
TD #9&10 – DEV
27 novembre 2023

Erwan Kerrien
Abdel Bourjij

Rappel : si vous avez des questions sur ce TD ou sur le cours, n’hésitez pas à m’envoyer un mail à Erwan.Kerrien@inria.fr
(je consulte plus rarement mon mail Erwan.Kerrien@univ-lorraine.fr).

1 Listes chaînées

L’objectif de cet exercice est de proposer une représentation via une liste chaînée des opérations vues en cours sur une
liste récursive. Par souci de concision, nous appellerons Liste la sorte pour la liste récursive. On rappelle la signature de
cette sorte :

Sorte : Liste
Utilise : Elément, booléen
Opérations :

liste_vide : -> Liste
EstVide : Liste -> booléen
Contenu : Liste -> Elément
Succ : Liste -> Liste
Créer : Elément x Liste -> Liste
Détruire : Liste -> Liste

Cette signature pose des questions pratiques concernant les fonctions Contenu et Succ : elle ne spécifie pas si les accès
sont en lecture simple (on veut juste récupérer les valeurs) ou en écriture (on veut changer les valeurs). Par exemple,
prenons une Liste dont l’Elément est un entier. Comment faire pour incrémenter la valeur stockée dans la cellule en tête
de liste ? Il faudrait employer une instruction comme Contenu(L)← E. Ceci est possible avec des langages comme C++
ou Python qui offrent des mécanismes pour ce faire. Ce n’est pas possible en C (un appel de fonction ne peut pas être
une L-value, c’est-à-dire se trouver à gauche d’une affectation). On va donc modifier la signature de notre liste pour la
rendre plus compatible avec un langage comme C.

Sorte : Liste
Utilise : Elément, booléen
Opérations :

liste_vide : -> Liste
EstVide : Liste -> booléen
ContenuLire : Liste -> Elément
ContenuModif: Liste x Elément ->
SuccLire : Liste -> Liste
SuccModif : Liste x Liste ->
Créer : Elément x Liste -> Liste
Détruire : Liste -> Liste

Les opérations ContenuLire et SuccLire sont les mêmes que dans la version précédente : elle permettent d’accéder en
lecture respectivement au contenu et au successeurs de la cellule en tête de liste. Les fonction ContenuModif et SuccModif
en sont les versions en écriture : la valeur à stocker est passée en deuxième argument (le premier reste toujours notre
liste). Ces opérations ne renvoient rien.
Plus précisement, voici les spécifications pour ces opérations :

— liste_vide doit renvoyer une liste vide. Pour fixer les idées, en C, ce sera un pointeur NULL (adresse mémoire =
0x00000000)

— EstVide renvoie Vrai si la Liste passée en argument est liste_vide, et Faux sinon.
— ContenuLire va renvoyer l’Elément contenu dans la première cellule de la liste. element_invalide sera renvoyé si la

liste est vide.

1

mailto:Erwan.Kerrien@inria.fr
mailto:Erwan.Kerrien@univ-lorraine.fr


— ContenuModif va écrire un Elément dans la première cellule de la liste. Il ne se passe rien si la liste est vide ou si
on essaie de stocker element_invalide.

— SuccLire va renvoyer la Liste suivante, c’est-à-dire celle qui commence avec la deuxième cellule de la liste. Cette
fonction renverra liste_vide si la liste en entrée est vide.

— SuccModif va stocker la Liste passée en deuxième argument comme successeur de la première cellule de la liste.
Cette fonction ne fait rien si la liste en premier argument est vide. En revanche, on peut bien stocker une liste vide
et donc la passer en deuxième argument.

— Créer va en effet créer une cellule, ce qui implique, ainsi que nous l’avons vu en cours, d’allouer la place mémoire
nécessaire pour une cellule, pour ensuite l’initialiser (avec le bon élément et liste_vide en successeur). La cellule
(ou un pointeur vers cette cellule si on utilise le langage C) sera renvoyée. Je vous rappelle le cours : une cellule est
une liste à un seul élément.

— Détruire va faire l’opération inverse sur la mémoire, c’est-à-dire qu’elle va libérer la mémoire allouée pour la
première cellule de la liste et renvoyer le successeur de cette cellule, c’est-à-dire le reste de la liste.

Comme la sorte Liste utilise la sorte Elément, vous avez besoin de savoir quelles sont les opérations disponibles sur cette
sorte. Voici comment cette sorte est définie.

Sorte : Elément
Utilise : booléen
Opérations :
élément_invalide : -> Elément
ElémentEstValide : Elément -> booléen
ElémentAfficher : Elément ->
ElémentComparer : Elément x Elément -> Booléen

Les spécifications des opérations sur un Elément sont les suivantes :
— element_invalide doit renvoyer quelque chose de type Elément qui soit bien identifié comme une valeur interdite. Par

exemple, ce pourra être -1 si Elément est un entier positif, NaN (Not A Number) si Elément est un réel. Si Elément
est un type composite (avec plusieurs champs rassemblés), on pourra aussi ajouter un champ dit "drapeau" (flag)
qui sera un booléen indiquant si l’Elément est valide ou pas.

— ElémentEstValide renverra Faux si l’Elément est element_invalide, et Vrai sinon.
— ElémentAfficher affichera l’Elément passé en argument. L’affichage pourra par exemple gérer de manière élégante

le cas où Elément n’est pas valide.
— ElémentComparer compare deux Elément et renvoie Vrai s’ils sont identiques, et Faux sinon.

1.1 Questions

1. Commencez par prendre le temps de bien lire les spécifications de sorte ci-dessus. L’objectif du TD est d’implémenter
un certain nombre de fonctions qui opèrent sur une Liste. Vous n’aurez pas le droit d’utiliser autre chose que les
opérations décrites, en plus des structures algorithmiques et types de base que nous avons déjà l’habitude de
manipuler.

2. Écrire la fonction Longueur qui prend en entrée une Liste L et en renvoie la longueur (nombre d’éléments, identique
à la fonction Taille du cours).

3. Écrire la fonction Afficher qui affiche les éléments d’une Liste L

4. Écrire la fonction Rechercher qui teste si un Elément E est dans une Liste L est renvoie la Liste dont il est le
premier élément si c’est le cas, ou liste_vide sinon.
Note : cela donne une implantation directe de la fonction EstDans vue en cours puisque cette fonction sera équi-
valente à Renvoyer non(EstVide(Rechercher(L,E)))

5. Écrire la fonction Dernier qui prend une Liste L, et qui renvoie la liste formée de la dernière cellule de L.

6. Écrire la fonction Supprimer qui prend une Liste L, ainsi qu’un entier r et supprime l’élément de rang r dans L.
La fonction renvoie la liste mise à jour. Attention à bien Détruire la cellule correspondant à l’élément supprimé.
Si le rang r est supérieur à la longueur de la Liste, rien n’est fait.

2



Que faudrait-il faire si la fonction Détruire ne renvoyait pas le reste de la liste, et était simplement une procédure ?

7. Écrire la fonction Concaténer qui prend entrée deux Liste L1 et L2 et les concatène, autrement dit, elle ajoute L2
à la suite de L1. La fonction renverra L1 ainsi mise à jour. Attention au cas où L1 est la liste_vide : dans ce cas,
la fonction renverra L2

8. Écrire la fonction Ajouter qui prend entrée une Liste L, un Elément E, et un entier r, et qui ajoute E à L de
telle manière qu’il a le rang r dans la liste mise à jour. La fonction renvoie cette liste mise à jour. Si le rang r est
supérieur à la longueur de la Liste, E est ajouté à la fin.

9. Écrire la fonction Inverser qui recopie une Liste L dans une nouvelle Liste Linv, mais avec un ordre inverse pour
les éléments. La fonction renvoie Linv.

Que faudrait-il faire pour faire une fonction Copier qui recopie L dans le bon ordre ?

10. Écrire la fonction Vider qui vide une Liste L (à la fin L vaut liste_vide) en libérant proprement la mémoire allouée
pour toutes les cellules de L

3


	Listes chaînées 
	Questions


