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ABSTRACT
In this paper we describe how the half-gcd algorithm can be
adapted in order to speed up the sequential stage of Copper-
smith’s block Wiedemann algorithm for solving large sparse
linear systems over any finite field. This very stage solves a
sub-problem than can be seen as the computation of a linear
generator for a matrix sequence. Our primary realm of in-
terest is the field Fq for large prime power q. For the solution
of a N × N system, the complexity of this sequential part
drops from O(N2) to O(M(N) log N) where M(d) is the cost
for multiplying two polynomials of degree d. We discuss the
implications of this improvement for the overall cost of the
block Wiedemann algorithm and how its parameters should
be chosen for best efficiency.

1. INTRODUCTION
Coppersmith’s block Wiedemann algorithm [9] applies to
the solving of large, sparse linear systems over finite fields.
More precisely, a primary statement of the context of the
algorithm would be as follows. We are given a large, sparse
square matrix B of size N ×N defined over K = Fq, where
q can be any prime power. We know that the matrix B is
singular, and we are interested in computing one or several
solutions of the equation:

Bw = 0. (1)

Solving such systems is a somewhat common task [16]. We
originally encountered the problem in the course of solving
discrete logarithm problems over F2n using Coppersmith’s
index-calculus algorithm from [7]. In its linear algebra stage,
this algorithm requires finding a solution of a huge sparse
linear system defined over Z/(2n − 1)Z (in case this ring is
not a field, we can infer the solution modulo 2n − 1 from
the solution modulo each of its divisors via the Chinese re-
mainder theorem if the factorization of 2n − 1 is known).
Systems as in equation (1) appear more generally in any
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index-calculus-type algorithm for computing discrete loga-
rithms in appropriate groups: see [19] and for instance [11,
12]. Huge matrices also appeared in the course of recent
record-breaking factorizations of composite numbers [6, 4].
There, the linear system is defined over F2, which changes
some of the issues.

The algorithm of Coppersmith is an extension of an algo-
rithm proposed by Wiedemann in [26]. In Wiedemann’s
algorithm, we compute the sequence:

ak = xTBky, 0 ≤ k ≤ 2N − 1,

where x and y are fixed elements of the vector space KN

(again, K is the base field) acting as random inputs. If B
has γ non-zero coefficients per line on average, we can com-
pute all the ak’s using O(γN2) scalar multiplications in K.
This computation is faster if γ is small, that is, B is sparse.
In counterpart, this evaluation is sequential by nature since
it involves repeated applications of B. Doing this computa-
tion in a parallel or distributed setting is infeasible without
a fairly huge amount of communication between the differ-
ent processors or machines taking part to the computation.
This first stage of the algorithm is followed by a second stage
which computes the minimum generating polynomial for the
sequence ak. This polynomial yields a solution to equa-
tion (1). It can be obtained with the Berlekamp-Massey
or Extended Euclidean algorithm. Both of these require
O(N2) scalar multiplications, but subquadratic variants [1,
13] bring O(M(N) log N) instead, where M(d) is the cost for
multiplying polynomials of degree d. M(d) is O(d log d) with
fast Fourier transform (FFT).

Coppersmith [9] brought the following interesting possibil-
ity: instead of vectors x and y, use blocks of vectors, of size
N × m and N × n, respectively, where m and n are cho-
sen integers. One “sample” xTBky therefore contains more
information because it is made up of several scalars. This
enables us to reduce the number of needed ak’s from 2N
down to L = N

m
+ N

n
+ ε, where ε is a small additional

term that shows up for technical reasons. For m = n = 1,
this algorithm captures the original Wiedemann algorithm.
This point of view makes it possible to distribute the com-
putation among several machines, each of them computing
for instance a given column of all the ak’s. This achieves
coarse-grain parallelization of the computation of the ak’s.
Coppersmith was primarily interested in the case of F2: an
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n-bit machine can compute a whole line of Bky from Bk−1y
in one single operation, performing n binary multiplications
(that is, bitwise ANDs) at a time.

The sequence of the ak’s is made up of m × n matrices. A
linear generator for this sequence (that is, a n × 1 column
vector of polynomials as defined in 2.1) yields a solution to
equation (1). The computation of such a linear generator
can be done in a variety of ways. For this purpose, Copper-
smith has designed an extended version of the Berlekamp-
Massey algorithm, running with complexity O((m + n)N 2).
His algorithm is equivalent to the plain Berlekamp-Massey
algorithm when m = n = 1.

We present a new algorithm for this task, adapted from
the divide-and-conquer approach that yielded the HGCD

(half-gcd) algorithm from Aho, Hopcroft and Ullman [1] and
the PRSDC (polynomial remainder sequences by divide-and-
conquer) algorithm from Gustavson and Yun [13]. Our algo-

rithm has complexity O( (m+n)3

n
M(N) log N), and if FFT is

available over the base field, this reduces to O( (m+n)2

n
N(m+

n + log N) log N). Our algorithm is recursive, as HGCD or
PRSDC. It can be seen as a plug-in replacement of Cop-
persmith’s algorithm in the corresponding step of the block
Wiedemann algorithm. Since both algorithms end up com-
puting the same quantities, the analyses of the block Wiede-
mann algorithm by Kaltofen [14] and Villard [24, 23] apply
indifferently. Therefore, the probability of success of the al-
gorithm with respect to its random inputs x and y is not
impaired by our enhancement: furthermore, this probabil-
ity of success is comparable to the probabilities reached with
the original Wiedemann algorithm or the Lanczos (standard
or block version) algorithm with lookahead [8, 17, 22].

Section 2 addresses the problem of finding a linear genera-
tor for a given matrix sequence. Coppersmith’s algorithm
for this task is presented in 2.3. Existing subquadratic ap-
proaches and our new algorithm, are presented in section
3. Section 4 exposes the block Wiedemann algorithm, and
shows how the computation of a linear generator for a ma-
trix sequence yields a solution. In section 5, we discuss the
overall cost of the block Wiedemann algorithm, along with
the optimal value of its parameters m and n. Section 6 dis-
cusses practical concerns about the implementation of our
approach.

2. LINEAR GENERATORS FOR MATRIX
SEQUENCES

2.1 Definition
Throughout this section, we are given a m × n matrix of
formal power series denoted A(X). Generators for A(X) are
n-dimensional column vectors of polynomials. The degree of
a column vector is defined as the maximum of the degrees
in the n different entries of the vector. Let us introduce the
following definition.

Definition 2.1. Given two integers m and n, and a ma-
trix A(X) ∈ K[[X]]m×n, A(X) is linearly generated up to
degree L by u(X) ∈ K[X]n if there exists v(X) ∈ K[X]m

such that

A(X)u(X) = v(X) + O(XL), and deg v < deg u.

Such a criterion can be checked using only the first L coeffi-
cients of A(X). A generator up to any degree has the same
definition with L = +∞.

2.2 Usage in the block Wiedemann context
In the block Wiedemann algorithm, when trying to solve (1)
for a N × N matrix, we will look for a linear generator for
some A(X) ∈ K[[X]]m×n . As hinted at in the introduction,
A(X) will be of the form

A(X) =

∞∑

k=0

akXk where ak = xTBky,

x and y being respectively matrices of size N ×m and N ×
n. Villard [24, 23] bounds down (and away from zero) the
probability of success of the algorithm with respect to the
choice of x and y. The lower bound obtained is particularly
close to 1 when the cardinality of the base field is large, or
alternatively when the matrix is not too pathological : it is
better not to have too many eigenvalues of high multiplicities
(compared to m and n).

Since we want to focus on the linear generator computing
task, which is the crux of the algorithm, we will briefly state
the provided inputs and required outputs for this step. On
input, it will be sufficient to have computed the first L =
N
m

+ N
n

+ε terms of A(X). ε can be increased to improve the
probability of success. On output, we will need a generator
u(X) of lowest possible degree, which will be around N

n
.

Success will be almost certain as soon as L − deg u > N
m

,
and the computed generator will also generate A(X) up to
any degree.

2.3 Coppersmith’s algorithm
2.3.1 Framework
In this section, we focus on accomplishing the task defined
in the paragraph above, that is, to find a linear generator for
A(X) of size m×n, and degree L− 1, with L = N

m
+ N

n
+ ε.

In [9], Coppersmith transposes the problem: he finds a left-

hand generator for A(X)T. This is of course equivalent. We
stick to the right-hand situation. Also, the algorithm we
present here is valid only in the case where m ≥ n. Validity
of the algorithm depends on a non-degeneracy assumption
on A(X) that will appear in 2.3.2.

Rather than working with only one candidate u(X) at a
time for the linear generator of A(X), we work with several
of them at a time. Hence we have matrices: candidates for
u(X) are gathered in a matrix f(X) in K[X]n×(m+n) , and

candidates for v(X) are gathered in g(X) in K[X]m×(m+n)

(g is actually never needed in the computations, it only
serves the presentation). Eventually, we will have f(X) and
g(X) satisfy the following equation:

A(X)f(X) = g(X) + O(XL), (2)

so that we hope that one or even several columns of f will
bring us a generator. Aside from this one-liner equation,
we introduce a quantity δj associated with each column j,
1 ≤ j ≤ m + n. This quantity is called by Coppersmith the
nominal degree, as this is actually an upper bound on the de-
gree of the coefficients in the j-th column of the polynomial

2



f(X). The algorithm proceeds step by step, increasing a
counter t, and satisfying the following equation throughout:

A(X)f(X) = g(X) + Xte(X), (E)

where e(X) ∈ K[X]m×(m+n) is the current “error” that we
aim at cancelling. Each particular column of this equation
will satisfy:

A(X)fj(X) = gj(X) + Xtej(X), (C1)

deg fj ≤ δj , deg gj < δj , deg ej ≤ L + δj − t,

(throughout, the subscript j denotes a column). We will also
enforce another condition, [Xk]P denoting the coefficient in
Xk of the polynomial P :

rank([X0]e) = m. (C2)

Throughout the description of this algorithm, the super-
script (t) may be used to stress the fact that we are con-
cerned with the value at round t. It will be omitted in most
cases however, since it is generally obvious.

2.3.2 Initialization
We start the algorithm at t0 = dm

n
e. All the δj ’s are initially

set to t0. The first m columns of f are filled at random up
to degree t0 − 1. If we look at the first m columns of the
product [Xt0 ](Af), that is, the [Xt0 ](Afj)’s for 1 ≤ j ≤ m,
we see that each of them is a random linear combination
of the columns of [X1]A, . . . , [Xt0 ]A. Since each [Xk]A has
rank n at most, the maximal rank of the space spanned by
the [Xt0 ](Afj)’s is nt0. We repeat trials until we obtain
that these m columns are independent, that is, the space
they span is of dimension m. This is precisely made possi-
ble by setting t0 ≥ m

n
. If this fails, we can try to increase

t0. Otherwise, the algorithm fails as we are unable to ini-
tialize the iterative procedure. A(X) would have to be very
degenerate for this to happen, so that this situation is con-
sidered unlikely. The remaining n × n submatrix of f is set
to Xt0I, where I is the n × n identity matrix. One easily
checks that this initialization ensures that both conditions
(C1) and (C2) hold.

2.3.3 Description of the iteration
Our goal is to make the gap between the δj ’s and t bigger and
bigger, until the condition demanded in 2.2 is satisfied for
some j, that is t−δj > N

m
. In order to help the presentation,

we depict the degree pattern of each of the columns of the
product A(X)f(X). Each column is represented by a line
of boxes indexed from 0 to +∞. Box number k contains no
symbol (or “0”) if we know for sure that all the entries in
the column of A(X)f(X) have their coefficient of degree k
equal to zero. Otherwise, the box contains a black bullet,
for instance. So let us imagine that we have the following
degree patterns for the different columns of A(X)f(X), at a
given round t (the sketches are merely explanatory, they do
not pretend to reflect a true situation).
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δj t

gj ej

j = 1

j = 2

j = 3

Trying to go from t to t + 1, we aim at cancelling the co-
efficients denoted by diamonds, that is, [Xt](Af), or [X0]e.
This is done through a kind of gaussian elimination, which
has to obey the further requirement that the δj ’s must not
be trashed. We are allowed the following operations on
columns:

• Exchange columns.

• Add a multiple of column j1 to column j2 provided that
δj1 ≤ δj2 .

• Multiply a column by X (this shifts the degree pattern
one box to the right).

First, we sort the columns so that all the δj ’s are now in
increasing order. Then we do gaussian elimination as usual
on the columns, only adding to a column another column
of lower index. This way, we zero out all but m columns
of [X0]e, the remaining ones being linearly independent be-
cause of condition (C2). Condition (C1) now holds at t + 1
for all but these columns. On the degree pattern picture, we
have changed all but m of the diamonds into zeroes, without
changing the rest of the picture (save the reordering):
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In order to satisfy condition (C1) at t+1 for the m columns
for which it still doesn’t hold, we multiply them by X. This
shifts the degree pattern pictures to the right, and increases
the corresponding δj ’s by one. We now have:
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t t + 1

0

0

j = 1

j = 2

j = 3

The diamonds have been kept in the picture, they are now
part of [Xt+1](Af). Since these are m independent columns,
this ensures that condition (C2) holds at round t+1. All the
work we have done can be expressed by the multiplication on
the right of equation E by a (m + n)× (m + n) matrix that

we denote P (t). Since the relevant input to this iteration
consists of only [Xt](Af) and (δ1, . . . , δm+n), we have given a
constructive proof to the theorem below. The C-like pseudo-
code 2.1 summarizes the procedure.

Theorem 2.2. If conditions (C1) and (C2) hold at round

t, there is an algorithm ALGO1 that, knowing [X0]e(t) and

(δ
(t)
1 , . . . , δ

(t)
m+n), computes a (m + n)× (m + n) matrix P (t)

along with integers (δ
(t+1)
1 , . . . , δ

(t+1)
m+n ) such that:

f (t+1) = f (t)P (t),

g(t+1) = g(t)P (t),

e(t+1) = e(t)P (t) 1

X
,

and the δ
(t+1)
j ’s satisfy conditions (C1) and (C2) at round

t + 1. Furthermore, we have
∑

j
δ
(t+1)
j −∑

j
δ
(t)
j = m.
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Algorithm ALGO1

INPUT: A m× (m + n) matrix [X0]e,
m + n integers δ1, . . . , δm+n.

OUTPUT: P as defined by theorem 2.2.

{
P=Im+n; /* the identity matrix */

Reorder columns so that δ1 ≤ . . . ≤ δm+n,
updating P accordingly;

/* Gaussian elimination */

for(j0=1;j0<=(m + n);j0++) busy[j0]=0;
for(i=1;i<=m;i++) {

for(j0=1;j0<=(m + n);j0++)
if ([X0]ei,j0!=0 && busy[j0]==0) break;

busy[j0]=1; /* [X0]ei,j0 is the pivot */

for(j=j0 + 1;j<=(m + n);j++) {
λ=[X0]ei,j/[X

0]ei,j0;

/* subscripts denote columns */

[X0]ej=[X
0]ej − λ[X0]ej0;

Pj=Pj − λPj0;

}
}

/* Cancel the remaining columns */

for(j=1;j<=(m + n);j++)
if (busy[j]==1) Pj=XPj;

return P;

}
Program 2.1: Algorithm for computing P (t)

2.3.4 Termination
Now let us consider the average value, say δ of the δj ’s. It
increases by m

m+n
each time t increases by 1. Therefore, the

difference t− δ obeys:

t− δ = t− (t0 + (t− t0)
m

m + n
) = (t− t0)

n

m + n
.

We can see that for t > N
m

+ N
n

+ t0, the difference exceeds
N
m

, so there exists at least one j for which t − δj > N
m

.
The condition demanded in 2.2 is therefore satisfied by the
column fj(X), and we expect it to yield a solution to our
linear system.

Actual termination can be detected another way. We saw
in 2.2 that the desired fj(X) is expected to be a generator
up to any degree. If one of the columns of f(X) becomes
so at some round t, we will notice that the corresponding
column of [X0]e is zero at the beginning of round t + 1.
If such a column is zero, then the corresponding fj carries
over untouched to the next round. If on several successive
rounds, the column of [X0]e associated to a given column
of f is zero, then fj is likely to be a linear generator for
A(X) up to any degree, so this is probably the quantity we
are looking for. In order to check for termination this way,
we need to have L a bit above N

m
+ N

n
. Coppersmith writes

L = N
m

+ N
n

+ O(1), gathering this margin in the O(1) term
that is not thoroughly investigated. He rather relies on the
fact that the algorithm practically does produce a solution
soon after t exceeds N

m
+ N

n
. We stick to that approach,

since the analysis of correctness of the block Wiedemann
algorithm if far beyond our scope here, and has already been

addressed in [14, 24, 23].

As a side note, as long as we have not reached the case where
(t − δj) > N

m
somewhere, all the δj ’s are expected to be

(almost) equal to δ. Therefore, we might expect that when
the average difference exceeds N

m
, as many as n columns are

candidates for producing a solution (but this can be less).

3. SUBQUADRATIC APPROACHES

3.1 Existing algorithms
Many algorithms exist for computing linear generators for
matrix sequences. Coppersmith’s, like most of these, has a
quadratic complexity. Recall that we are looking for a gener-
ator up to degree L = N

m
+ N

n
+ε. If we detail the complexity

in terms of N , m and n, we obtain O((m + n)N2). Other,
older, algorithms have sometimes a subquadratic version.
These are the “power Hermite Padé solver” by Beckermann

and Labahn [2] in O( (m+n)2m

n
M(N) log N), and the algo-

rithm of Bitmead, Anderson and Morf [3, 18] for Toeplitz-
like matrices, in O((m + n)2M(N) log N). While these algo-
rithms are asymptotically faster than Coppersmith’s, they
do not seem to have been tried for large experiments with
the block Wiedemann algorithm, like [15]. Apart from the
relative simplicity of Coppersmith’s approach compared to
other algorithms, two points might explain why this quadra-
tic algorithm can be seen as having the edge on subquadratic
alternatives. First, it requires no randomization, whereas
this is needed for the method of Bitmead, Anderson and
Morf. Second, the “big O” in the complexity O((m + n)N 2)
hides no big constant. Counting the exact number of oper-
ations required, Coppersmith’s algorithm requires no more
than m+n

2
N2 scalar multiplications (see [9]). On the other

hand, subquadratic algorithms always require the use of fast
polynomial arithmetic using FFT. Added to the increased
complexity in terms of m and n, it turns up that the speedup
obtained from this algorithms is probably too small for re-
alistic examples.

In the following subsection, we give another try, providing a
subquadratic version of Coppersmith’s algorithm. It shares
with the original algorithm the absence of need for random-
ization, as well as the lower complexity in terms of m and
n compared to other existing algorithms, provided that m
and n remain small, say O(log N): the complexity of our al-

gorithm is O( (m+n)3

n
M(N) log N), and this lowers down to

4(m+n)2

n
N log 2N + 3(m+n)3

n
N log N scalar multiplications in

a ring that supports FFT arithmetic (log denotes the loga-
rithm in base 2). For small m and n (compared to log N),
this is asymptotically better. We will show the importance
of this in section 5.

3.2 An accelerated version of Coppersmith’s
algorithm

In Coppersmith’s algorithm, the quadratic cost comes from
the evaluation of [Xt](Af) at each round t, for t0 ≤ t ≤ L.
Our divide-and-conquer approach aims at replacing these
numerous coefficient computations by a few big polynomial
multiplications, in order to take advantage of fast multipli-
cation algorithms, like FFT. In order to do this, we make
an extensive use of theorem 2.2. Specifically, the fact that
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the only knowledge of [Xt](Af) — that is, [X0]e — is nec-
essary will prove to be crucial. In fact, if one knows the
first k coefficients of e(t)(X), this information is enough to

compute P (t) up to P (t+k−1), without updating f(X). Let
us formalize these considerations.

Definition 3.1. A k-context is a pair of the form E =
(e(X), ∆) corresponding to some stage of the iterative algo-

rithm explained in section 2.3 where ∆ = (δ
(t)
j )j and e(X)

are known up to degree k − 1. A context without precision
is the same pair with full knowledge of e(X).

Definition 3.2. Generalizing the definition from 2.3.3,
if E is a context corresponding to round number t of the

algorithm in 2.3, we call π
(a,b)
E the following (m+n)×(m+n)

matrix:

π
(a,b)
E = P (t+a) . . . P (t+b−1),

where the P (t+s) are the matrices computed from step 2.3.3
at the corresponding rounds after t.

Theorem 3.3. A given k-context E determines comple-

tely any π
(a,b)
E as long as a ≤ b ≤ k. If E corresponds to

round t of the algorithm, say E = E(t), then a (k−b)-context

E(t+b) follows from the computation of π
(0,b)
E .

Proof The proof is easy by induction. It is enough to
observe that at round t, the computed matrix P (t) is such
that e(t)P (t) ≡ 0 [X]. Then, e(t+1) is e(t)P (t) 1

X
. ∆(t+1)

follows also from P (t) since one checks easily that:

δ
(t+1)
j = max

i
{δ(t)

i + deg P
(t)
i,j }.

By an abuse of notation, we denote the latter ∆(t)P (t). To-
gether, e(t)P (t) 1

X
and ∆(t)P (t) form a (k−1)-context. Gen-

eralization of this step from t to t + 1 to the result of the
theorem is trivial. �

With this formalism, it becomes clear that our main point of

interest is the quantity π
(0,L−t0)

E(t0) where E(t0) = (e(t0), ∆(t0))

is the initial context. Once π
(0,L−t0)

E(t0) is known, then all the

columns of f (t0)(X)π
(0,L−t0)

E(t0) satisfy the equation E with t =

L, and since we know the δj ’s, we can pick a column that
suits the requirements of subsection 2.2.

From theorem 3.3, we design an algorithm whose task is

the computation of π
(0,b)
E from a given b-context E. It is

described in figure 3.1. In that piece of pseudo-code, ALGO1

is the algorithm in 2.1. The recursive algorithm is named
MSLGDC from“matrix sequences linear generator by divide-
and-conquer”. It will be applied to the (L − t0)-context

E(t0) = (e(t0), ∆(t0)).

3.3 Complexity of MSLGDC

Our algorithm requires two non-trivial (more than linear)
operations at each recursion level. These are:

eM ← (eπL mod Xb) div Xb b
2
c, and π ← πLπR.

Algorithm MSLGDC

INPUT: A b-context E = (e, ∆).

OUTPUT: π
(0,b)
E .

{
if b==0 return Im+n;

(eL, ∆L)=(e mod Xb b
2
c, ∆);

πL=MSLGDC((eL, ∆L));

(eM , ∆M )=(eπL mod Xb div Xb b
2
c, ∆πL);

P=ALGO1((eM , ∆M ));
πL=πLP;

if (b > (b b
2
c+ 1)) /* i.e. b > 2 */ {

(eR, ∆R)=(eMP mod Xd b
2
e div X, ∆MP );

πR = MSLGDC((eR, ∆R));
π = πL × πR;

return π;
} else return πL;

}
Program 3.1: Recursive algorithm for computing π

(0,b)
E

Of these polynomials, e has degree b, and πL and πR have
degree m

m+n
b
2
. Using a generic multiplication algorithm re-

quiring M(d) operations to multiply two polynomials of de-
gree d, these operations would cost m(m + n)2M(b) and
(m+n)3M( m

m+n
b
2
), that is, at most 3

2
m(m+n)2M(b). Now,

if we use fast Fourier transform (FFT), we can do much
better:

Theorem 3.4. If K supports FFT (see [10, chapter 8]),
the two operations above can be achieved in time 4M1m(m+
n)b log b + 3M1m(m + n)2b + O((m + n)2b), where M1 is
the cost of a multiplication in K. This yields a complexity
bound for algorithm MSLGDC with a b-context of 4M1m(m+
n)b log 2b + 3M1m(m + n)2b log b + O((m + n)2b log b)).

Proof What this theorem says is that the generic result
is not only specified using the complexity of FFT for M(d),
but that we also improve the complexity with respect to m
and n. Let us show how this is obtained.

We refer to [10, chapter 8] for an introduction to fast Fourier
transform. In a few words, FFT relies on the one hand on the
ability to efficiently compute the evaluation (discrete Fourier
transform, DFT) of a polynomial at a bunch of points —
the 2k-th roots of unity for some k — and on the other
hand on the ability to interpolate equally fast a polynomial
given its values at those same points (inverse DFT, or IDFT,
operation). The DFTs of two polynomials can be multiplied
pointwise (at a linear cost in the number of points) to obtain
the DFT of the product polynomial. The latter can then be
recovered by an IDFT operation.

Here, our goal is to compute products of polynomial matri-
ces. This is a simple generalization of the principle above:
one computes the DFT of each entry in the matrices involved
(e, πL, and πR). These form the matrix DFTs ê, π̂L, and
π̂R (these are matrices of scalar sequences, or also sequences
of scalar matrices). These DFTs can be multiplied point-
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wise, involving one scalar matrix multiplication per point,
to obtain the (matrix) DFTs of the products: êM , and π̂.

The number of points at which the DFTs are computed is
actually driven by the number d of unknown coefficients in
the product: we take the smallest power of 2 above d, so in
any case less than 2d. It follows from [10, thm 8.15] that the
cost of the computation of the DFTs is below d log d multi-
plications in K (same for IDFTs). The degrees considered
imply that we need transforms using b points at most for

the computation eM ← (eπL mod Xb)divXb b
2
c, and trans-

forms using 2m
m+n

b points at most for the computation of
π ← πLπR. Upper bounds on the time required to compute
all the transforms are summarized hereafter (of course, the
transform of πL needs not to be computed twice, so we keep
the largest figure).

DFT : e→ ê M1m(m + n)
b

2
log

b

2
,

DFT : πL → π̂L M1(m + n)2
m

m + n
b log(

m

m + n
b),

IDFT : êM → eM M1m(m + n)
b

2
log

b

2
,

DFT : πR → π̂R M1(m + n)2
m

m + n
b log(

m

m + n
b),

IDFT : π̂ → π M1(m + n)2
m

m + n
b log(

m

m + n
b).

Additionally, the matrix products involved by the pointwise
multiplication of the DFTs yield a complexity of m(m +
n)2bM1 and 2m(m + n)2bM1 operations, respectively. Sum-
ming these up, we obtain the announced results. The cost
equation for the algorithm MSLGDC for order b is:

C(b) =2C

(
b

2

)
+ 4M1m(m + n)b log b+

3M1m(m + n)2b + O((m + n)2b),

hence C(b) = 4M1m(m+n)b log 2b+3M1m(m+n)2b log b+
O((m + n)2b log b), as claimed. �

Plugging into this the parameters used for the block Wiede-
mann algorithm, namely L = m+n

mn
N + O(1), we obtain:

C(L) = 4M1
(m + n)2

n
N log 2N + O((m + n)3N log N).

So the actual∗ speedup obtained when we compare to Cop-

persmith’s version is
nN

8(m + n) log 2N
, as long as m and n

stay relatively small.

4. BLOCK WIEDEMANN ALGORITHM
Now that we have extensively discussed the available tools
for finding linear generators of matrix sequences, we will see
how they plug into the block Wiedemann algorithm. As told
before, we are now interested in the polynomial matrix:

A(X) =

L−1∑

k=0

akXk, with ak = xTBky,

where x and y are respectively N ×m and N × n matrices.
The coefficients ak of A(X) are m × n matrices. Not sur-
prisingly, we look for a linear generator of these in order to

∗However, so many parameters are involved that this esti-
mate is not really sharp.

obtain a solution. The number L of computed coefficients of
A(X) is here N

m
+ N

n
+ε. In other words, we stick to the prag-

matic approach that works well in practice: compute A(X)
up to far enough so that heuristics let us believe that we
will obtain a solution. In order to ensure that a solution will
be produced, it is necessary to actually set y to Bz, where
z is a random vector block. From now on, our context will
be the one described in this paragraph. The quantities B,
N , L, m, n, x, z, and y will be fixed, corresponding to the
aforementioned.

The computation of the coefficients of A(X), which will be
named “stage BW1”, is done sequentially. A vector variable
Y is repeatedly updated by Y ← BY , and dot products
xTY are computed at each step. Once we have A(X) at
our disposal, we can infer a linear generator for this matrix
sequence, using the tools we have already mentioned (for
example, we can use the MSLGDC algorithm). This will
be the step BW2 of the block Wiedemann algorithm. We
quickly show that such a linear generator yields a solution
to the system Bw = 0 with high probability. Let us first
recall the condition (C1) that is satisfied at each round by
the different columns of the relevant matrices:

A(X)fj(X) = gj(X) + Xtej(X), (C1)

deg fj ≤ δj , deg gj < δj , deg ej ≤ L + δj − t.

We detail now why the context given in subsection 2.2 is
appropriate in order to find a solution of the equation Bw =
0. At a given round t, considering the quantities in the
equation above, the product A(X)fj(X) has zero coefficients
for degrees δj up to t− 1. In other words, we have:

∀s, 0 ≤ s < t− δj ,

δj∑

k=0

([Xs+δj−k]A)([Xk]fj) = 0,

i.e.

δj∑

k=0

xTBs+δj−ky[Xk]fj = xTBs

δj∑

k=0

Bδj−ky[Xk]fj = 0.

Then, the quantity
∑δj

k=0 Bδj−ky[Xk]fj is orthogonal to as

many as m(t − δj) vectors: the vectors (BT)sxi where the
xi’s are the columns of x. Eventually, namely when (t−δj) >
N
m

, m(t−δj) exceeds N . If the space spanned by the (BT)sxi

has maximal dimension (this is our heuristic argument that
we hope will hold), our quantity is then zero. If we replace
y by Bz in the previous equation, we obtain:

B

δj∑

k=0

Bδj−kz([Xk]fj) = 0.

If this equation holds, w =
∑δj

k=0 Bδj−kz([Xk]fj ) is a solu-
tion if it is non-zero. In case it is zero but as a “polynomial”
in B, w has a non-zero valuation ν, then we have B1+νŵ = 0

for ŵ =
∑δj−ν

k=0 Bδj−kz([Xk]f), and some Bsŵ is guaranteed
to be a solution if ŵ 6= 0. The computation of ŵ and s such
that Bsŵ is a solution is referred to as step BW3.

5. COMPLEXITY ANALYSIS AND OPTI-
MIZATION

Having a block version of the Wiedemann algorithm intro-
duces a new flexibility: we can play with parameters m and
n. Nevertheless, these parameters do have some optimal
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value that we’d better use: obviouly, the bigger m and n,
the shorter the computation of the ak’s, but also the more
tedious the computation of a solution from these. We will
therefore detail the complexity of the different stages (BW1,
BW2, BW3) of the algorithm with respect to m, n, and N .
For step BW2, we will give complexities for both Copper-
smith’s and our algorithm.

The block approach allows coarse grain parallelization (see
[9] or [15]). In a parallel or distributed setting, distribut-
ing the columns of a vector block Y across several machines
allows to compute Y ← BY in a real time that does not de-
pend on n (if we have that many machines available). Steps
BW1 and BW3 can take advantage of this, and therefore the
real time is the appropriate measure for the algorithm. Now
the question is, provided that the hardware we have access
to allows us several values for m and n, how to choose them
in order to achieve the lowest total real time ? This question
is answered in theorems 5.3 and 5.4. Since m and n are typ-
ically limited by the available hardware, it is reasonable to
assume that m and n are bounded by a constant. Therefore,
at least for the complexity of step BW2 using our recursive
algorithm, we will incorporate this in the complexity equa-
tion, and focus on the dominating term.

In order to obtain complexity measurements we introduce
two important constants, M0 and M1. M0 stands for the
time needed for multiplying a coefficient of the matrix B
(typically of size equal to one machine word) by an element
of K, while M1 is the time needed for multiplying together
two elements of K. Also, we denote by γ the average number
of non-zero entries of rows of B (B is expected to be sparse,
so γ is small). We do not take additions into account in
our analysis. This is an excessive simplification over small
fields like F2, but reasonable over larger fields. We prove the
following results:

Theorem 5.1. The different steps of the block Wiede-
mann algorithm require the following real time:

BW1 (γM0 + mM1)
m+n
mn

N2 (see also remark 5.2 below).

BW2 M1
m+n

2
N2 + O(N) using Coppersmith’s algorithm

4M1
(m+n)2

n
N log 2N+O(N log N) using our algorithm

(provided that m and n are bounded).

BW3 γM0
1
n
N2.

Proof As said before, step BW1 is accomplished by re-
peating the operation Y ← BY , where Y = y initially. This
sums up as nL matrix times vector product, but since the n
columns of Y are assumed to be treated separately, the real
time is the time needed for L applications of B: γNM0L.
Furthermore, we have to add the cost of the dot products
(xi

TYj). These cost mM1N at each step, which brings the
result (see also remark 5.2 below). The second result follows.
As for step BW2, the result follows from [9] for Copper-
smith’s algorithm, and from theorem 3.4 for our algorithm,
specialized to m and n bounded. The complexity of step
BW3 follows from the fact that as a “polynomial” in B, ŵ
has degree N

n
. �

Remark 5.2. In practice, the real time needed for step
BW1 can be lowered down to γM0

m+n
mn

N2 by using vectors

of the canonical basis for the xi’s. Indeed, the dot products
which account for the mM1

m+n
mn

N2 term become trivial (1
operation instead of mM1N with random x’s). It should
be noted however that when we do so, x is no longer truly
random, and the correctness analyses of [14, 24, 23] do not
necessarily apply.

We will now write down the overall cost of the block Wiede-
mann, in light of the theorem above. Our analysis is valid
over fields other than F2, since numerous possible tricks in
that case tend to shape the things differently.

Theorem 5.3. Using Coppersmith’s algorithm for step
BW2, the real time for the block Wiedeman algorithm is low-

est for mopt = nopt =

√
3γM0

M1
. The total time needed in

this case is Wopt = 2
√

3γM0M1N
2.

Proof If we write down the total time for the block
Wiedemann, following theorem 5.1, we obtain:

W = γM0
m + n

mn
N2 + M1

m + n

2
N2 + γM0

1

n
N2,

W = (γM0
2λ + 1

λ

1

n
+ M1

λ + 1

2
n)N2 for m = λn.

If we minimize W for a given λ, the optimal values Wopt and
nopt are:

nopt =

√
γM02(2λ + 1)

M1λ(λ + 1)
,

Wopt = 2N2

√
γM0M1

(2λ + 1)(λ + 1)

2λ
.

The minimum value of the quantity (2λ+1)(λ+1)
2λ

is obtained

for λ = 1√
2
, but since we are restricted to λ ≥ 1, λ = 1 is

the most appropriate choice. Specializing nopt and Wopt to
λ = 1 yields the announced values. �

Theorem 5.4. Using algorithm MSLGDC for step BW2,
the real time for the block Wiedeman algorithm is lowest for

mopt = nopt =

√
3γM0N

16M1 log 2N
. The total time needed in

this case is Wopt = 8
√

3γM0M1N
√

N log N .

Proof As before, this follows from theorem 5.1. W writes
down as (again using m = λn):

W = γM0
2λ + 1

λ

1

n
N2 + 4M1(λ + 1)2nN log 2N,

Following the same reasoning as before, we obtain the best
ratio between m and n for λ = 1 (since we are restricted to
λ ≥ 1), and hence the announced Wopt and nopt. �

It should be noted that theorem 3.4 yields a low complex-
ity for step BW2 with respect to m and n because of the
introduction of the FFT which hides the cubic dependency
on m+n. If we had used algorithm MSLGDC with a generic
multiplication algorithm, Wopt would certainly be higher.
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The optimal value nopt is not necessarily acceptable, because
we are limited by the available hardware. We will see in
the following section that for realistic examples, nopt is still
reasonable.

6. IMPLEMENTATION CONCERNS
6.1 Interest of the block version
The consequences of our analysis depend on the base field.
We excluded F2 from our scope because in that case, pre-
cise time estimates are extremely variable depending on the
implementation (for example, additions can no longer be
neglected versus multiplications, as we do here). The best
choice for m and n is almost certainly the wordsize w of the
machine (in fact, we can regard this as having M0 and M1

divided by w: as many as w multiplications in K can be
done at a time). It is pretty hard to tell without actually
trying on real experiments whether it is worthwhile to set
m and n to something else (an integer multiple of w for in-
stance). Since our code is focused on large fields, we did no
such experiments.

Over large fields, like in the linear algebra problems en-
coutered in the course of discrete logarithm problems [19],
the problem is quite different. First, M1 is now typically
much bigger than M0: indeed, the coefficients of the input
matrix are usually kept bounded to a size of one machine
word (see below), so when a generic element of K has size
about ten words, M0 is a dozen machine cycles, whereas
M1 can reach several hundreds machine cycles. Therefore,
the second part of the algorithm could end up dominating
the overall cost. If we include these considerations in the
computation of the optimal value nopt for the parameters
m and n, we see that if one uses Coppersmith’s version of
step BW2, nopt is very small (sometimes hardly above 1).
In other words, there is not much interest in using the block
version of the Wiedemann algorithm. On the other hand,
our algorithm MSLGDC yields a bigger optimal value. Since
we must ensure that the cubic term in (m + n) stays small,
numerical values are hard to provide, and depend on a thor-
ough implementation. As a rough estimate, we consider that
today’s biggest linear systems over large fields can take ad-
vantage of the method. For example, for a matrix of size
250, 000× 250, 000 defined over a field of size 1000 bits with
an average of 20 non-zero entries per row, the optimal value
for nopt with algorithm MSLGDC is 5, whereas we obtain 1
for the quadratic counterpart. The overall speedup obtained
is between 3 and 4, but not counting the cubic complexity
in m+n. It is not likely that more “reasonable” systems can
benefit of this method for now.

6.2 Influences on input filtering
Perhaps more important, our computations have a very in-
teresting consequence on the input given to the block Wiede-
mann algorithm, when it comes out of a structured gaussian
program [20], or more generally any filtering stage like in
[5]. Such algorithms aim at reducing the matrix size with
minimal fill-in — we want the matrix to remain sparse —,
as far as this is possible. Their output is then given to an al-
gorithm like Wiedemann’s, or alternatively a block version.
Depending on the context, reduction rates going from one
third to one tenth are achieved. When the base field is not
simply F2, the matrices given on input to the filtering pro-
gram have small coefficients. Therefore, coefficients of the

matrix are stored in a single machine word and not allowed
to go beyond this in order to reduce the memory storage. In
the course of this filtering, one usually arranges for stopping
it as soon as the estimated subsequent cost (of the Wiede-
mann algorithm for instance) starts to rise up again, after
having been diminished. See [25] for an example of such
an estimation. The estimated cost is generally something
like γN2. As the filtering proceeds, γ grows while N gets
smaller.

Our point here is that when using the block version with
optimal parameters m and n, we can focus on the quantity√

γN2 instead. This means that we are able to continue
the gaussian elimination a bit further. If we plan to use our
subquadratic alternative, the relevant figure is N

√
γN log N ,

but this is only valid as long as m and n remain small.
Experiments with matrices coming from discrete logarithm
problems showed that the filtering can actually be brought
substantially further.

6.3 Memory requirements
We hardly addressed the memory concerns for the block
Wiedemann algorithm. However, these are really impor-
tant because the memory storage needed for the matrix B
is usually huge. For this very reason, parallelization or dis-
tribution is hampered by the relative scarcity of computing
resources available that can handle such a big object: if
we plan to distribute step BW1 among several machines,
these have to work on a local copy of the matrix B. This
is why having nopt reasonable was crucial. As a side note,
we would like to stress the fact step BW2 does not need the
matrix B, so the increased memory requirements of algo-
rithm MSLGDC compared to Coppersmith’s algorithm are
not very important.

An important point in the ability explained in the previous
subsection to carry out the filtering or structured gaussian
elimination further than what we used to is that this helps
in reducing the storage needed for B: the memory require-
ments for step BW1 are driven by two quantities: γN for
the matrix size, and N for the size of all the linear storage
data and such. Continuing the filtering further than before
makes these quantities lower, and therefore the algorithm
could become more usable if its memory requirements are
reduced.

7. CONCLUSION
We believe that our study of the block Wiedemann algo-
rithm helps greatly in making it more practical over large
fields, and also gives some insights on its characteristics in
terms of running time and such. In certain settings, we can
expect the block Wiedemann algorithm to become very effi-
cient and competitive, but still at sizes that may seem huge
for now. Although our original interest was dealing with
matrices coming from discrete log problems, this approach
could help to advocate for the use of the block Wiedemann
algorithm in other contexts where a (very) large sparse lin-
ear system over a large finite field shows up.

I would like to thank François Morain who helped me in
preparing this paper. I am also grateful to Gilles Villard
and the anonymous referees for their valuable questions and
comments.
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nique, Dec. 2000.

[13] Gustavson, F. G., and Yun, D. Y. Y. Fast algo-
rithms for rational Hermite approximation and solution
of Toeplitz systems. IEEE Transactions on Circuits and
Systems CAS–26, 9 (Sept. 1979), 750–755.

[14] Kaltofen, E. Analysis of Coppersmith’s block Wiede-
mann algorithm for the parallel solution of sparse linear
systems. Math. Comp. 64, 210 (July 1995), 777–806.

[15] Kaltofen, E., and Lobo, A. Distributed matrix-free
solution of large sparse linear systems over finite fields.
Algorithmica 24, 4 (1999), 331–348.

[16] LaMacchia, B. A., and Odlyzko, A. M. Solving
large sparse linear systems over finite fields. In Advances
in Cryptology – CRYPTO ’90 (1990), A. J. Menezes
and S. A. Vanstone, Eds., vol. 537 of Lecture Notes in
Comput. Sci., Springer–Verlag, pp. 109–133. Proceed-
ings.

[17] Montgomery, P. L. A block Lanczos algorithm for
finding dependencies over GF(2). In Advances in Cryp-
tology – EUROCRYPT ’95 (1995), L. C. Guillou and J.-
J. Quisquater, Eds., vol. 921 of Lecture Notes in Com-
put. Sci., pp. 106–120. Proceedings.

[18] Morf, M. Doubling algorithms for Toeplitz and re-
lated equations. In Proc. IEEE Internat. Conference
Acoustics, Speech and Signal Processing (New York,
NY, 1980), IEEE, pp. 954–959.

[19] Odlyzko, A. M. Discrete logarithms in finite fields and
their cryptographic significance. In Advances in Cryp-
tology – EUROCRYPT ’84 (1985), T. Beth, N. Cot,
and I. Ingemarsson, Eds., vol. 209 of Lecture Notes in
Comput. Sci., Springer–Verlag, pp. 224–314. Proceed-
ings.

[20] Pomerance, C., and Smith, J. W. Reduction of huge,
sparse matrices over finite fields via created catastro-
phes. Experiment. Math. 1, 2 (1992), 89–94.

[21] Preneel, B., Ed. Advances in Cryptology – EURO-
CRYPT 2000 (2000), vol. 1807 of Lecture Notes in
Comput. Sci., Springer–Verlag. Proceedings.

[22] Teitelbaum, J. Euclid’s algorithm and the Lanczos
method over finite fields. Math. Comp. 67, 224 (Oct.
1998), 1665–1678.

[23] Villard, G. Further analysis of Coppersmith’s block
Wiedemann algorithm for the solution of sparse linear
systems. In ISSAC ’97 (1997), W. W. Küchlin, Ed.,
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