
TP – DEV : Listes chaînées
4 au 6 décembre 2023

Erwan Kerrien

Rappel : si vous avez des questions sur ce TP ou sur le cours, n’hésitez pas à m’envoyer un mail à Erwan.Kerrien@inria.fr
(je consulte plus rarement mon mail Erwan.Kerrien@univ-lorraine.fr).
Le TP est à rendre pour la fin de la session sur arche. Les questions notées sont en bas de page 1. Pour
répondre à ces questions, vous devez me rendre soit un fichier liste.c , soit les fichiers nommés liste.c,
liste.h, element.c, element.h, Makefile et test_liste.c. Respectez bien les noms, casse comprise ! Ces
fichiers devront être correctement commentés. Vous pouvez, si vous le souhaitez et si vous le jugez utile,
m’envoyer un texte de commentaires. Ne pas le faire ne vous exposera à aucun retrait de points. Ces
fichiers sont à déposer sur arche.

1 Objectifs du TP

Ce TP a pour objectif d’implémenter les fonctions sur la sorte Liste construites lors des TD9&10.
On partira de la sorte que vous avez écrite lors du TP précédent. Au besoin vous pouvez reprendre la correction qui vous
est fournie sur arche.
Dans une première partie (section 2), on met tout notre code dans un seul fichier nommé liste.c. Vous pourrez rendre
ce fichier seul si vous le souhaitez. Ce travail suffit comme rendu du TP.
Pour celles et ceux qui iront assez vite, vous pourrez réaliser la deuxième partie (section 3) qui réorganise ce premier
code suivant les principes de la programmation modulaire (principes que vous devrez suivre pour vos SAÉs). Dans ce
deuxième cas, vous me rendrez les fichiers element.c, element.h, liste.c, liste.h, Makefile, ainsi qu’un fichier de
programme test_liste.c.
Et pour celles et ceux qui veulent aller encore plus loin, je décris (plus brièvement du coup) quelques exercices supplé-
mentaires que vous pouvez faire pour vous améliorer.

2 Les fonctions de la liste chaînée

En partant de ce que vous avez écrit lors du dernier TP, ou bien en reprenant la correction qui vous en est fournie,
écrivez toutes les fonctions sur les listes qui sont commentées. Un bon ordre à suivre est celui donné dans le TD, mais
vous pouvez suivre le vôtre. Basez-vous sur le travail d’algorithmique fait pendant le TD9&10. Vous me renverrez votre
version du fichier liste.c.
Voici la liste exhaustive des fonctions à écrire (ordre suggéré) :

— Longueur
— Afficher
— Rechercher et EstDans
— Dernier
— Supprimer
— Concatener
— Ajouter
— Inverser
— Copier
— Vider

Faites bien attention au prototype de chaque fonction qui devra suivre celui indiqué dans la définition de la sorte. Vous
ne devez utiliser que les fonctions écrites pour les types Element et Liste (par exemple utiliser SuccLire ou SuccModif
au lieu l->next, ou encore ElementComparer au lieu de E1 == E2...) : votre code doit être indépendant de la manière
dont les types Element et Liste ont été définis.
Éléments de notation :

— le nom de fichier (liste.c), le nom des types, constantes, celui des fonctions, ainsi que leur prototype (type de sortie
et nombre et types des paramètres) ne doivent pas être changés : mes scripts automatiques seront impitoyables.

— assurez-vous a minima que le fichier que vous m’envoyez compile. Faites attention en particulier aux typos que vous
insérez parfois dans votre code en le commentant au dernier moment.

— enfin, j’attends un code commenté : la qualité et la pertinence des commentaires entrera dans la notation.

1

mailto:Erwan.Kerrien@inria.fr
mailto:Erwan.Kerrien@univ-lorraine.fr

3 Programmation modulaire

Jusqu’à présent, vous n’avez travaillé que sur un seul fichier source. Il suffisait donc de lancer la commande gcc
<fichier>.c -o <executable> pour compiler le fichier <fichier>.c et générer le fichier exécutable <executable>.
Dans le cas d’un plus gros projet, il est impossible de ne travailler que sur un seul fichier : non seulement sa taille en
rendrait la lecture extrêmement difficile, mais en plus, impaginez le nombre de conflits qui seraient à régler si des dizaines
de développeurs travaillaient sur le même fichier !

Une génération d’exécutable en deux parties

Dès que le projet prend une certaine ampleur, la bonne pratique est donc de travailler sur plusieurs fichiers. La génération
d’un fichier exécutable se fait alors selon deux étapes : la compilation et l’édition de liens.

— La compilation a pour but de vérifier la syntaxe du code source et de générer le code objet associé. À ce stade,
on n’intègre pas de code extérieur. Tout appel à une fonction définie dans un autre fichier sera remplacé par un
code d’appel qui ne nécessite que de connaître prototype de la fonction (c’est-à-dire son nom, le nombre, type et
ordre des arguments, et le type de sortie). La commande pour générer un fichier objet à partir d’un fichier source
est gcc -c <fichier>.c : cette commande génère le fichier objet <fichier>.o

— l’édition de liens a pour but de regrouper tous les fichiers objets en un fichier exécutable. C’est à cette étape
qu’est vérifiée, pour chaque fonction appelée, qu’un code existe bien parmi tous les fichiers objets pour la définir
(et donc décrire son exécution). Ce code peut être dans un fichier objet que vous avez généré mais également dans
une bibliothèque externe disponible sur votre système. Un exemple est la libraire mathématique dont le code objet
est disponible physiquement dans le fichier /usr/lib/x86_64-linux-gnu/libm.so sur un système linux.
La commande pour générer un fichier exécutable à partir de plusieurs fichiers objets est : gcc -o <executable>
<fichier1>.o <fichier2>.o <fichier3>.o
Dans l’exemple précédent, on considère trois fichiers objets, mais bien sûr on peut en mettre plus ou moins. Pour
indiquer un lien avec une bibliothèque, il faut l’indiquer avec l’option -l à laquelle on acolle le nom du fichier, sans
lib, ni .so. Par exemple pour la bibliothèque mathématique, l’option sera -lm (correspondant au fichier libm.so).
La commande pour générer un fichier exécutable est dans ce cas :
gcc -o <executable> <fichier1>.o <fichier2>.o <fichier3>.o -lm
Ici encore, on peut lier plusieurs bibliothèques, et chacun d’elle donnera lieu à l’ajout d’une option -l.

Découpage en modules

Une bonne organisation des fichiers d’un projet va donc définir un ensemble de modules et un fichier source principal.
Dans notre cas, on a un type Element, auquel est associée une constante element_invalide et un ensemble de fonctions
ElementAfficher, ElementEstValide, ElementComparer, ElementCopie, ElementDetruire : on va donc créer un mo-
dule Element. Pour ce faire, on crée deux fichiers :

— un fichier header, que l’on va nommer element.h : ce fichier contient la définition du type, la constante, ainsi
que le prototype de chaque fonction, qui se termine par un ; (point-virgule) et sans le code de la fonction. On
y met aussi toutes les instructions #include qui sont nécessaires.

— un fichier source qui commence par une instruction #include "element.h". Cela permet d’inclure automati-
quement la définition du type Element, de la constante element_invalide et de déclarer toutes les fonctions. Ensuite,
on ne met que le code des fonctions (avec leur prorotype), c’est-à-dire la partie de votre code initial où vous avez
définie ces fonctions.

Le fichier element.h contiendra donc :

1 #ifndef ELEMENT_H
2 #define ELEMENT_H
3

4 #include <stdboo l . h> // type bool é en (bool : t rue / f a l s e) : renvoy é par ElementEstValide et ElementComparer
5 #include <s t d l i b . h> // pour l a constante NULL
6

7 // Dé f i n i t un type Element , comme char ∗
8 typedef char∗ Element ;
9

10 // l a constante e lement_inva l ide
11 const stat ic Element e lement_inval ide = (Element)NULL;

2

12

13 // − l e s opé r a t i o n s (f o n c t i o n s) :
14

15 // Vé r i f i e l a v a l i d i t é d ’un é l ément
16 // @param E: Element à vé r i f i e r
17 // @return true s i E e s t va l ide , faux s inon
18 bool ElementEstValide (Element E) ;
19

20 // Af f i ch e un é l ément
21 // @param E: é l ément à a f f i c h e r
22 // @Note a f f i c h e <INVALIDE> en cas d ’ é l ément i n v a l i d e
23 void ElementAf f i cher (Element E) ;
24

25 // Compare deux é l éments
26 // @param E1 , E2 : l e s deux é l éments à comparer
27 // @return true s i E1 et E2 sont égaux , faux s inon
28 // @Note s i E1 et E2 sont tous l e s deux i nva l i d e s , l a f on c t i on renvo i e t rue
29 bool ElementComparer (Element E1 , Element E2) ;
30

31 // E f f e c tue une cop i e profonde d ’un é l ément (donc a l l o c a t i o n de mé moire)
32 // @param E: é l ément à cop i e r
33 // @return nouvel é l ément avec l e même contenu que E.
34 // Renvoie e lement_inval ide s i E n ’ e s t pas va l i d e
35 // @Note l ’ é l ément renvoy é peut ê t r e dé t r u i t par appel à l a f on c t i on f r e e .
36 // Voir au s s i l a f on c t i on ElementDetruire qui l e f a i t proprement
37 Element ElementCopie (Element E) ;
38

39 // Dest ruct ion d ’un é lement (l i b é r a t i on de mé moire)
40 // @param E: é l ément à dé t r u i r e
41 // @return e lement_inva l ide
42 // @Note f onc t i onne même s i E e s t i n v a l i d e
43 Element ElementDetruire (Element E) ;
44

45 #endif // ELEMENT_H

On remarquera en début de fichier les deux lignes 1 et 2 qui définissent en fait une variable permettant d’indiquer que
le fichier element.h a été inclu lors de la compilation. Cela évite les inclusions multiples, qui peuvent vite arriver dans
de gros projets, et qui poseraient des problèmes de redéfinition de type/constantes et redéclarations de fonctions que
le compilateur ne sait pas bien gérer. Ces deux lignes se terminent par le #endif de la dernière ligne (ELEMENT_H est
mis en commentaire pour se souvenir de quelle instruction #if il s’agit de terminer ici). Prenez l’habitude de faire ça
systématiquement afin d’éviter un certain nombre de soucis.
Par ailleurs, le fichier stdbool.h est inclu car nous utilisons le type bool pour déclarer les fonction ElementEstValide et
ElementComparer. En revanche les fichiers stdio.h (pour printf) et stdlib.h (pour la constante NULL et les fonctions
malloc et free) ne sont pas inclus : ils ne le seront que dans le fichier element.c dans lequel les fonctions et constantes
impliquées seront effectivement utilisées. N’incluez toujours que le nombre minimal de fichiers pour garder un code qui
compile vite.
Enfin, vous remarquerez que la constante element_invalide est définie en ligne 11 avec le mot-clé static : ce mot-clé
indique que la variable ne sera déclarée qu’une seule fois, lors du premier passage du code par cette ligne. Ce mot-clé a
d’autres impacts importants que je vous incite à rechercher sur internet. Les explications détaillées du mot-clé static
dépassent le périmètre de ce cours d’introduction à C.

Exercice : Travail à faire (optionnel)

— recopiez le code des fonctions concernant le type Element dans un fichier element.c
— de manière similaire, créez le module Liste avec un fichier liste.h qui contiendra les définitions de type, ainsi que la

constante liste_vide, dans lequel vous ajouterez les prototypes de toutes les fonctions associées à une Liste. Mettez
ensuite le code de ces fonctions dans un fichier liste.c. Le fichier liste.h devra faire un #include "element.h"
puisque celui-ci est utilisé dans le prototype des fonctions d’une Liste.

— créez un fichier test_liste.c qui commencera par inclure le fichier liste.h (qui lui-même inclut le fichier
element.h, donc inutile de l’inclure explicitement à nouveau) et ne contiendra qu’une fonction main où mettrez un

3

code de test de vos fonctions.

Compilation modulaire automatisée

Pour compiler votre projets, il faut donc d’abord compiler le module Element, puis le module Liste, et enfin le programme
principal. Et en plus il faut finir par une étape d’édition de liens avant d’avoir l’exécutable. Autrement dit, voici les
commandes à lancées pour compiler le programme

> gcc -c element.c
> gcc -c liste.c
> gcc -c test_liste.c
> gcc -o test_liste test_liste.o liste.o element.o

Vous pouvez tester si votre refactorisation de codes en modules a été bien faite, en lançant ces commandes.
C’est cependant un peu pénible à lancer à chaque test. Par ailleurs, peut-être n’est-il pas nécessaire de tout recompiler à
chaque fois (par exemple si vous ne modifiez que le fichier liste.c, il suffit de recompiler liste.o puis de refaire l’édition
de liens). Pour vous aider à automatiser cela, il y a l’outil make (installable par sudo apt install make dans une fenêtre
de commande linux). La commande make cherche automatiquement un fichier nommé Makefile dans le dossier courant
et compile le projet suivant les instructions données. Ici encore, ce cours d’introduction n’est le lieu pour rentrer dans les
détails de make. Je vous mets à disposition le Makefile suivant : copiez-le dans le dossier de votre projet (qui contient
element.h, element.c, liste.h, liste.c et test_liste.c). Dans un terminal, placez-vous dans ce dosser et entrez la
commande make : cela devrait compiler le projet.

1 a l l : t e s t_ l i s t e
2

3 element . o : element . h
4 l i s t e . o : l i s t e . h element . h
5 t e s t_ l i s t e . o : l i s t e . h element . h
6 t e s t_ l i s t e : t e s t_ l i s t e . o l i s t e . o element . o
7 c l ean :
8 $ (RM) −r f ∗ . o t e s t_ l i s t e

Quelques explications toutefois. make fonctionne par cibles (targets en anglais) de compilation, indiquées par un nom
suivi de :. Les résolutions de ces cibles sont récursives. Par exemple, le Makefile fourni commence par définir la cible
all : c’est la cible qui résolue par défaut par un appel à make. all demande de résoudre la cible test_liste. Elle ne fait
rien d’autre (pas de ligne supplémentaire pour la cible all). Du coup, make va résoudre la cible test_liste en ligne 6.
Cette cible dépend de fichiers objets .o : make va donc par défaut faire une édition de liens avec ces fichiers en entrée,
mais auparavant, il faut regénérer chaque fichier qui a été modifié depuis la dernière génération de test_liste.
Pour cela, il va résoudre les cibles correspondant à chaque fichier objet (lignes 3,4 et 5). En face de chaque cible, on voit
qu’elle dépend d’un fichier .c et d’un ou plusieurs fichiers .h : make comprend donc qu’il faut compiler ce fichier .c, et
qu’il n’a besoin de le faire que si un des fichiers indiqués en dépendance a été modifié depuis la dernière génération du
fichier objet.
Par résolution récursive des cibles, le fichier exécutable test_liste est ainsi regénéré, avec un minimum de compilations.
Une dernière cible est indiquée ligne 7 : il n’y a pas de dépendance, mais en revanche une commande spécifique est liée
(ligne 8). Si vous entrez make clean dans le terminal, cette cible sera résolue, ce qui lance la commande : celle-ci efface
tous les fichiers objets du dossier courant, ainsi que le fichier exécutable test_liste.

4 Extension #1 : récursivité

Les fonctions ci-dessus sont en général plutôt écrites en récursif alors que la correction du TD les donnent en itératif.
Donnez-en une version recursive.

5 Extension #2 : g_slist

En pratique, vous n’aurez que rarement besoin d’implémenter une liste chaînée et vous en trouverez une version dans
la librairie standard de votre langage de travail. En C, ce n’est pas le cas, mais il existe une librairie qui fait figure

4

de standard en environnement POSIX (Linux) : la glib qui définit notamment les listes chaînées grâce à la structure
g_slist et les fonctions associées.
Prenez connaissance de la documentation à la page https://docs.gtk.org/glib/struct.SList.html.
La documentation pour compiler un code avec la glib est sur la page https://docs.gtk.org/glib/compiling.html.
Écrivez un programme exploitant les g_slist pour stocker une liste de réels.

5

https://docs.gtk.org/glib/struct.SList.html
https://docs.gtk.org/glib/compiling.html

	Objectifs du TP
	Les fonctions de la liste chaînée
	Programmation modulaire
	Extension #1: récursivité
	Extension #2: g_slist

