(A))) alors
tE « ContenuMin(SAD(Racine(A)))
Contenu(Racine(A)) « tE
SAD(Racine(A)) « supprime(tE,SAD(Racine(A)))
Sinon
tA « 0
Si non estVide(SAG(Racine(A))) alors
tA « SAG(Racine(A))

Sinon
tA <« SAD(Racine(A))
Fin Si
Désallouer(Racine(A))
A« tA
Fin Si
Fin Si
Fin Si

{ Sinon, estVide(A) implique que 1’élément n’est pas dans A
- On ne fait rien }
Renvoyer A

Fin
I

EQUILIBRE D'UN ARBRE

Ex : création par insertions successives de
[1121314l5]

Equivalent & une liste chainée, donc recherche en O(taille) (taille=hauteur)
— déseéquilibre des SAG et SAD

EQUILIBRE D'UN ARBRE

Définition : Equilibre d’un arbre A
(H-équilibre)

O si pour un arbre vide = E(@)=0

Différence des hauteurs des sous-arbres G et D
— E(A)=H(SAG(Racine(A)))-H(SAD(Racine(A)))

Définition : Arbre équilibreé

Un arbre binaire est équilibré si I'équilibre de
tous ses sous-arbres est -1, 0, ou 1

_13
AN
1 2/ S -1
01 04/ \6 1
AN
7 0
Equilibré
1D
2(/ ko
-1A OE/ \GO
N
BO
Désequilibré

ROTATIONS

Droite Gauche
ﬁD B /B D
B/f\g —> A/ \D A —) B/ \;
/N /N /TN /N
A C C E C E A C

Droite-Gauche

B D
B
A F — SN N\
N A CE G
D G
VAN
C E

ROTATIONS

Proposition

Apres une insertion ou suppression 2 rotations suffisent au
maximum pour re-equilibrer un arbre.

Ces opérations se font en temps constant (O(1))

BILAN SUR LES ARBRES BINAIRES

Tout arbre peut se représenter par un arbre
binaire (admis)

Arbre binaire de recherche

Arbre valué
ContenuMax(SAG) < Contenu < ContenuMIn(SAD)
Acces, insertion, suppression, recherche :O(log(taille))

TABLES DE HACHAGE

Structure de données : mélange tableau et liste
chainée (ou arbre si ordre)
Fonction de hachage : h : Elément — Entier

Injective (unicité de I'entier retournée)

Non nécessairement bijective (plusieurs éléments peuvent correspondre
au méme entier)

Principe
T : tableau de listes chainées
E:Elément ;I « h(E); ajouter E a la liste chalnée TIi]

EXEMPLE TRIVIAL

E-Entier : h(E)=chiffre des unités
Ajouter 45,-37,135,80,15,77,98

v v v v

80 45 -37 || 98
v v
135 77
15

HACHAGE ET TABLEAUX ASSOCIATIFS

Fonctions de hachage
* Autre fonction triviale : h{mot)=(somme des codes ASCII)%20
* Critere : répartition équilibrée des éléments
* || existe des fonctions tres efficaces

°* Implémentées dans Python en tant que set ou dict (temps
d'édition/recherche quasi constant)

Tableaux associatifs
* « indice »=mot (clé)

* Table de hachage : hachage de la clé, stockage du couple
clé/valeur

* Implémentation aussi possible en arbre binaire de recherche
(ordre sur cle)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45

