5 janvier 2025
Erwan Kerrien

R1.01 INITIATION AU DEVELOPPEMENT — SAE2

WORLD OF 1UT, UNE AVENTURE TEXTUELLE

Rappel : si vous avez des questions sur cette SAE ou sur le cours, n’hésitez pas & m’envoyer un mail & Erwan.Kerrien@inria.fr

1 Consignes pour le rendu

Cette SAE est a faire par binomes. Elle doit prendre la forme d’un dépoét git sur [gitlab.univ-lorraine.fr. Vous devez
inviter M. Kerrien comme administrateur : identifiant @kerriens.

Le dépot contiendra le code source, ainsi qu’un rapport, et d’éventuels fichiers de test. L’état du dépét le 5 janvier 2025
a 23h59 sera noté pour évaluer cette SAE. Aucun push ultérieur ne sera pris en compte.

— Le code source devra étre correctement commenté.

— Vous fournirez un fichier Makefile pour compiler votre projet[ﬂ Un fichier Makefile de départ vous est fourni dans
les ressources de la SAE, et vous aurez juste a le mettre a jour en fonction des fichiers que vous ajouterez. Pour
quelques explications sur comment fonctionne la programmation modulaire et le role du Makefile, vous pouvez
lire ’annexe en fin de document.

— Le rapport sera rendu au format pdf. Il fera au minimum 2 pages, mais n’excédera pas 5 pages. Il devra discuter et
justifier du choix des structures de données utilisées. Il devra par ailleurs discuter des fonctionnalités et limitations
du programme. Vous pourrez pour cela vous baser sur un ensemble de tests qu’il faudra alors décrire. Les fichiers
nécessaires aux tests seront ajoutés au dépot.

— Le rapport devra indiquer précisément comment le travail a été partagé, et clairement identifier la part de chacun
dans chaque tache.

— Pour celles et ceux qui aborderont la partie avancée, le fichier de description d’un jeu devra avoir un nom avec pour
extension .txt.

Voici la liste exhaustive des fichiers attendus a minima :

— Makefile

— WorldOfIUT.c

— game.c et game.h

— cmd.c et cmd.h

— exits.c et exits.h

— mobile.c et mobile.h

— location.c et location.h

— stack.c et stack.h

— rapport.pdf

En option, vous pourrez avoir :

— un fichier README.md qui agrémente la page gitlab

— les fichiers object.c et object.h

— éventuellement les fichiers stackobject.c et stackobject.h

— et/ou des fichiers de description du jeu avec l'extension .txt

— et /ou des fichiers test<x>.c qui sont des versions de test de World0fIUT.c

Trés important : le dépdt ne devra pas contenir de fichier exécutable, ni de fichier objet (*.0). Les seules extensions
autorisées pour les fichiers sont donc : .c, .h, .pdf, .txt, auxquelles on ajoute le fichier Makefile et le fichier
README.md. Tout manquement i cette régle sera sanctionné.[ﬂ

1. ce fichier est exploité par la commande make qui n’est pas disponible par défaut mais s’installe au besoin par un simple sudo apt install
make dans un terminal

2. Si vous voulez effacer tous les fichiers objets et executables générés par la compilation, il suffit de taper make clean (sous Linux) pour
vous en débarasser.

mailto:Erwan.Kerrien@inria.fr
https://gitlab.univ-lorraine.fr

2 Objectifs de la SAE

Vous devez créer le jeu World of IUT, une version trés basique d’un jeu d’aventure textuelle. Ces jeux étaient trés
populaires dans les années 80 et 90 et sont les ancétres des MMORPG actuels. L’un des tout premiers jeux d’aventure
textuelle est The Colossal Cave Adventure (vous pouvez y jjouer si vous voulez, mais en-dehors des cours!).

De nombreuses améliorations ont successivement été proposées, jusqu’a en faire des jeux en réseaux réunissant de nom-
breux joueurs, comme les MUD (Multi- User Dungeon) dont FranDUMﬂ La base cependant est la méme : tout se fait de
maniére textuelle. Le joueur utilise des commandes pour interagir avec le monde. Les actions sont décrites par du texte,
ainsi que les lieux, objets ou autres monstres rencontrés. Ces jeux ne nécessitent donc pas d’interface graphique et tout
se déroule dans la fenétre de commande.

Pour que cela fonctionne, le monde est découpé en cases dans lesquelles le joueur ou la joueuse peut se déplacer selon
des directions prédéfinies. Les cases ont chacune un nom (description courte) et une description plus longue. L’objectif
principal de la SAE est de réussir a avoir ce systéme de cases pour créer un espace que le joueur va pouvoir explorer.
Atteindre cet objectif assurera déja une note suffisante pour valider la SAE.

Deux améliorations seront proposées pour celles et ceux qui veulent aller plus loin :

— étendre le jeu pour que des objets puissent étre placés dans les cases. Ils pourront alors étre ramassés ou déposés
par le joueur ou la joueuse (notion d’inventaire).

— pouvoir charger les cases (et objets) du jeu depuis un fichier de description. Plusieurs mondes pourront alors étre
proposés sans avoir & recompiler le jeu.

Ajouter des monstres serait plus compliqué car il faudrait introduire la notion de temps (pour le déplacement des monstres
ou encore pouvoir créer un systéme de combat). Aussi, nous nous contenterons de créer 1’espace et éventuellement les
objets, ce qui devrait déja vous donner une bonne idée de la maniére dont ces jeux sont programmés.

2.1 Monde minimal

Je demande un monde minimal décrit dans la figure[I] Les cases 11 et 12 sont bien respectivement dans les directions UP
et DOWN par rapport a la case 5. Vous mettrez les descriptions que vous voulez, & condition qu’elles donnent les bonnes
indications au joueur pour s’orienter.

3 Premiére étape : comprendre le matériau fourni

Pour commencer ce projet, récupérez le fichier d’archive fourni et décompressez-le dans un dossier. Vérifiez que vous avez
les fichiers suivants :

— Makefile

— WorldOfIUT.c

— game.c et game.h
— cmd.c et cmd.h

— exits.c et exits.h

— mobile.c et mobile.h

3.1 Compilation et lancement du jeu

Ouvrez Visual Studio (ou VSCodium), et ouvrez le dossier contenant ces fichiers (File puis Open folder...).
Le fichier Makefile sert & compiler le projet. Ouvrez un terminal et tapez la commande make sous Linux.
Cette commande compile le projet. Vérifiez que cela a fonctionné en lancant le jeu par la commande : . /World0fIUT

Les commandes sont toutes fonctionnelles, sauf look et go qui sont dans une version trés basique (charge a vous de les
terminer !). Vous pouvez les tester et les tapant aprés l'invite de commande (->). En voici la liste (qui reprend ’aide) :

— help : affiche 'aide
— quit : permet de quitter le jeu et de revenir au shell

3. entiérement écrit en C et dont j’ai eu la chance d’étre administrateur pendant un an pendant mes études. Il est aujourd’hui tombé en
désuétude et ne fonctionne plus...

https://fr.wikipedia.org/wiki/Colossal_Cave_Adventure
https://grack.com/demos/adventure/
http://www.frandum.fr

— look : affiche une description de ’endroit, objet, personnage, direction passé en argument. Pour le moment, seule
look me fonctionne. look around ou tout autre argument look <arg>, vous indique que vous étes dans le vide et
vous incite & coder les cases du jeu.

— go : permet de se déplacer dans la direction indiquée. Pour le moment, si I'argument <arg> est une direction
valide, le message You go <arg> s’affiche. Sinon, cela affiche You try to go <arg>, but you cannot go <arg>
from nowhere. You (God) should create some locations..., qui vous incite & nouveau travail de création du
monde.

Testez les commandes suivantes : help, look, look blabla, look me, go, go blabla, go south et quit

3.2 Analyse des fichiers

Hormis le fichier Makefile, il y a deux sortes de fichiers. Un fichier de programme principal (World0OfIUT.c) et des
couples de fichiers avec les extensions .h et .c qui définissent chacun un module. Les modules sont game, exits, cmd, et
mobile.

3.2.1 Le programme principal : WorldOfIUT.c

WorldOfIUT.c est le fichier du programme principal. C’est dans ce fichier qu’est définie la fonction main qui exécute le
programme. Vous pouvez voir qu’il est simple : un message de bienvenue s’affiche (fonction Intro, puis une structure Game
est initialisée (voir le module game), puis une boucle infinie (while (1)) est lancée qui appelle la fonction processCommand
définie dans le module cmd : cette fonction affiche 'invite de commande, lit la commande de 1'utilisateur et la traite. En
particulier, si 'utilisateur entre la commande quit, le programme se terminera, sortant ainsi de la boucle infinie.

3.2.2 Définition d’un module

Un module est composé de deux fichiers de méme nom, si ce n’est une extension différente. L’extension .h contient les
déclarations. Ces déclarations doivent permettre au compilateur de vérifier que 'utilisation des structures ou fonctions
ou autres constantes par une autre module ou fichier est correcte. On trouvera donc la définition des structures ainsi que
la déclaration des fonctions par leur prototype : on ne donne que le type de retour, le nom de la fonction, ainsi que le
type de chacun de ses paramétres (donc leur nombre).

3.2.3 Mobule game

Le module game définit la structure Game et les fonctions disponibles pour la manipuler depuis l'extérieur. Ceci est
décrit dans le fichier game.h. Cette structure a pour vocation de rassembler les références vers tous les objets (au sens
large : joueur, cases, objets éventuels) du jeu. Pour l'instant elle ne contient donc qu’un pointeur vers le joueur qui est un
Mobile (voir le module mobile). On trouve ensuite la fonction GameInit qui crée la structure (en allouant la mémoire
nécessaire, d’ou le type pointeur renvoyé), et la fonction GameShutdown qui la détruit, en réalisant toutes les libérations
de mémoire nécessaires. Le fichier game.c contient la définition de ces fonctions.

3.2.4 Module mobile

Le module mobile définit la structure Mobile et les fonctions disponibles pour la manipuler. Cette structure décrit
un personnage et ne sera utilisée que pour le joueur. La structure Game contient donc une référence vers ce mobile. Un
mobile est décrit par un nom (chaine de caractéres name) ainsi qu’une description plus longue (chaine de caractéres
desc). La fonction MobileNew permet de créer une telle structure (en utilisant la fonction standard strdup pour a la
fois allouer et recopier une chaine de caractéres) et la fonction MobileDelete permet de libérer la mémoire associée a
cette structure (notamment appel a free pour libérer la mémoire allouée via strdup). Enfin la fonction MobilePrint
affiche une description d’un objet de ce type, avec une premiére ligne qui contient le nom, suivi sur les autres lignes, de
sa description. Vous devrez modifier cette structure pour indiquer une case pour le mobile, et écrire une
fonction permettant de bouger le mobile.

3.2.5 Module exits

Le module exits définit le type Direction et les fonctions associées (voir le fichier exits.h). On utilise ici une
nouveau mot-clé enum qui permet de définir un type par 'ensemble des valeurs acceptées. Le langage C utilise de maniére

sous-jacente le type int et la notation employée permet de spécifier que la valeur WRONGDIR de type Direction sera
traduite par -1 si on souhaite 1'utiliser comme entier, puis NORTH vaudra O et implicitement on incrémente de 1 pour les
valeurs suivantes (donc EAST=1, SOUTH=2, WEST=3, UP=4 et DOWN=D5). Ainsi qu’indiqué dans le commentaire, on peut
ainsi réaliser une boucle sur toutes les directions en faisant un for (int i=NORTH; i<=DOWN; i++).... Le module met
ensuite a disposition deux fonctions permettant de transformer une chaine de caractéres en valeur de type Direction
(fonction strtodir) et inversement traduire une valeur de Direction en chaine de caractéres (fonction dirtostr). Ces
fonctions sont définies dans le fichier exits.c.

3.2.6 Module cmd

Le module cmd gére 'interaction utilisateur via les commandes qu’il ou elle rentre. On voit dans le fichier cmd.h qu’il
ne rend disponible qu’une seule fonction processCommand qui prend en paramétre les informations sur le jeu (variable
de type Game). Cette fonction affiche I'invite de commande, lit une commande sur Pentrée standard et la traite. Si vous
allez regarder le fichier cmd.c, vous verrez que ce traitement est fait par plusieurs fonctions :

— la fonction getInput affiche I'invite de commande puis lit une ligne entrée par 'utilisateur grace a la fonction
getline (non disponible sous Windows)

— puis cette ligne est traitée par la fonction parseAndExecute qui extrait le premier mot de la commande (via la
fonction strtok de la bibliothéque standard), et en fonction de ce mot va appeler la fonction correspondant a la
commande, et & défaut afficher un message d’erreur.

— si la commande est "help", alors la fonction cmdHelp est appelée : celle-ci affiche simplement un message d’aide
avec printf

— sila commande est "quit", alors la fonction cmdQuit est appelée, avec le jeu en paramétre : celle-ci libére proprement
la mémoire occupée par le jeu (via GameShutdown) puis quitte le programme en appelant exit. Le 0 passé en
paramétre est la valeur renvoyée par I'exécutable au shell et indique que cette fin de programme est normale.

— si la commande est "look", alors la fonction cmdLook est appelée avec en paramétre le jeu ainsi que le deuxiéme mot
sur la ligne de commande (aussi extrait via strtok et stocké dans la variable args). Cette fonction vérifie que la
commande a été correctement émise et ne réagit correctement pour 'instant que si le second mot est "me", auquel
cas elle affiche les informations sur le joueur en appelant la fonction MobilePrint avec en paramétre le joueur stocké
dans la structure Game (voir le module mobile). Sinon, elle affiche un message standard. Vous devrez enrichir
cette fonction cmdLook

— si la commande est "go", alors la fonction cmdGo est appelée avec le jeu en paramétre ainsi que le deuxiéme mot sur
la ligne de commande (voir "look" ci-dessus pour voir comment il est extrait). Cette fonction fait un peu comme
cmdLook pour le moment et vérifie que la syntaxe est correcte puis regarde si le second mot est une direction valide
(via la fonction strtodir qui renvoie dans ce cas autre chose que WRONGDIR), auquel cas elle affiche "You try to go
<dir>, but you cannot go <dir> from nowhere. You (God) should create some locations...", sinon, elle affiche un
message d’erreur. Vous devrez enrichir et compléter cette commande.

Ces commandes "look" et "go" sont la raison pour laquelle 'anglais est la langue utilisée dans le jeu : la syntaxe anglaise
permet de simplifier grandement la gestion des messages face a la diversité possible des arguments (par exemple, pas de
genre...)

3.3 Reécapitulatif et précisions des objectifs

Aucun lieu n’est défini pour le moment, 'objectif est de rajouter un espace que le joueur ou la joueuse peut explorer
(commande "look") et dans lequel il ou elle peut se déplacer (commande "go"). Vous devrez donc, comme objectif
principal :

— avoir défini une structure Location qui permet de stocker une case de 'espace. Cette structure sera associée a
des fonctions de création LocationNew et de destruction LocationDelete, ainsi qu’a des fonctions d’affichage
LocationPrint ainsi que plus tard LocationPrintShort.

— S’y ajoutera une fonction de création de toutes les cases du jeu LocationInit couplée a une fonction de destruction
de toutes ces cases LocationDestroy. Ces fonctions devront gérer intelligemment la mémoire, ce qui nécessitera
une structure de pile.

— Tout ceci sera défini dans un nouveau module location et donc deux fichiers location.h et location.c, ainsi
qu’uu nouveau module stack (et donc les fichiers stack.c et stack.h) que vous devrez écrire.

— modifier la structure Mobile pour y ajouter un pointeur vers une Location et ainsi placer le joueur dans le jeu.
Une nouvelle fonction MobileMove sera écrite pour placer le joueur dans un nouvel endroit.

— modifier les fonctions cmdLook et cmdGo afin de pouvoir bénéficier des commandes "look around" (regarder I’endroit
ol est couramment le joueur), "look <dir>" (pour regarder quel endroit se trouve dans la direction <dir> indiquée,
et "go <dir>" pour déplacer le joueur dans la direction indiquée.

— modifier la structure Game afin que la mémoire soit correctement gérée (allocation et libération).

4 Deuxiéme étape : le module Location

4.1 Création du module

En prenant exemple sur le module mobile, créez un nouveau module location qui définit la structure Location, similaire
a la structure Mobile et qui contiendra aussi un champ name pour son nom et un champ desc pour sa description, tous
deux des chaines de caractéres. Associez-lui

— une fonction LocationNew, similaire a MobileNew qui alloue une nouvelle structure et en renvoie le pointeur
— une fonction LocationDelete, similaire & MobileDelete, et qui libére la mémoire allouée par la fonction précédente

— une fonction LocationPrint, similaire & MobilePrint qui affiche le nom de la Location sur une premiére ligne,
puis sa description sur les lignes suivantes.

Ces diverses déclaractions et définitions seront faites dans deux fichiers location.h et location.c

4.2 Intégration au projet
4.2.1 Impact sur le Makefile

Modifiez le Makefile pour que le nouveau module location soit compilé avec le projet. Dans ce qui suit, modifiez &
chaque fois le Makefile de facon & indiquer la dépendance éventuelle d’'un module au fichier Location.h.

4.2.2 Impact sur le Mobile

Modifiez la structure Mobile pour y ajouter une référence vers sa localisation stockée dans une Location. Ajoutez au
module une fonction MobileMove qui prendra en paramétre un pointeur vers un Mobile, ainsi qu’un pointeur vers une
Location et stockera ce dernier dans le nouveau champ.

4.2.3 Impact sur le Game

Modifiez la fonction GameInit pour y ajouter la création d’une Location et son stockage dans le Mobile du joueur. On
pourra utiliser la fonction MobileMove pour réaliser ce lien. On pourra utiliser par exemple "On the road" comme nom a
stocker dans la Location et "The road continues north and south. You can see a house on the west." comme description.

4.2.4 Impact sur la commande "look"

Modifiez la fonction cmdLook afin d’afficher les informations sur la localisation courante du joueur si le deuxiéme mot est
"around". On pourra utiliser la fonction LocationPrint.

5 Troisiéme étape : créer et connecter les Location

5.1 Mise a jour du module location

Modifiez la structure Location afin de pouvoir y stocker des références vers des Location situées dans chaque direction
valide. On pourra utiliser un tableau de pointeurs (un pointeur par direction). L’absence d’issue dans une direction sera
indiquée par le pointeur NULL.

Ajoutez une fonction LocationInit qui crée toutes les cases du monde et établit les connections entre elles. Les noms
et descriptions seront entrés en dur a ce stade (voir la description du monde minimal de la figure [I)). La fonction
renverra la premiére case créée. Pour plus de lisibilité, on pourra écrire une fonction (non exposée a Uextérieur dans le
.h) LocationSetExit qui prend en paramétre un pointeur vers une Location, une Direction et un autre pointeur vers
une Location et qui stocke ce dernier pointeur comme issue dans la direction indiquée pour la premiére Location.

5.2 Intégration du projet
5.2.1 Impact sur le Game

Modifiez la fonction GameInit pour ne plus créér une seule Location mais toutes les Locations par un appel a
LocationInit. Déplacez le joueur dans la bonne case, dans cette fonction.

5.2.2 Impact sur la commande "go"

Modifiez la fonction cmdGo pour déplacer le joueur dans la direction indiquée si celle-ci est valide et si la case actuelle a
bien une issue dans cette direction. Sinon, affichez un message approprié.

5.2.3 Impact sur la commande "look"

Modifiez la fonction cmdLook pour que le nom de la case attenante s’affiche quand on indique une direction valide, et
correspondant & une issue, en deuxiéme mot de la commande.

6 Quatriéme étape : une gestion correcte de la mémoire

6.1 Analyse du probléme
6.1.1 Description du probléme

Il faut pouvoir libérer la mémoire allouée pour les différentes Locations. On ne peut cependant pas utiliser la méme
stratégie que pour une liste chainée car il peut y avoir des cycles dans le monde. Si vous regardez le monde minimal de
la figure [1} vous voyez le cycle : 5-6-7-8-9-10-5...

En procédant comme une liste chainée, on libérerait la mémoire de la case 5, puis celle de ses voisines, dont 6, puis on
libérerait successivement 7, 8, 9, 10, ... puis 5 qui est déja libérée, ce qui provoquerait un segmentation fault.

6.1.2 Une solution : une pile de stockage

Cette situation est délicate a gérer. Mais on peut s’en sortir avec une structure de pile : & chaque fois qu'on crée une
Location, on pousse son pointeur sur une pile. Dans ce cas, tous les pointeurs alloués seront dans cette pile, une et
une seule fois, et il suffira donc de libérer successivement chaque pointeur de cette pile, sans se soucier des Locations
voisines. Par exemple, dans notre pile, on aura le pointeur vers 10, puis 9, puis 8, puis 7, 6, et 5. On libére 10, mais sans
appel récursif de libération sur les voisines, puis on fait de méme avec 9, 8,7,6 et 5 : & la fin toutes les Locations ont
bien été libérées une et une seule fois.

6.1.3 Création d’un module stack

En vous inspirant du TP sur les listes chainées ou du TP sur les piles, créez un module stack (fichiers stack.h et
stack.c) qui définit un type Stack implémentant une pile. Chaque cellule de la pile stockera un pointeur vers une
Location, ainsi qu’'un pointeur vers la cellule suivante. Vous définirez :
— la constante empty_stack.
— la fonction StackIsEmpty qui détermine si un Stack est empty_stack
— la fonction StackPush qui insére un pointeur sur une Location sur la pile, et renvoie la nouvelle pile. Ce pointeur
est le résultat d’un appel & LocationNew.
— la fonction StackHead qui renvoie le pointeur vers la Location stockée sur la pile. Pour détruire cette Location,
on pourra appeler LocationDelete sur ce pointeur.
— la fonction StackPop qui détruit la premiére cellule de la pile et renvoie le reste de la pile. Cette fonction ne fait
pas appel a LocationDelete (faire un appel & StackHead avant)

6.2 Intégration du projet
6.2.1 Impact sur le Makefile

Modifiez le Makefile pour que le nouveau module stack soit compilé, et reportez les dépendances des différents fichiers
C au nouveau fichier stack.h au fur et a mesure des modifications.

6.2.2 Impact sur la Location

Modifiez la fonction LocationInit pour qu’elle stocke chaque Location créée dans un Stack. Ce Stack sera renvoyé
par la fonction.

Ajoutez une fonction LocationDestroy qui prend en paramétre un Stack et détruit proprement chaque Location qui
est stockée avant de détuire chaque cellule de la pile. Cette fonction renverra empty_stack. L’algorithme général sera

Stack tmps=s

Tant que StackIsEmpty(tmps) == Faux faire
| LocationDestroy(StackHead (tmps))

| tmps <- StackPop(tmps)

FinTantQue

6.2.3 Impact sur le Game

Modifiez la structure Game pour y ajouter un champ de type Stack qui recueillera la liste des Locations du jeu. Modifiez
la fonction GameInit pour que le résultat de 'appel & LocationInit soit stocké dans ce champ de type Stack. Déplacez
le joueur dans la bonne case, dans cette fonction, en tenant compte de ce nouveau champ.

Modifiez la fonction GameShutdown afin de détruire proprement le Stack de Locations par un appel a LocationDestroy.

7 Extensions possibles et optionnelles

7.1 Nouvelle commande

Créez une nouvelle commande "exits" qui donne la liste des issues pour la case courante.

7.2 Gestion d’objets

Vous ajouterez des objets : les objets peuvent se trouver dans des cases et/ou étre portés par le joueur. Par conséquent,
on ajoutera aussi les commandes "get <object>", pour prendre un objet présent dans la case courante, "drop <object>"
pour déposer dans la case courante un objet que I'on porte, "look <object>" pour regarder un objet que ’on porte o
qui se trouve dans la case courante, et "inventory" pour lister les objets que 1’on porte sur soi.

On pourra s’inspirer du module location pour faire un module object. On définira de plus un autre module stackobject
qui instancie une pile d’objets. Cette pile sera ajoutée au Game pour gérer la mémoire. On utilisera aussi ce genre de pile
pour stocker les objets présents dans une case (ajout d’un champ de type StackObject dans la structure Location), et
également pour lister les objets portés par le joueur (ajout d’un champ de type StackObject dans la structure Mobile).

Une alternative, meilleure mais un peu plus avancée, consiste a ne pas définir de nouveau module stackobject mais
plutét a modifier la structure Stack afin de la rendre plus générale. Pour cela, il suffit de remplacer le pointeur vers une
Location qu’elle contient, par un pointeur de type void* (pointeur générique). Bien entendu, il faudra aussi mettre a
jour les fonctions du module. On pourra alors utiliser un Stack pour stocker des Location* aussi bien que des Object*,
a condition de faire la bonne conversion de type.

7.3 Format de fichier monde

Dans une autre extension, au lieu de définir en dur les cases du jeu dans la fonction LocationInit, on pourra lire ces
cases depuis un fichier texte. Le format suggéré décrit toutes les cases les unes apreés les autres, avec le format suivant :

— premiére ligne : "@room <n>" o <n> est le numéro de la case (numéro unique)

— deuxiéme ligne : description courte (nom) de la case

— troisiéme ligne : 6 entiers indiquant les 6 issues possibles dans 'ordre N,E,S;W.,U,D. -1 indique une issue impossible,
sinon c’est le numéro de case vers laquelle méne cette issue (voir la description de la premiére ligne)

— lignes suivantes (jusqu’au prochain @Qroom) : description longue de la case
Si les objets sont implémentés, on utilisera un format similaire, par objet :

— premiére ligne : "@object <n>" ot <n> est le numéro de l'objet (numéro unique)

— deuxiéme ligne : nom de ’objet

— troisiéme ligne : un entier indiquant soit le numéro de la case ol se trouve 'objet, soit -1 s’il est sur le joueur
— lignes suivantes (jusqu’au prochain @object ou @room) : description longue de 'objet

8 Annexe : quelques éléments sur la compilation de modules et make _

Nous employons une séparation du code en modules, ce qui est une bonne pratique dans le développement logiciel : cela
permet d’avoir une bonne lisibilité du code avec des blocs de traitements bien définis, souvent autour de structures (ou
d’objets comme vous le verrez en programmation objet), ce qui facilite aussi la phase de debug et permet éventuellement
une réutilisation du code. Un exemple ici est le module stack que vous pouvez trés bien imaginer réutiliser dans un autre
contexte (& condition de le généraliser un peu...). Cette structuration nécessite cependant de bien identifier et séparer les
3 phases de compilations, ce qui est facilité par I'outil make.

Je commence par la derniére et troisiéme phase qui est la phase d’édition des liens : elle consiste a combiner des
fichiers objets (compilés dans la phase 2) afin de former un exécutable. Dans cette phase, il faut que chaque fonction soit
bien définie : pour chaque symbole de fonction, il faut trouver un code permettant de ’exécuter. Cette phase est assurée
dans le Makefile par la ligne :

WorldOfIUT: WorldOfIUT.o cmd.o mobile.o game.o exits.o

11 faut donc indiquer tous les fichiers objets (extension .0) qu’il faut assembler pour faire I’exécutable Wor1ld0£IUT. Vous
aurez a ajouter location.o et stack.o aprés les avoir écrits.

La deuxiéme phase consiste en la compilation des fichiers C (extension .c) en fichiers objets (extension .0). Chaque
fichier C est compilé séparément. Dans cette phase, on s’assure que chaque variable est bien déclarée, chaque type est
bien défini (par exemple via une structure), et que lappel de chaque fonction est correct, ce qui se fait par 'indication
du prototype de chaque fonction. Cette phase ne vérifie pas la présence du code pour la fonction, ce qui sera fait par la
troisiéme phase vue ci-dessus (édition de liens). Comme chaque fichier C est compilé séparément, il faut potentiellement
réécrire toutes les structures, et tous les prototypes des fonctions utilisées, ce qui peut étre fastidieux et source d’erreur.
On passe donc par l'inclusion de fichiers qui contiennent ces informations : les fichiers header (extension .h). Ces fichiers
contiennent la définition des types dont on a besoin ainsi que le prototype des fonctions qu’on va utiliser pour écrire le
code C du fichier courant. L’inclusion des fichiers se fait par des directives de préprocesseur #include (voir la premiére
phase ci-dessous). Comme ces fichiers sont inclus dans le code source, il faut indiquer que le fichier objet doit étre regénéré
si le fichier C change mais également si un des fichiers header inclus change. Le compilateur ne sait pas en faire la liste,
qu’il faut donc indiquer dans le Makefile. C’est ce qui est fait par exemple pour générer le fichier cmd.o : par défaut il
est régénéré quand le fichier cmd. c change et on ajoute la liste des fichiers header inclus, grace a la ligne du Makefile :

cmd.o: cmd.h game.h exits.h mobile.h

Si on regarde effectivement le fichier cmd.c, il inclut le fichier cmd.h ainsi que mobile.h et exits.h. Les autres fichiers
inclus sont hors projet et ne seront donc pas modifiés. Mais cmd . h inclut lui-méme game.h qui inclut mobile.h, déja pris
en compte. mobile.h n’inclut aucun fichier supplémentaire, ni exits.h. La liste des fichiers header & prendre en compte
s’arréte donc la. Il faudra ajouter les fichiers location.h et stack.h que vous allez créer. A vous de traquer les fichiers
qui dépendent d’eux.

Dans ces fichiers header, le protoype d’une fonction ne reprend que la premiére ligne de sa définition (type de sortie,
nom, type et nombre de variables d’entrée), en la faisant débuter par le mot clé extern et terminer par un point-virgule.
Par exemple, la fonction MobileNew qu’on trouve définie dans mobile.c est déclarée par son prototype dans mobile.h
par la ligne :

extern Mobile *MobileNew(char *name, char *desc);

On peut remarquer le extern initial et surtout le; final. Les noms des variables d’entrée ne sont pas nécessaires et n’ont
qu’un titre informatif pour indiquer le réle de ces variables. Le prototype aurait tout aussi bien pu s’écrire :

extern Mobile *MobileNew(char *, char *);

Vous voyez que le compilateur a juste besoin de connaitre le nom de la fonction ainsi que le type de ses variables d’entrée
(dans l'ordre) et son type de sortie pour vérifier la viabilité d’un appel de cette fonction lors de la deuxiéme phase de
génération du code objet. Vous aurez & ajouter une ligne pour la compilation du fichier location.o, et une autre pour
le fichier stack.o une fois que vous aurez écrit ces modules.

La premiére phase est assurée par le préprocesseur. Cette phase est simplement une phase de remplacement purement
textuel et elle ne s’intéresse qu’aux directives de préprocesseur, ces fameuses lignes qui commencent par # (par exemple
tous les #include que nous avons déja vus). Un #include va simplement insérer tel quel le fichier passé en argument.
Les premiéres lignes avec #ifndef, puis #define, se terminent par le #endif ﬁnalﬂ : elles permettent de s’assurer que le
fichier ne sera pas inclus plusieurs fois dans le méme fichier C en définissant une variable lors de la premiére inclusion et
n’autorisant I'inclusion que si cette variable n’a pas été définie (d’ou le n dans #ifndef, la direction #ifdef existe aussi,
et elle se termine aussi par un #endif). Voir la section de la documentation de gcc réservée a cette question.

4. cette directive ne prend pas d’argument et j’ai donc I’habitude de rajouter en commentaire le nom de la variable dont on a testé la
définition (ou non-définition) dans le #if correspondant afin de faciliter la lecture de ces directives

https://gcc.gnu.org/onlinedocs/cpp/Once-Only-Headers.html

4 - O Ve aoodh 1. K“}'C)“Lw
2. Om Hee ,\,oosA- g _ LW‘)‘A%&' A0 YN
3_ Dn e poad 9 OKI—?\/""@’

L‘_‘ Taown L\'IMA Ll \/l‘V\%, oo

Ao = .o
5 E“("AO\—V‘C‘C' M - AP\"!C’-
6 'Divxt'vxa, po0 M A — C¢%A'

FIGURE 1 — Monde minimal & instancier dans LocationInit. Les noms sont & utiliser, mais les descriptions sont laissées
a votre imagination.

10

	Consignes pour le rendu
	Objectifs de la SAÉ
	Monde minimal

	Première étape : comprendre le matériau fourni
	Compilation et lancement du jeu
	Analyse des fichiers
	Le programme principal: WorldOfIUT.c
	Définition d'un module
	Mobule game
	Module mobile
	Module exits
	Module cmd

	Récapitulatif et précisions des objectifs

	Deuxième étape: le module Location
	Création du module
	Intégration au projet
	Impact sur le Makefile
	Impact sur le Mobile
	Impact sur le Game
	Impact sur la commande "look"

	Troisième étape: créer et connecter les Location
	Mise à jour du module location
	Intégration du projet
	Impact sur le Game
	Impact sur la commande "go"
	Impact sur la commande "look"

	Quatrième étape: une gestion correcte de la mémoire
	Analyse du problème
	Description du problème
	Une solution: une pile de stockage
	Création d'un module stack

	Intégration du projet
	Impact sur le Makefile
	Impact sur la Location
	Impact sur le Game

	Extensions possibles et optionnelles
	Nouvelle commande
	Gestion d'objets
	Format de fichier monde

	Annexe: quelques éléments sur la compilation de modules et make

