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Rappel : si vous avez des questions sur ce TP ou sur le cours, n’hésitez pas à m’envoyer un mail à Erwan.Kerrien@inria.fr
Nous travaillons sous Linux, avec Visual Studio Code (ou VSCodium) comme éditeur et gcc comme compilateur.
Une archive est disponible sur arche en accompagnement de ce TP. Elle contient les codes C donnés en exemple.
Le TP est à rendre pour demain matin (15 ou 16 novembre) 8h : seules les questions notées sont à me rendre
(voir les sections "Questions notées").

— Nous verrons ensemble les sections 1, 2, 3 et 4.
— Vous me rendrez un texte de réponse aux deux questions de la section 4.1
— Vous me rendrez un programme codé en C et commenté pour répondre à la deuxième question section 4.1, ainsi

qu’aux deux questions de la section 5.5
— Vos programmes devront obligatoirement avoir le nom de fichier indiqué dans la question. Par exemple,

vous me rendrez un fichier nommé swap.c pour répondre à la deuxième question de la section 4.1
— Les questions de la section 6.3 sont optionnelles. Cependant, je vous encourage fortement à faire cette section 6

avant le prochain TP.
— la section 7 est un bonus pour celles et ceux qui souhaiteraient approfondir la notion de pointeur et expérimenter

avec l’accès bas niveau à la mémoire que les pointeurs autorisent.
Ces fichiers sont à déposer sur arche (séparés ou sous forme d’archive zip). En cas de souci, vous pouvez les envoyer sur
mon email Erwan.Kerrien@inria.fr
Prenez bien garde à ne pas m’envoyer autre chose qu’un fichier pour le texte de vos réponses (.txt, .doc, .docx, .odt ou
.pdf), et 3 fichiers C. Ne m’envoyez pas les exécutables générés.

1 Objectifs du TP

Ce TP a pour objectif de vous présenter une notion du langage C appelée pointeurs. Les pointeurs sont la manière dont C
implémente un mécanisme plus abstrait appelé référence, que l’on retrouve dans tous les langages. La première utilisation
des pointeurs est donc le passage de variables par référence dans une fonction. Nous verrons comment cela est fait en C.
La deuxième utilisation est pour l’implémentation des tableaux, que vous avez vu il y a 3 TP de cela. Enfin, la dernière
utilisation est pour partager de la mémoire. C’est en particulier utile lors de la manipulation de structures qui peuvent
s’avérer très lourdes en mémoire, ce qui rend leur copie coûuteuse. Vous verrez un exemple de structure lors du prochain
TP sur les fichier (la structure FILE qui permet de stocker diverses informations sur un fichier ouvert). La notion plus
générale de structure sera vue lors du TP qui viendra après. Bref, vous l’aurez compris : les pointeurs sont très utiles,
puissants et c’est pour cela qu’on les retrouve partout quand on programme en C.
Le travail demandé consiste en un premier temps à bien comprendre la notion de pointeurs, ce qui se fera par l’analyse
d’exemples, sur lesquels des questions vous seront posées. Puis, dans un deuxième temps, nous l’appliquerons à la lecture
de données depuis le clavier et plus généralement depuis un fichier.

2 Pointeur : variables et mémoire

2.1 Organisation de la mémoire

Un pointeur est un type de variables qui permet de stocker une adresse dans la mémoire. Par souci de concision, et abus
de langage, on dira "un pointeur" pour une variable de type pointeur (comme on dit "un entier" pour une variable de
type entier...).
Pour aller plus loin, il faut préciser ce qu’est une adresse mémoire. Il faut s’imaginer que la mémoire est un grand
alignement de boîtes, contiguës, toutes de même taille (voir la figure 1). Chaque boîte a un numéro qui va de 0 pour la
première jusqu’au plus grand nombre possible, soit 264 − 1 sur un ordinateur 64 bits. Une adresse mémoire est donc le
numéro d’une boîte. Aller lire ce qui est en mémoire à l’adresse n revient donc à aller regarder ce que contient la boîte
n°n. Aller écrire, revient à mettre quelque chose dans la boîte.
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Figure 1 – La mémoire est composée de boîtes contiguës, toutes de même taille, numérotées.

2.2 Variables et mémoire

Il ne s’agit pas ici de faire un exposé précis et détaillé de la manière dont la mémoire est organisée. Vous avez un cours
pour ça. La présentation qui suit est donc volontairement simplifiée pour mettre en avant les concepts essentiels qu’il faut
comprendre pour maîtriser les pointeurs, et au-delà avoir une compréhension fine de ce qu’est une variable et notamment
un type.
En première simplification, nous n’allons considérer que ce qui se passe quand on appelle une fonction. Vous savez qu’un
programme C revient à appeler une fonction particulière appelée main. Se restreindre aux fonctions n’est donc pas une
grosse contrainte.
Une fonction est composée de deux choses : ses variables et son code. Il est assez simple de comprendre que le code, une
fois compilé est de taille connue (vous pouvez utiliser la commande shell ls -l pour voir la taille du fichier exécutable).
Il faut aussi comprendre que les variables sont toutes de taille connue a priori. Ceci grâce à leur déclaration qui précise
leur type.

2.2.1 Variables et types

En informatique, il n’y a qu’une chose qui existe physiquement pour stocker de l’information : le bit, donc seulement des
0 et des 1. Dans l’immense majorité des ordinateurs actuels, l’unité de base est en fait même un bloc de 8 bits, ce qu’on
nomme un octet : c’est la taille de chaque boîte en mémoire.
De base, on ne peut donc stocker que des nombres et il faut tout traduire en nombre. L’idée géniale est qu’on peut faire
tout ce qu’on veut en définissant un ensemble de types qui est très restreint en C. Ces types sont dits primitifs.

— Si l’information est un nombre entier positif, la traduction est simple puisqu’on a un simple codage binaire. La
question se pose de combien d’octets utiliser. Pour cela, C définit plusieurs types :
— unsigned char : tient sur 1 octet
— unsigned short : tient sur 2 octets
— unsigned int : tient sur 4 octets
— unsigned long (ou unsigned long int) : tient sur 8 octets
— unsigned long long : tient sur 8 ou 16 octets en fonction de l’architecture de l’ordinateur

Le premier TP vous a montré comment afficher ces tailles grâce à la fonction sizeof. Notez bien les deux exemples
suivants : unsigned int i=1; et unsigned long i=1;. Dans les deux cas, on stocke la valeur 1 dans une variable
i. Sauf que dans le premier cas on utilisera 4 octets pour ce faire, et 8 octets dans le deuxième cas.
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— Si l’information est à présent un nombre entier qui est potentiellement négatif, c’est simplement le codage qui va
changer : on va utiliser un complément à 2. C définit ces types dits signés pour indiquer un tel encodage :
— char : tient sur 1 octet
— short : tient sur 2 octets
— int : tient sur 4 octets
— long : tient sur 8 octets
— long long : tient sur 8 ou 16 octets en fonction de l’architecture de l’ordinateur

Je vous renvoie à votre cours de système pour le complément à 2.
— Mais les encodages précédents ne permettent pas d’exprimer des nombres réels, à virgule flottante. Ici, on va utiliser

l’encodage en mantisse et exposant (cf encore une fois le cours de système). Là encore C définit des types primitifs
qui suivent cet encodage mais permettent d’utiliser plus ou moins d’espace mémoire :
— float : tient sur 4 octets
— double : tient sur 8 octets
— long double : tient sur 16 octets

— Un autre type d’information très largement utilisé est le texte. C utilise le type char pour stocker une lettre via
son code ASCII. Seuls les codes de 0 à 127 sont exploitables. Donc pas de nouveau type : toute manipulation de
caractère se fait comme on manipule des nombres (mettre une lettre en minuscule revient à ajouter 32 à la variable
de type char) et seules les fonctions printf et scanf (et consorts, voir section 6) vont vraiment traduire le "dessin"
de la lettre affichée sur l’écran, à partir de son code ASCII.
Par conséquent aussi, pas de lettre accentuée par défaut : un code du type char c=’é’; générera une erreur à
la compilation error: character too large for enclosing character literal type indiquant qu’il ne peut
stocker une lettre accentuée sur un char. Les éléments de rang 128 à 255 dans la table ASCII servent en effet à
stocker les lettres spécifiques à la langue du système. Lorsque le système est français, on y trouve donc la lettre ’é’.
Cependant cette partie de la table va par conséquent varier suivant l’ordinateur et C interdit donc de l’utiliser afin
de ne produire que des programmes portables. Pour employer ces caractères spécifiques, il faut utiliser l’encodage
utf-8 par exemple qui est multi-octets. Cela dépasse le cadre de ce cours introductif. Gardez donc en mémoire une
chose simple : pas de lettre accentuée (ou autres du style ç) en C pour éviter les problèmes quand vous faites du
bas niveau.

— On peut créer des nouveaux types en rassemblant plusieurs variables avec un type primitif au sein de ce qu’on
appelle une structure (struct en C). Nous verrons cela lors d’un prochain TP. Mais on peut déjà comprendre que
si on regroupe un int et un char dans une même structure, la taille de la structure sera de 4+1=5 octets. Là
encore la taille est connue.

— Tableau n’est pas un type. C’est une structure de données, c’est-à-dire un moyen de rassembler plusieurs
éléments. Contrairement à la structure, tous les éléments doivent ici être d’un même type. Dès lors qu’on spécifie
ce type, on a alors un nouveau type, par exemple "Tableau d’entiers". Mais contrairement à la structure aussi,
le nombre d’éléments à stocker n’est pas fixé a priori. La taille du tableau peut être connue au moment de la
compilation. Par exemple par une déclaration comme float tab[10]; ou long l[]={1, 18, 3}; : dans le premier
cas on a besoin de 10×4 octets et 3×8 dans le deuxième. Mais ce n’est pas toujours le cas. En C, une variable servant
à référencer un tableau sera un pointeur qui stockera l’adresse du premier élément du tableau. Nous reprendrons
ça en section 5.

— Une chaîne de caractères est un tableau de char (c’est son type) qui se termine par le caractère ’\0’, dont le code
ASCII est 0.

— Restent les pointeurs. Un pointeur est une adresse mémoire. C’est donc un entier positif sur suffisamment d’octets
pour encoder toute adresse mémoire. Sur un système 64 bits, il faut 8 octets (8 fois 8 bits). On utilise donc le
type unsigned long. Mais sur une machine 32 bits, il suffira de 4 octets (4 fois 8 bits). On peut donc n’utiliser
qu’un unsigned int. Pour rendre le code compatible avec ces différentes variantes, C définit le type size_t qui est
absolument équivalent à un unsigned long en 64 bits (donc toute machine avec un système d’exploitation récent).

— Nous n’abordons pas ici les union qui permettent de stocker une variable dont le type peut varier selon les besoins.
Leur définition repose sur les types primitifs et leur taille est donc aussi connue a priori (taille du plus grand type
de l’union). Les unions sont très peu utilisées aujourd’hui mais peuvent être utiles, notamment en programmation
système.

— Restent aussi les enum qui permettent de définir un ensemble de valeurs admissibles. Le type sous-jacent est int,
donc rien de nouveau non plus du côté de la taille.
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Cela complète le tour d’horizon des types en C. En résumé on a donc des types primitifs entiers et flottants, dont on
connaît la taille. Il servent pour encoder les caractères (char) ou les pointeurs (unsigned long). On peut regrouper des
élements en tableaux, s’ils sont tous du même type, et là leur nombre peut varier ; ou bien en structures s’ils sont de
types différents, mais là leur nombre est fixe. Puis, on peut travailler de manière récursive, en faisant des tableaux de
structures, ou en ayant un tableau dans une structure, ou une structure dans une structure ou finalement un tableau de
tableaux, ce qui permet de représenter tout ce qu’on veut.

2.3 Fonction et mémoire

Quand votre code appelle une fonction, de l’espace mémoire est demandé au système d’exploitation pour stocker son
code, mais également ses variables, c’est-à-dire ses variables locales composées des variables d’entrée, des variables
de sortie et des variables intermédiaires. Pour cela, il faut que la liste des variables, ainsi que leur type soient connus
(raison pour laquelle on vous embête à longueur de TD avec ça !). Le code s’exécute ensuite, modifiant éventuellement
les variables locales, c’est-à-dire manipulant l’espace mémoire qui leur est dédié, puis lorsque la fonction se termine, cet
espace mémoire est libéré (une valeur étant éventuellement renvoyée par la fonction). Afin de visualiser cela, nous
allons utiliser un outil qui se nomme "C tutor".

2.3.1 Exemple de base : variable locale

Allez sur le site https://pythontutor.com/c.html. Vous avez un éditeur de code C. Remplacez le texte par défaut par
le suivant :

1 void s imple ( )
2 {
3 int i ;
4 i =42;
5 }
6

7 int main ( )
8 {
9 s imple ( ) ;

10 return 0 ;
11 }

Ce code appelle juste une fonction simple qui ne fait rien d’autre que définir une variable locale i de type int et
l’initialise en y stockant la valeur 42.
Cliquez ensuite sur Visualize Execution. Une nouvelle page se charge (figure 2).

Figure 2 – Début de la visualisation de l’exécution
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Vous voyez le code dans la partie gauche avec une flèche rouge qui vous indique à quelle ligne l’exécution se trouve
(prochaine instruction à exécuter). À droite, vous avez l’état de la mémoire. Seule la partie stack (pile en français) nous
intéresse pour l’instant. Nous verrons la partie heap plus tard (tas en français).
Le rectangle dans lequel main est inscrit correspond à la partie de la mémoire réservée pour l’exécution de la fonction
main.
Cliquez sur Next. La page se met à jour (figure 3).

Figure 3 – Début de l’exécution de la fonction simple

La flèche rouge se positionne d’emblée en ligne 4, après la déclaration de la variable locale i. On voit dans la partie
droite l’impact qu’a eu l’appel de la fonction : une zone mémoire a été réservée pour la fonction simple et le fait d’avoir
déclaré la variable i de type int a permis de lui allouer une zone mémoire de 4 octets. Notez que cette zone mémoire
est totalement séparée de celle réservée pour main. Remarquez également qu’un ? est indiqué comme valeur pour i : il y
a forcément une valeur dans ces 4 octets (les bits sont forcément à 0 ou 1) mais cette valeur n’est pas valable tant que la
variable i n’a pas été initialisée (l’allocation mémoire ne remet pas les bits à 0). C’est ce que nous allons faire en cliquant
sur Next.
La ligne 5 est exécutée et on peut voir dans la partie droite (figure 4) que 42 a été stocké dans l’espace mémoire alloué
pour i.

Figure 4 – Exécution de la ligne 5 qui stocke la valeur 42 dans l’espace mémoire alloué pour la variable i
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La flèche rouge se positionne sur l’accolade fermant la fonction simple, ce qui indique qu’il faut exécuter cette fermeture.
Cliquez sur Next pour le faire.
On voit que la flèche bouge très légèrement (figure 5) : il n’y a pas de valeur à renvoyer, mais il y a implicitement une
instruction return à exécuter. Cliquez sur Next pour finaliser la fermeture de la fonction.

Figure 5 – Première étape de la fermeture de la fonction : une instruction return (implicite ici) est exécutée

La fonction est fermée, ce qui se voit par la disparition de l’espace mémoire réservé à la fonction simple à droite (figure 6) :
on dit que la mémoire est libérée. La flèche vient se positionner en ligne 10 pour poursuivre l’exécution de la fonction
main.

Figure 6 – Finalisation de la fermeture de la fonction : l’espace mémoire alloué pour la fonction est libéré et on revient
à l’exécution de la fonction appelante

On peut remarquer que l’espace mémoire associé à la variable i, locale à la fonction simple n’est plus accessible.
De la mémoire est allouée lorsque la fonction est appelée : on parle d’allocation dynamique. Mais de plus, cette allocation
ne demande pas d’instruction spécialisée puisqu’on sait d’emblée de quel espace mémoire on a besoin pour les variables :
on parle dès lors d’allocation automatique. En regard de cette allocation automatique, il y a une libération automatique
de la mémoire qui a lieu quand la fonction se termine : on ne peut pas libérer cette mémoire avant cela.
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2.3.2 Cas des variables d’entrée

Une variable d’entrée est gérée exactement comme une variable locale (allocation en entrée de fonction, libération en
sortie). La seule différence est dans l’initialisation qui est faite automatiquement grâce aux valeurs passées lors de l’appel
de la fonction. Revenez à l’éditeur de code en cliquant sur Edit this code et modifiez le code pour obtenir le suivant :

1 void s imple ( int k )
2 {
3 int i ;
4 i =42;
5 }
6

7 int main ( )
8 {
9 s imple ( 3 ) ;

10 return 0 ;
11 }

Puis lancez la visualisation en cliquant sur Visualize Execution. Le point de départ est quasiment le même. Débutez
l’exécution de la fonction simple en cliquant sur Next.
Là apparaît une différence (figure 7).

Figure 7 – Démarrage de l’exécution d’une fonction avec variable d’entrée

À droite, on voit que l’espace mémoire alloué à la fonction simple comporte de l’espace pour deux variables k et i qui
sont toutes deux vues comme locales à la fonction. Le contenu de ces deux variables est indéfini. De plus, la flèche rouge
ne se positionne plus sur l’initialisation de la variable i (ligne 4) mais sur la première accolade (ligne 2) : il y a une étape
à réaliser avant de commencer l’exécution du code de la fonction. Cliquez sur Next.
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On voit que la variable k est initialisée à 3, la valeur passée en appel de la fonction simple, puis la flèche se déplace en
ligne 4 pour en débuter l’exécution (figure 8).

Figure 8 – Première étape de l’exécution d’une fonction avec variable d’entrée : recopier les valeurs passées en paramètres
dans les variables locales correspondantes

Le reste de l’exécution est similaire. Notez à nouveau la libération de la mémoire réservée aux variables locales de simple,
y compris la variable d’entrée k, qui ne sont plus accessibles une fois simple terminée.

2.3.3 Cas d’une valeur renvoyée

Que se passe-t-il à présent quand la fonction renvoie une valeur ? En C, on ne peut pas faire comme en python : on ne
peut renvoyer qu’une seule valeur qui doit être d’un type connu. Ce type sera donc soit un des types primitifs donnés
plus haut (y compris pointeur), soit un type structure que nous verrons lors d’un prochain TP.
Revenez à l’éditeur de code et modifiez le code pour obtenir le suivant :

1 f loat s imple ( int k )
2 {
3 int i ;
4 i =42;
5 return 1 . 5 ;
6 }
7

8 int main ( )
9 {

10 f loat r ;
11 r=s imple ( 3 ) ;
12 return 0 ;
13 }

Veuillez notez deux choses. D’une part, je vous montre ici que c’est bien une valeur qu’on renvoie et non une variable.
Si j’avais utilisé une variable locale (par exemple tmp) et que j’avais terminé ma fonction par return tmp;, alors c’est
bien la valeur stockée dans la variable locale qui aurait été renvoyée et non pas la variable elle-même. D’autre part, je
dois déclarer une variable locale à la fonction main (que j’appelle r) afin d’avoir un espace mémoire où stocker la valeur
que renverra la fonction simple.
Passons en revue les différentes étapes du code (avec le bouton Next).

— Le programme débute avec un espace mémoire pour la fonction main. Remarquez qu’un espace a été automatique-
ment alloué à la variable r.

— à la ligne 11, la fonction simple est appelée. Remarquez que la valeur de la variable r n’est toujours pas définie.
Elle ne le sera qu’après l’exécution de la fonction simple.
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— le déroulement de la fonction est identique à ce qui précède. Notez qu’aucun espace n’est réservé pour la valeur de
retour car je n’ai pas utilisé de variable locale de sortie.

— à la fin de l’exécution de simple, rien ne semble fait quand return 1.5; est exécuté. La valeur renvoyée est en
fait stockée dans un registre du processeur qui est invisible ici. Puis l’espace mémoire réservé à la fontion simple
est libéré.

— Enfin, l’instruction d’affectation en ligne 11 peut terminer son exécution en copiant cette valeur dans l’espace
mémoire alloué à la variable r.

3 Pointeurs

Ce qui précède doit vous convaincre que toute déclaration de variable implique qu’un espace mémoire lui est alloué. La
taille de cet espace mémoire est déterminée par le type de la variable. Toute variable a donc une adresse en mémoire : si
plusieurs octets (cases mémoire) sont alloués, cette adresse est celle du premier octet ; les autres sont forcément contigus
(collés à la suite) de ce premier octet.

3.1 L’opérateur addresse-de

Cet opérateur permet de récupérer l’adresse d’une variable, quelle qu’elle soit. Il se note par un & placé juste devant le
nom de la variable. Par exemple, le code suivant définit une variable i de type int et en affiche l’adresse grâce à un
printf.

1 // f i c h i e r adre s sede . c
2 #include <s td i o . h>
3

4 int main ( )
5 {
6 int i =42;
7 p r i n t f ( "%p\n" , &i ) ;
8 return 0 ;
9 }

Compilez ce code est lancez-le plusieurs fois. Vous pouvez noter que l’adresse change à chaque exécution.

3.2 L’opérateur d’indirection (ou déréférencement).

Une fois qu’on a récupéré une adresse, donc un numéro de boîte, on peut accéder à cette boîte pour voir ce qui s’y
trouve (accès en lecture) voire en modifier le contenu (accès en écriture). L’opération d’accès à la valeur stockée s’appelle
indirection ou déréférencement, et il se note par une * placée devant la variable de type pointeur (par exemple *p si p
est une variable de type pointeur). On peut modifier l’exemple précédent pour afficher la valeur stockée à l’adresse de i,
ce qui se note *(&i).

1 // f i c h i e r de r e f 1 . c
2 #include <s td i o . h>
3

4 int main ( )
5 {
6 int i =42;
7 p r i n t f ( "%d\n" , ∗(& i ) ) ;
8 return 0 ;
9 }

Compilez et exécutez ce code. Vous remarquerez l’usage du format %d dans le printf car c’est une bien une valeur de
type int qu’on veut afficher. Cet exemple n’est pas très utile. On va plutôt chercher à manipuler des variables dont les
valeurs sont des adresses mémoire, ce qu’on appelle des pointeurs.

3.3 Déclaration d’une variable de type pointeur.

Il nous faut donc des variables de type pointeur, soit pour stocker l’adresse qu’on récupère via &, soit pour accéder au
contenu d’une adresse via l’opérateur *. Cette dernière opération d’accès implique forcément deux choses : 1) on doit
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pouvoir décoder le contenu de la mémoire (on a vu qu’on avait un encodage différent pour les entiers positifs, pour les
entiers signés et pour les flottants) ; et 2) on doit pouvoir savoir combien d’octets sont concernés par cet encodage. Tout
ceci est défini par le type. La déclaration d’un pointeur doit donc indiquer quel type est pointé (comment et sur quel
espace est encodée la valeur stockée à l’adresse mémoire).
Un pointeur se déclare en indiquant le type pointé, suivi d’une étoile *. Par exemple :

1 int ∗ p i ;
2 char ∗pc ;

déclare deux variables de types pointeurs : pi de type int*, qui est donc un pointeur vers un int ; et pc de type char*
qui est donc un pointeur vers un char. On notera que les espaces avant et/ou après le caractère * importent peu. On
aura aussi bien déclarer ces variables comme :

1 int∗ p i ;
2 char∗ pc ;

ou encore

1 int ∗ p i ;
2 char ∗ pc ;

On préférera cependant la première manière indiquée car elle permet de mieux comprendre une déclaration comme

1 int ∗pi , i ;

qui, bien qu’horrible pour la lisibilité du code, est valide et déclare une variable pi de type pointeur vers un int, ainsi
qu’une variable i de type int. De même, pour déclarer deux variables pointeurs vers un même type, il faudra les faire
précéder à chaque fois d’un *. Ainsi pour déclarer pi1 et pi2, deux pointeurs vers des int, on écrira :

1 int ∗pi1 , ∗ p i2 ;

On peut dès lors commencer à jouer avec les pointeurs. Compilez et exécutez le code suivant (disponible dans l’archive
du TP).

1 // f i c h i e r po inteur1 . c
2 #include <s td i o . h>
3

4 int main ( )
5 {
6 int i ;
7 int ∗ p i ;
8

9 i =3;
10 pi = &i ;
11 p r i n t f ( " ( v ia ␣ l a ␣ va r i ab l e ) ␣Valeur=%d ; ␣ adr e s s e=%p\n" , i ,& i ) ;
12 p r i n t f ( " ( v ia ␣ l e ␣ po inteur ) ␣Valeur=%d ; ␣ adr e s s e=%p\n" ,∗ pi , p i ) ;
13

14 ∗ p i = 4 ;
15 p r i n t f ( " ( v ia ␣ l a ␣ va r i ab l e ) ␣Valeur=%d ; ␣ adr e s s e=%p\n" , i ,& i ) ;
16 p r i n t f ( " ( v ia ␣ l e ␣ po inteur ) ␣Valeur=%d ; ␣ adr e s s e=%p\n" ,∗ pi , p i ) ;
17

18 return 0 ;
19 }

L’adresse de la variable i, de type int est prise en ligne 10 et stockée dans la variable pi de type int*, soit un pointeur
sur un int. Les lignes 11 et 12 montrent que les deux variables se rapportent à la même zone mémoire et aux mêmes
valeurs, et que les deux opérateurs adresse-de et indirection sont inverses l’un de l’autre. En ligne 14, on modifie la zone
pointée par pi pour y stocker la valeur 4 via le mécanisme d’indirection. Les lignes 15 et 16 montrentque la variable i a
bien été modifiée. Par ailleurs, on remarquera que le format %p permet d’afficher une adresse (au format hexadécimal)
stockée dans un pointeur.
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3.4 C tutor

Revenons à C tutor pour voir comment cela peut se visualiser. Entrez le code suivant :

1 #include <s td i o . h>
2

3 int main ( )
4 {
5 int i , j ;
6 int ∗ p i ;
7

8 i =3;
9 pi = &i ;

10

11 j=∗p i ;
12

13 ∗ p i = 4 ;
14

15 return 0 ;
16 }

L’espace mémoire pour la fonction main (figure 9) est alloué avec d’emblée un espace pour stocker deux variables i et j
de type int et une variable pi de type pointer. Au niveau de la place mémoire, un pointeur est en effet une adresse,
quelque soit le type pointé, et on a donc besoin de 8 octets pour la stocker (équivalent à un unsigned long). Ce n’est
que lorsqu’on accède à la mémoire pointée (ici l’espace alloué à i) qu’on a besoin d’en connaître le type (ici int). Le
bonus (section 7) explique comment on peut exploiter cela via la conversion de types.

Figure 9 – Premier exemple avec pointeur. Début d’exécution.
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Cliquez sur Next (figure 10). La ligne 6 est exécutée, affectant la valeur 3 à la variable i.

Figure 10 – La valeur de i est intialisée à 3.

Cliquez sur Next (figure 11). La ligne 7 est exécutée : la variable pi reçoit comme valeur l’adresse mémoire de la variable
i. Ceci est valide puisque de l’espace mémoire a été alloué automatiquement pour i à l’appel de la fonction main. Vous
voyez que ce lien est matérialisé par une flèche : il faudra suivre la flèche si on veut accéder à la valeur stockée à cette
adresse en mémoire (indirection).

Figure 11 – L’adresse de i est stockée dans la variable pi.
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Cliquez sur Next (figure 12). La ligne 9 est exécutée. *pi à droite de l’affectation indique qu’on va déréférencer le
pointeur pi pour accéder à la valeur stockée sous cette adresse. Cet accès se fait en lecture puisqu’on veut simplement
aller voir quelle valeur s’y trouve (rôle de right-value dans une affectation = accès en lecture). La valeur est lue puis est
stockée dans la variable j dont la valeur est enfin initialisée (voir la partie mémoire à droite). On remarque que c’est la
même valeur que i.

Figure 12 – Indirection : accès en lecture à l’adresse stockée dans pi
.

Cliquez surNext (figure 13). La ligne 11 est exécutée. Ici *pi est à gauche de l’affectation (left-value) et on va déréférencer
le pointeur pi pour accèder en écriture à cette adresse. Vous pouvez remarquer que pi n’est pas modifiée (elle pointe
toujours vers le même endroit en mémoire, ce qui veut dire qu’elle contient toujours la même adresse). En revanche la
mémoire allouée à la variable i a changé, ce qui signifie que la valeur stockée dans la variable i a été modifiée.

Figure 13 – Indirection : accès en écriture à l’adresse stockée dans pi
.
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4 Passage par variable (ou par référence)

Dans les exemples précédents, la visualisation permise par C tutor vous a montré que les espaces mémoire réservés pour
chaque fonction étaient séparés et bien distincts. Mais vous avez pu remarquer également que l’espace mémoire réservé
à la fonction appelante (main dans ce qui précède) restait valide pendant l’exécution de la fonction appelée (simple
dans ce qui précède). Or les pointeurs permettent a priori d’accéder à n’importe quelle adresse en mémoire, même celles
en-dehors de la zone réservée à la fonction en cours d’exécution. On doit donc pouvoir notamment accéder à l’espace
mémoire de la fonction appelante : pour cela on passe à la fonction appelée une adresse de l’espace réservé à la fonction
appelante, et ce, grâce à un pointeur. C’est comme si la fonction main fournissait une clé k à la fonction simple pour
l’autoriser à accéder à son espace mémoire.
Pour préciser les choses, entrez le code suivant sur C tutor.

1 void s imple ( int ∗k )
2 {
3 int i ;
4 i =42;
5 ∗k = 21 ;
6 }
7

8 int main ( )
9 {

10 int j ;
11 j =10;
12

13 s imple (& j ) ;
14

15 return 0 ;
16 }

Le début est classique maintenant : l’espace mémoire pour main est réservé avec l’espace pour une variable j de type
entier. En cliquant deux fois sur Next (figure 14), la ligne 10 est exécutée, ce qui initialise le contenu de j à 10.

Figure 14 – Passage par variable : initialisation d’une variable j locale à main

14



Cliquez à nouveau sur Next (figure 15). L’espace mémoire est alloué pour la fonction simple avec notamment l’espace
pour ses deux variables k (de type pointeur) et i (de type int). Vous pouvez remarquer que l’espace mémoire pour main
est toujours actif.

Figure 15 – Passage par variable : appel de la fonction simple

Cliquez sur Next (figure 16). Comme on a une variable en entrée, la valeur passée lors de l’appel à simple, à savoir &j
(ligne 13), est recopiée dans la variable k. On passe donc la valeur d’une adresse, ce qui relie la variable k locale à la
fonction simple avec la variable j locale à la fonction main : k est une référence à j, ce qui établit un lien entre deux
espaces mémoire qui sont autrement séparés et distincts.

Figure 16 – Passage par variable : copie de l’adresse de j dans la variable locale k
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Cliquez sur Next (figure 17) : le contenu de la variable i est initialisé à 42 (ligne 4).

Figure 17 – Passage par variable : affectation de la valeur 42 à la variable i

Cliquez sur Next (figure 18) : la valeur 21 est stockée sous l’adresse pointée par k par indirection. Cette adresse est celle
de la variable j qui passe de 10 à 21 : on a donc bien modifié l’espace mémoire de main (fonction appelante) depuis la
fonction simple (fonction appelée).

Figure 18 – Passage par variable : affectation de la valeur 21 à la variable j, par indirection du pointeur k
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Cliquez deux fois sur Next pour terminer l’exécution de la fonction simple (figure 19) : l’espace mémoire de la fonction
simple est libéré mais la modification effectuée dans l’espace mémoire de la fonction main (variable j) est conservée. On
peut poursuivre et terminer l’exécution de la fonction main.

Figure 19 – Passage par variable : la fonction simple se termine, ce qui provoque la libération de l’espace mémoire qui
lui était réservé ; la modification apportée au sein de l’espace mémoire pour la fonction main est conservé

En résumé, manipuler des adresses via des pointeurs permet d’accéder à n’importe quel espace mémoire a priori. En
pratique, cet accès est réservé à l’espace mémoire lié au programme en cours : sous Unix, des mécanismes existent pour
assurer la sûreté des processus, et un programme ne peut pas agir pour aller modifier la mémoire d’un autre programme.
Si vous essayez de faire cela, le système arrêtera l’exécution de votre programme avec une erreur Segmentation fault
(accès mémoire non autorisé). C’est pour cela qu’on n’affecte jamais directement un nombre à un pointeur, mais on
prend l’adresse d’une variable déclarée afin d’être sûr d’avoir une adresse valide. La seule exception est l’utilisation de
la valeur 0, qui est une adresse mémoire interdite à tout processus. Cela permet donc d’identifier les pointeurs invalides
et d’éviter leur indirection. C définit même une constante NULL pour cette adresse mémoire 0. Par exemple, l’instruction
float *pf=NULL; permet de déclarer un pointeur pf et d’indiquer qu’il ne peut peut pas être déréférencé (puisque nul).
Ceci est très utile lors de l’allocation manuelle de mémoire au moyen de la fonction malloc. La mémoire ainsi allouée
n’est en effet pas libérée automatiquement : comme elle a été allouée manuellement, elle doit être libérée manuellement.
L’avantage est qu’on peut ainsi allouée de la mémoire dans une fonction et la garder allouée, même après la fermeture de
la fonction. Cette libération mémoire se fait par la fonction free. Or cette fonction pré-suppose que l’adresse mémoire
(pointeur) qui lui est passé en paramètre, est valide : si on essaie de libérer un espace mémoire non autorisé ou bien déjà
libéré, le programme plantera avec un message d’erreur Segmentation fault. Il faut donc s’assurer au prélable de la
validité du pointeur, ce qui, par convention, est le cas si le pointeur est non nul.
Un exemple d’utilisation correcte de ces fonctions est :

1 #include <s td i o . h> // pour p r i n t f
2 #include <s t d l i b . h> // pour mal loc et f r e e
3

4 int main ( )
5 {
6 char ∗ s=NULL; // i n i t i a l i s a t i o n du po inteur s
7 // a NULL pour ind ique r qu ’ i l
8 // e s t i n v a l i d e
9

10 s=mal loc (6∗ s izeof (char ) ) ; // a l l o c a t i o n d ’un
11 // espace memoire de
12 // 6 c a r a c t e r e s
13 s [ 0 ] = ’H ’ ; // stockage des 5 c a r a c t e r e s du
14 s [ 1 ] = ’ e ’ ; // mot Hel lo , s u i v i d ’un ca r a c t e r e
15 s [ 2 ] = ’ l ’ ; // nul pour terminer l a cha ine
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16 s [ 3 ] = ’ l ’ ;
17 s [ 4 ] = ’ o ’ ;
18 s [ 5 ] = ’ \0 ’ ;
19 p r i n t f ( "MESSAGE: ␣%s\n" , s ) ; // a f f i c h a g e de l a
20 // cha ine
21

22 i f ( s ) f r e e ( s ) ; // l i b e r a t i o n de l a memoire
23 // a l l o u e e par malloc , mais
24 // seulement s i s e s t un
25 // po inteur va l i d e ( non nul )
26 return 0 ;
27 }

4.1 Exercice : Questions notées

1. Reprenez le code de la page 14 sous C tutor et modifiez la ligne 5 en retirant l’indirection (*) : k=21;. Que se
passe-t-il ? Pourquoi ?

2. Un exemple classique de passage par variable est une fonction qui échange le contenu de deux variables 1.
C ne propose pas de mécanisme haut niveau comme Python et il faut donc faire les choses à la main. Je vous
propose le code suivant pour la fonction d’échange entre deux variables.

1 // f i c h i e r swapBad . c
2 #include <s td i o . h>
3

4 void swap ( f loat x , f loat y )
5 {
6 f loat tmp=x ;
7 x=y ;
8 y=tmp ;
9 return ;

10 }
11

12 int main ( )
13 {
14 f loat a=2.3 ;
15 f loat b=−1.7;
16

17 swap (a , b ) ;
18

19 p r i n t f ( "a=%f ␣ ; ␣b=%f \n" , a , b ) ;
20

21 return 0 ;
22 }

— Compilez et lancez ce programme. Fonctionne-t-il ? Pourquoi ? Vous pouvez utiliser C tutor pour comprendre
ce qui se passe.

— Corrigez ce code pour qu’il fonctionne et que le programme affiche a=-1.700000 ; b=2.300000. Vous me
rendrez le résultat sous la forme d’un fichier nommé swap.c

1. En Python, on peut le faire simplement (b,a = a,b) mais c’est parce que Python implémente un ensemble de structures de données et
de fonctions haut niveau qui sont appelées de manière sous-jacente et sans que le programmeur en ait conscience. Par exemple, le code python
b,a=a,b exploite la structure de données tuple : un tuple est créé à partir des valeurs de a et b, puis on crée un deuxième tuple à partir
du deuxième élément et du premier élément (dans cet ordre) du tuple précédent, puis le mécanisme haut niveau de dépaquetage (unpacking)
d’un tuple est appelé pour distribuer les valeurs stockées dans le tuple sur les variables b et a.
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5 Pointeurs et tableaux

5.1 Déclaration d’un tableau

Si on en connaît la taille, on peut déclarer un tableau de telle manière que la mémoire nécessaire soit automatiquement
allouée. Il y a plusieurs manières de le faire en C. Elles sont regroupées dans le code suivant :

1 int main ( )
2 {
3 f loat tab [ 1 0 ] ;
4

5 int l i s t e_nb [ ] = {1 ,3 , −2 ,5};
6

7 char cha ine [ ] = "Bonjour" ;
8

9 int N=4;
10 unsigned short quatre_ushorts [N ] ;
11

12 return 0 ;
13 }

On atteint ici une limitation de C tutor qui ne sait pas bien analyser ces déclarations. Nous devons donc nous en passer 2.
Analysons donc ce code :

— En ligne 3, nous déclarons une variable de nom tab qui est un tableau de 10 float. Les éléments de ce tableau ne
sont pas inialisés et donc le contenu du tabeau n’est pas valide. C’est la manière la plus répandue de déclarer un
tableau dont la taille connue.

— En ligne 5, nous déclarons une variable liste_nb qui est un tableau (présence des crochets []). On n’a pas besoin
de donner sa taille car il est initialisé avec une liste de 4 valeurs (1,3,-2,5) : on sait donc qu’il est de taille 4. Ici
l’initialisation est faite et le contenu du tableau est valide.

— En ligne 7, nous déclarons une variable chaine qui est un tableau de caractères. En C, c’est ainsi que sont repré-
sentées les chaînes de caractères. La chaîne "Bonjour" à droite de l’affectation est donc bien interprétée comme
un tableau de 8 caractères (ne pas oublier le ’\0’ final !). Ici encore l’initialisation permet de connaître la taille du
tableau et il n’est donc pas besoin de l’indiquer entre les crochets [].

— En lignes 9 et 10, on montre qu’on peut aussi déclarer un tableau (ici la variable quatre_ushorts) dont la taille
est donnée par la valeur d’une variable (ici N). Attention, toutefois : modifier la variable N par la suite ne changera
pas la taille du tableau. C’est bien la valeur de la variable au moment de la déclaration qui est prise comme taille,
fixe, du tableau.

Les lignes 5 et 7 sont des cas particuliers. En premier lieu, on peut se permettre d’omettre la taille du tableau (crochets
vides []) car la valeur passée à l’initialisation l’indique. Par exemple une déclaration char toto[]; ne sera pas valide et
provoquera l’erreur error: definition of variable with array type needs an explicit size or an initializer
indiquant qu’il faut absolument connaître la taille a priori du tableau.
Par ailleurs, les initialisations faites en lignes 5 et 7 ne peuvent être faites qu’au même moment où la variable est déclarée.
Dans le premier cas, le code

1 int l i s t e_nb [ 4 ] ;
2 l i s t e_nb = {1 ,3 , −2 ,5};

provoquera l’erreur error: expected expression : ce n’est pas valide en C. Il faut initialiser les éléments un par un.
Et dans le deuxième cas, le code :

1 char cha ine [ 8 ] ;
2 cha ine = "Bonjour" ;

provoquera l’erreur error: array type ’char [8]’ is not assignable.

2. Vous pouvez tester, mais faites attention à ce que C tutor vous montre. Ce n’est pas fiable.
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Dans ce cas, on utilisera les fonctions de la librairie standard pour manipuler des chaînes de caractères et en particulier
ici la fonction strcpy qui permet de recopier une chaîne de caractères :

1 #include <s t r i n g . h>
2 int main ( )
3 {
4 char cha ine [ 8 ] ;
5 s t r cpy ( chaine , "Bonjour" ) ;
6 return 0 ;
7 }

Toutes ces déclarations allouent automatiquement de la mémoire pour les variables tableau, et par conséquent cette
mémoire est automatiquement libérée est fin de fonction.

5.2 Lien entre tableau et pointeur

La dernière erreur donne une indication du type utilisé pour un tableau : on voit que chaine n’est pas de type char mais
de type char [8]. Cela ressemble au type pour un pointeur vers des char : char *.
En effet, en C, un tableau est un pointeur. Souvenez-vous qu’un tableau est stocké en mémoire sur des cases contiguës.
Une variable tableau contient l’adresse du premier élément. Pour vous en convaincre, compilez et lancez le code suivant :

1 // f i c h i e r tabptr . c
2 #include <s td i o . h>
3 int main ( )
4 {
5 f loat tab [ 3 ] ;
6

7 p r i n t f ( "Valeur ␣de␣ tab : ␣%p\n" , tab ) ;
8 p r i n t f ( "Adresse ␣du␣premier ␣ element : ␣%p\n" ,&tab [ 0 ] ) ;
9

10 return 0 ;
11 }

Compilez et lancez-le plusieurs fois : vous verrez qu’à chaque fois les deux adresses affichées sont les mêmes. En ligne 7,
on affiche la valeur stockée dans tab, et en ligne 8, on affiche l’adresse du premier élément de tab, c’est-à-dire de tab[0].

5.3 Passage d’un tableau en argument

Un tableau étant d’emblée un pointeur, il est systématiquement passé par variable en argument d’une fonction. Cette
fonction peut dès lors en modifier le contenu puisqu’elle sait où les informations sont stockées en mémoire. Par exemple
le code suivant va initialiser chaque élément d’un tableau à la valeur val (ici 1). Ce code peut être analysé sous C tutor
pour bien comprendre ce qui se passe.

1 void i n i t t a b ( f loat tab [ ] , int N, f loat va l )
2 {
3 int i ;
4 for ( i =0; i<N; i++) tab [ i ] = va l ;
5 return ;
6 }
7

8 int main ( )
9 {

10 f loat A[ 1 0 ] ;
11

12 i n i t t a b (A, 1 0 , 1 ) ;
13

14 return 0 ;
15 }

Sauf cas particulier, modifier un tableau ne signifie pas changer l’endroit où il est stocké en mémoire, mais bien en
modifier le contenu. On est bien dans un mécanisme de pointeur ou on indique un endroit en mémoire et on en modifie le
contenu. Vous remarquerez que l’on passe la taille du tableau en argument. Comme le tableau n’est qu’un pointeur, C va
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connaître la taille d’un élément du tableau (donné par le type pointé) mais ne peut pas connaître le nombre d’éléments
et donc la taille totale qu’occupe le tableau en mémoire. On doit donc systématiquement indiqué la taille lorsqu’on passe
un tableau en argument.

5.4 Renvoi d’un tableau

Comme la mémoire allouée automatiquement pour une fonction est automatiquement libérée lorsqu’elle se termine, on
ne peut pas renvoyer un tableau qui a été déclaré localement. Essayez de compiler par exemple le code suivant (ne peut
pas être analysé sous C tutor) :

1 // f i c h i e r r e t tab . c
2 f loat ∗ i n i t t a b ( int N, f loat va l )
3 {
4 f loat tab [N ] ;
5 int i ;
6 for ( i =0; i<N; i++) tab [ i ] = va l ;
7 return tab ;
8 }
9

10 int main ( )
11 {
12 f loat ∗ tab = i n i t t a b ( 1 0 , 1 ) ;
13 return 0 ;
14 }

Vous avez un avertissement warning: address of stack memory associated with local variable ’tab’ returned
vous indiquant que vous renvoyez l’adresse d’une variable allouée sur la pile (stack) mais qui n’est plus valide : en effet
la variable tab est locale à inittab et la mémoire qui lui est réservée est donc libérée dès que la fonction se termine.
Elle n’est donc plus valide une fois qu’on retourne à main.

5.5 Exercice : Questions notées

1. Écrivez une fonction qui prend en argument un tableau de float (ainsi que sa taille) et ajoute 1 à chaque élément.
Vous me rendrez le résultat sous la forme d’un fichier nommé ajoute.c. Ce fichier doit pouvoir être compilé puis
exécuté. Il doit donc avoir une fonction main en plus de la fonction demandée.

2. Faites en sorte que le renvoi de tableau du dernier exemple fonctionne. On utilisera pour cela la fonction malloc.
Attention à bien utiliser en regard la fonction free au bon endroit dans votre fonction main. Vous me rendrez cette
question sous forme du fichier nommé alloue_tab.c.
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6 Fichiers (Optionnel)

6.1 Entrée/sortie standard

Nous avons déjà vu la fonction printf qui permet d’écrire une chaîne de caractères sur l’écran, autrement dit ce qu’on
appelle la sortie standard. Le premier argument est appelé format et comprend des séquences commençant par % qui se
verront remplacées par la valeur des variables mises dans la suite des arguments de printf (voir le TP précédent pour
les différents formats, et la commande shell man -s 3 printf pour une documentation extensive).
Sa contrepartie est la fonction scanf qui permet de lire des valeurs sur l’entrée standard, c’est-à-dire entrées au clavier
par l’utilisateur (un peu comme input en python). scanf prend les mêmes arguments que printf, à savoir une chaîne
de caractères qui indique le format, puis une suite d’arguments qui sont chacun associés à une séquence commençant par
%. La différence, est qu’ici la valeur de ces variables est lue dans la chaîne de caractères entrées au clavier. Du coup, ces
variables doivent être passées par variable : autrement dit on indique un pointeur vers ces variables à la fonction scanf.
Par exemple, testez le petit code suivant

1 // f i c h i e r input . c
2 #include <s td i o . h>
3

4 int main ( )
5 {
6 char c ;
7 int i ;
8 f loat f ;
9 char s [ 1 0 ] ;

10 int r e t ;
11 r e t=scan f ( "Un␣ char ␣%c , ␣un␣ e n t i e r ␣%d , ␣un␣ r e e l ␣%f , ␣une␣ chaine ␣%s␣ et ␣c ’ e s t ␣ tout . " , &c , &i , &f , s ) ;
12 p r i n t f ( "Resu l tat ␣(%d ) : ␣%c␣//␣%d␣//␣%f ␣//␣%s␣//\n" , ret , c , i , f , s ) ;
13 return 0 ;
14 }

scanf renvoie le nombre d’arguments correctement lus (stocké dans ret). On remarqura qu’on prend l’adresse
de tous les paramètres de scanf, sauf s. s est en effet une chaîne de caractères, donc un tableau et on cherche à
renseigner non pas l’adresse de ce tableau mais bien tous les éléments qu’il contient. On passe donc simplement l’adresse
de ces éléments, c’est-à-dire s elle-même.
Testez avec différentes entrées au clavier et vous verrez que cette fonction est assez délicate à manipuler. À noter toutefois
que la forme %* permet d’indiquer que le format doit contenir un certain élément, dont on indique le format, mais dont la
valeur ne nous intéresse pas : cette marque de formatage n’aura donc pas de variable associée dans la liste d’arguments.
Par exemple :

1 char pays [ 2 5 6 ] ;
2 f loat temp ;
3 s can f ( "%s ␣%∗s ␣%f \n" , pays , &temp ) ;

Lira bien une ligne qui contient une première chaîne de caractères (sans espace, ni tabulation), qui correspond au nom
d’un pays, puis une deuxième chaîne de caractères (sans espace, ni tabulation), mais qui ne nous intéresse pas, puis un
réel qui indique une température. On remarquera l’allocation automatique de la variable pays, suffisamment grande pour
accueillir un nom de pays (dont la longueur est a priori variable et dont on ne connaît pas la longueur maximale, il faut
donc utiliser une borne haute raisonnable, ici 256).

6.2 Fichiers

Il existe les mêmes fonctions pour les fichiers. Elles ont pour noms fprintf et fscanf. Elles prennent les mêmes arguments
que printf et scanf, sauf qu’il faut mettre en premier un nouvel argument : un pointeur vers un fichier. Une variable
fichier est de type FILE : elle se crée par la fonction fopen qui prend en paramètre une chaîne de caractères (nom d’un
fichier), ouvre ce fichier, et renvoie un pointeur vers un FILE. Le pointeur est libéré par un appel à fclose qui ferme
également le fichier précédemment ouvert.
Un fichier peut être ouvert en lecture et/ou en écriture. Afin de spécifier le mode d’ouverture, la fonction fopen prend
un deuxième argument sous forme de chaîne de caractères : "r" pour ouvrir en lecture seule, "w" pour ouvrir en écriture
(écrase le contenu du fichier, ou crée le fichier s’il n’existe pas), ou "a" pour ouvrir en écriture (se positionne en fin de
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fichier, ce qui permet donc d’en étendre le contenu). fopen renvoie le pointeur NULL en cas d’échec. Voir l’aide en ligne
du shell par la commande man -s 3 fopen.
L’exemple suivant fait simplement une recopie d’un fichier, passé en argument du programme, dans le fichier passé en
second argument du programme : on suppose juste ici que le premier fichier contient une liste de réels, ces réels étant
recopiés, un par ligne, dans le fichier en sortie. Le fichier reels.txt nécessaire à ce programme est fourni dans l’archive.

1 // f i c h i e r cop i e . c
2 #include <s td i o . h>
3

4 int main ( int argc , char ∗argv [ ] )
5 {
6 char f i c h i e r I n [ ]= " r e e l s . txt " ;
7 char f i c h i e rOut [ ]= " r e e l s_cop i e . txt " ;
8

9 FILE ∗ fIn , ∗ fOut ;
10 f loat va l ;
11

12 // ouvre l e premier f i c h i e r en l e c t u r e
13 f I n = fopen ( f i c h i e r I n , " r " ) ;
14

15 // t e s t s i tout s ’ e s t b ien passe
16 i f ( ! f I n )
17 {
18 f p r i n t f ( s tde r r , " Imposs ib l e ␣d ’ ouv r i r ␣ l e ␣ f i c h i e r ␣%s ␣en␣ l e c t u r e \n" , f i c h i e r I n ) ;
19 return 2 ;
20 }
21

22 // s i on e s t la , c ’ e s t que tout va bien . On ouvre l e deuxieme f i c h i e r en e c r i t u r e
23 fOut = fopen ( f i ch i e rOut , "w" ) ;
24 // on t e s t encore s i tout e s t ok
25 i f ( ! fOut )
26 {
27 f p r i n t f ( s tde r r , " Imposs ib l e ␣d ’ ouv r i r ␣ l e ␣ f i c h i e r ␣%s ␣en␣ e c r i t u r e \n" , f i c h i e rOut ) ;
28 return 3 ;
29 }
30

31 // r e a l i s e l a cop i e : on suppose que l e f i c h i e r ne con t i en t que des va l eu r s r e e l l e s
32 while ( f s c a n f ( f In , "%f " , &va l ) == 1)
33 f p r i n t f ( fOut , "%f \n" , va l ) ;
34

35 // ferme l e s f i c h i e r s ouver t s
36 f c l o s e ( f I n ) ;
37 f c l o s e ( fOut ) ;
38

39 return 0 ;
40 }

On remarquera l’usage de stderr, lignes 18 et 27 : il s’agit d’un fichier ouvert par défaut vers la sortie d’erreur standard.
Il existe deux autres fichiers ouverts par défaut : stdout pour la sortie standard et stdin pour l’entrée standard, ce qui
fait que printf(...) est équivalent à fprintf(stdout, ...) et scanf(...) est équivalent à fscanf(stdin, ...). On
remarquera par ailleurs l’usage de valeurs non nulles renvoyées par le programme en cas d’erreur. La boucle while en
lignes 32 et 33 permet de réaliser la copie, celle-ci s’arrêtant quand on ne peut plus lire de réel. Une autre manière de
tester si nous sommes arrivés à la fin d’un fichier serait d’appeler la fonction feof(fIn) qui renvoie 0 tant que nous ne
sommes pas à la fin du fichier. Pour plus d’informations sur la lecture et écriture dans un fichier, je vous invite à aller
aussi vous renseigner sur les fonctions fwrite et fread, et ne pas vous arrêter là car bien d’autres possibilités existent
que nous n’avons pas le temps de voir ici.
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6.3 Exercice : Question notée (Optionnelle)

Ecrivez un programme, que vous nommerez readDB, correspondant au fichier source readDB.c, qui prend en entrée un
fichier contenant sur chaque ligne un nom, suivi d’un prénom, puis un âge et enfin un genre (M ou F). Le programme
renverra :

1. Le nombre de personnes (autrement dit le nombre de lignes)
2. Le nombre d’hommes et de femmes
3. L’âge moyen de ces personnes

Par exemple si je donne le fichier suivant en entrée (fichier DB.txt) :

Enfant Hélène 44 F
Enfant Ludivine 47 F
Flaille Abdel 19 M
Flaille Akim 23 M
Flaille Yves 21 M
Neymar Jean 24 M
Titegoute Justine 78 F
Yapudebiairedenlefrigo Robin 67 M

Le programme répondra :

Le fichier contient 8 noms de personnes, dont 5 hommes et 3 femmes, avec un âge moyen de 40.375 ans.
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7 Bonus : arithmétique des pointeurs et conversion

Nous avons vu l’opération d’indirection (*) sur un pointeur. Il existe une autre opération qu’on peut faire : c’est le
décalage. Il permet de modifier l’adresse contenue dans le pointeur vers la fin de la mémoire (opération +) ou vers le
début (opération -). Il est important de noter que le premier terme de l’addition (soustraction) est forcément une adresse
(pointeur) et le second est un entier long. Cet entier long indique le nombre d’éléments dont il faut se décaler (et non
pas le nombre d’octets : on se décale d’un nombre entier d’éléments).
Compilez et lancez le code suivant pour bien comprendre ce décalage :

1 // f i c h i e r a r i t hp t r 1 . c
2 #include <s td i o . h>
3

4 int main ( )
5 {
6 int ∗ tab ;
7

8 p r i n t f ( "Pointeur : ␣%p\n" , tab ) ;
9 p r i n t f ( "Decalage ␣de␣+1:␣%p\n" , tab+1);

10 p r i n t f ( "Decalage ␣de␣−1:␣%p\n" , tab −1);
11 return 0 ;
12 }

Remarques :
— Je n’ai pas besoin d’initialiser le pointeur en ligne 6 : je ne vais pas faire d’indirection et donc il n’y a pas de souci

d’accès mémoire.
— Même si je ne l’initialise pas, tab contient quand même une valeur (ce que le dernier processus à accéder à cet

espace mémoire y avait écrit là).
— Cette initialisation n’est pas à 0. Il faut le faire à la main si c’est important dans votre code. Initialisez vos variables !
— On remarque que le décalage est bien de 4 octets (en + ou en -), ce qui correspond bien à 1 int

Du coup, on peut comprendre comment se fait l’accès à un élément quelconque d’un tableau. Compilez et lancez le code
suivant :

1 // f i c h i e r a r i t hp t r 2 . c
2 #include <s td i o . h>
3

4 int main ( )
5 {
6 int tab [ ]={1 , 2 , 3 , 4 } ;
7

8 p r i n t f ( "Pointeur : ␣%p\n" , tab ) ;
9 p r i n t f ( "1 er ␣ element : ␣%p␣<−>␣%p\n" , tab , &tab [ 0 ] ) ;

10 p r i n t f ( "2e␣ element : ␣%p␣<−>␣%p\n" , tab+1, &tab [ 1 ] ) ;
11 p r i n t f ( "3e␣ element : ␣%p␣<−>␣%p\n" , tab+2, &tab [ 2 ] ) ;
12 p r i n t f ( "4e␣ element : ␣%p␣<−>␣%p\n" , tab+3, &tab [ 3 ] ) ;
13

14 p r i n t f ( "1 er ␣ element : ␣%d␣<−>␣%d\n" , ∗tab , tab [ 0 ] ) ;
15 p r i n t f ( "2e␣ element : ␣%d␣<−>␣%d\n" , ∗( tab+1) , tab [ 1 ] ) ;
16 p r i n t f ( "3e␣ element : ␣%d␣<−>␣%d\n" , ∗( tab+2) , tab [ 2 ] ) ;
17 p r i n t f ( "4e␣ element : ␣%d␣<−>␣%d\n" , ∗( tab+3) , tab [ 3 ] ) ;
18 return 0 ;
19 }

Accéder à l’élément de rang i revient donc à décaler le pointeur de +i et déréférencer l’adresse obtenue.
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Enfin, comme tout pointeur, quelque soit le type pointé, est une adresse, on peut sans aucun souci modifier le type pointé
grâce à une conversion de type. Une conversion de type en C est très simple à faire (trop parfois, ce qui peut poser de
sacrés soucis si on ne fait pas attention... n’hésitez pas à expérimenter !). Nous allons pouvoir utiliser ça pour regarder
un à un les octets qui permettent de coder un entier. Compilez, lancez et analysez le code suivant :

1 // f i c h i e r byteperbyte . c
2

3 #include <s td i o . h>
4

5 int main ( )
6 {
7 int i =1; // d e c l a r a t i on d ’un e n t i e r i i n i t i a l i s e a 1
8 int ∗ p i=&i ; // stockage de l ’ addres se de i dans l e po inteur p i
9 char ∗pc=(char ∗)& i ; // idem mais avec un po inteur char ∗

10

11 int j ;
12

13 p r i n t f ( "Valeur : ␣%d\n" , i ) ;
14 p r i n t f ( "Via␣ l e ␣ po inteur ␣ e n t i e r : ␣%d\n" , ∗ p i ) ;
15 p r i n t f ( "Via␣ l e ␣ po inteur ␣ char : ␣" ) ;
16 // l e c t u r e o c t e t par o c t e t de l ’ espace memoire de i
17 for ( j =0; j<s izeof ( int ) ; j++) p r i n t f ( "%d␣" , pc [ j ] ) ;
18 p r i n t f ( "\n" ) ;
19 return 0 ;
20 }

Qu’en déduisez-vous ?
Changez le code pour initialiser i à -1. Qu’obtenez-vous ? Pourquoi ?

26


	Objectifs du TP 
	Pointeur : variables et mémoire 
	Organisation de la mémoire
	Variables et mémoire
	Variables et types

	Fonction et mémoire
	Exemple de base: variable locale
	Cas des variables d'entrée
	Cas d'une valeur renvoyée


	Pointeurs 
	L'opérateur addresse-de
	L'opérateur d'indirection (ou déréférencement).
	Déclaration d'une variable de type pointeur.
	C tutor

	Passage par variable (ou par référence) 
	Exercice : Questions notées

	Pointeurs et tableaux
	Déclaration d'un tableau
	Lien entre tableau et pointeur
	Passage d'un tableau en argument
	Renvoi d'un tableau
	Exercice : Questions notées

	Fichiers (Optionnel)
	Entrée/sortie standard
	Fichiers
	Exercice : Question notée (Optionnelle)

	Bonus: arithmétique des pointeurs et conversion 

