
Using a grid platform for solving
large sparse linear systems over GF(2)

Thorsten Kleinjung
ÉPFL/IC/Lacal

ÉPFL
Lausanne, Switzerland

thorsten.kleinjung@epfl.ch

Lucas Nussbaum
Projet Algorille

LORIA – Université Nancy 2
Nancy, France

lucas.nussbaum@loria.fr

Emmanuel Thomé
Projet Caramel
INRIA Nancy
Nancy, France

Emmanuel.Thome@inria.fr

Abstract—In Fall 2009, the final step of the fac-
torization of rsa768 was carried out on several
clusters of the Grid’5000 platform, leading to a new
record in integer factorization. This step involves
solving a huge sparse linear system defined over the
binary field GF(2). This article aims at describing
the algorithm used, the difficulties encountered, and
the methodology which led to success. In particular,
we illustrate how our use of the block Wiedemann
algorithm led to a method which is suitable for
use on a grid platform, with both adaptability to
various clusters, and error detection and recovery
procedures. While this was not obvious at first, it
eventually turned out that the contribution of the
Grid’5000 clusters to this computation was major.

I. INTRODUCTION

The work described in the present article orig-
inates from the rsa768 project, which is an
integer factorization challenge. This algorithmic
task is of prime interest in cryptographic context,
since it is the keystone of the RSA cryptosystem.
The cryptographer builds a public key which is
an integer N , the private key being two prime
numbers p and q of roughly equal size satisfying
N = pq. Factoring N unveils the private key from
the public key. It is therefore of prime interest to
assess constantly the state of the art in terms of
integer factoring, so that deployed cryptographic
solutions (e-commerce, EMV credit cards, and
many, many more) can be designed with proper
parameters. Here, rsa768 denotes a particular
768-bit (232 decimal digits) composite integer
published by RSA laboratories as a challenge1.
This challenged has been solved in December

Experiments presented in this paper were carried out using
the Grid’5000 experimental testbed, being developed under
the INRIA ALADDIN development action with support from
CNRS, RENATER and several Universities as well as other
funding bodies (see https://www.grid5000.fr).

1Money rewards used to be offered for solving such chal-
lenges, prior to 2007. Since then, RSA laboratories have
discontinued this practice.

2009 as a joint effort between several research
teams [1].

Factoring a 768-bit number reveals a large
number of stumbling blocks. The preferred, and
most efficient algorithm for this task, is the Num-
ber Field Sieve (NFS) factoring algorithm [2].
Describing this algorithm is out of scope of the
present article. It suffices to know that there are
two computationally intensive steps. The first step,
called sieving, is a typical resource harvesting task.
The second step, which draws our attention in the
present article, is radically different. This step is
a linear algebra step.

Several solutions to a homogeneous linear sys-
tem defined over the binary field GF(2) are to
be found. While linear algebra is ubiquitous, the
linear system encountered here differs in many
fundamental aspects from the systems typically
encountered in other contexts – these differences
are outlined in Section II. The question of how
this linear algebra computation is performed has
several aspects. The main contribution of this work
is the presentation of an approach which makes it
possible to solve a large linear system of this kind
(about 192,000,000 equations and unknowns) on
a grid platform, with the capability of using not
only one, but several unconnected clusters.

Indeed, while part of the rsa768 computation
used computer time provided by partners ÉPFL
(Switzerland), and NTT (Japan), we describe here
how a significant part of the computation has been
carried out on the Grid’5000 platform, which is
an experimental platform dedicated to research in
large-scale and distributed systems, composed of
a dozen of clusters and a total of 6000 CPU cores.

Our approach illustrates that the needs in terms
of computer resources for a computation such as
the rsa768 linear system are quite different from
a “supercomputer”, and that even an exclusive
access to a dedicated “in-house” cluster is not nec-



essary. As an outcome, the amount of distribution
achieved for the rsa768 linear system goes quite
a bit beyond what has been previously done.

A second characteristic of linear algebra com-
putations, especially those relying on black box
methods (described in Section II) is the crucial
importance of the error detection and recovery
procedures. We describe how our approach is
capable to achieve this fault management in a
satisfactory way.

Section II gives details on the linear system
to be solved, and lists the relevant algorithms.
Section III gives specifically a bird’s eye view on
the block Wiedemann algorithm, which has been
used in the computation. Section IV discusses how
the computation is split into elementary subtasks,
while Section V details how these subtasks are
scheduled, together with the issues relative to
the management of the computation at a central
level. Section VI describes how the results were
checked against errors. Some experimental results
and comparisons are summarized in Table II.

It is important to know how linear algebra
operations (in our case, matrix-times-vector mul-
tiplications) are performed on a cluster using e.g.
the MPI interface, and taking advantage of high-
speed networks, topologies, and so on. This is
obviously one of the ingredients of our work, but
rather orthogonal to the focus of this article which
is on the use of several unconnected clusters. For
this reasons, several aspects of our work which
are interesting from a purely HPC perspective are
deliberately omitted here for brevity.

II. STATEMENT OF THE PROBLEM

A. The matrix

Throughout the article, we assume that an
N × N matrix M defined over the binary field
GF(2) is given, and that we seek elements of
the right nullspace2 of this matrix. Namely, we
seek x ∈ GF(2)N such that Mx = 0. Since
we instantiate our work with the rsa768 matrix,
we provide the exact characteristics of the matrix
under consideration:
• N = 192,796,550 rows and columns; dimen-

sion of the kernel at least 1, 000.
• 27,797,115,920 non-zero coefficients, i.e. ap-

proximately 144 per matrix column;
• 105 GB to store the matrix in a straightfor-

ward format.

2Most presentations of the Number Field Sieve call for a
row dependency, hence an element of the left nullspace. For
consistency of the presentation, we give here the transposed
view.

Of course, as can be judged from the fig-
ures above, the matrix M is extremely sparse.
Sparse matrices occur in various contexts, but are
probably best known in the context of numerical
computations. It is important to stress that the
problem we consider here is radically different,
notably with respect to the following aspects.

• The field of definition being a finite field (not
R or C), there is no relevant notion of con-
vergence, fixed point, or dominant eigenvalue.
Many algorithms rely on such key concepts
for solving numerical linear systems, and this
is unfortunately of no use in our context.

• While large sparse matrices are often sym-
metric, or perhaps almost symmetric, this is
not the case here. The matrix to be solved
does have some distinguishing shape, how-
ever. The density of the columns is evenly
distributed, while the density of rows is not:
a small number of rows are extremely heavy,
almost dense, while the vast majority of rows
are considerably sparser than average. 90%
of the rows have less than 110 non-zero
coefficients, 66% have less than 36. Thus one
clearly has “dense” and “sparse” areas, the
latter accounting unfortunately for the largest
part of the computation time.

• Numerical stability is not an issue, since all
computations are exact. There is a counter-
part though. In numerical calculations errors
due to bad memory are usually not a problem.
A flipped bit in the mantissa does not change
the value much and even if a bit in the ex-
ponent flips, its effect might be unnoticeable
after a few iterations. In contrast, a flipped
bit in the calculation over GF(2) will be a
disaster since its effect will spread and, after
a few iterations, all components of the vector
will be affected, thus invalidating the whole
computation.

B. Algorithms

The problem of solving large sparse linear
systems over finite fields has emerged a few
decades ago in the context of integer factorization
and computation of discrete logarithms over finite
fields. A classical survey of the early methods is
given in [3].

Sparseness being the key characteristic here, the
most efficient methods are black box algorithms.
The matrix M defining the linear system to be
solved is considered as a black box, to which no
internal access is allowed, and which is capable



of performing only one operation, namely the
multiplication of the matrix by a vector.

When the linear system to be solved is defined
over GF(2), the algorithms of choice are so-called
“block” methods, alternatively viewed as “single-
instruction, multiple data” algorithms: vectors are
replaced by blocks of vectors. A block of vectors
is a sequence of N tuples of n bits, where the
“blocking factor” n is typically 64 or a multiple
thereof. This effectively represents n vectors of
N coordinates. Operations such as the addition
of two vector blocks use the machine-word wide
XOR operation when n = 64. In return, the num-
ber of required black box applications is reduced
almost proportionally (up to a certain limit).

Two algorithms are commonly used, known as
the block Lanczos and the block Wiedemann algo-
rithm. The block Lanczos algorithm is appealing
because it requires slightly less computations than
the block Wiedemann algorithm. However it does
not scale as well, as outlined in [4], [1]. The block
Wiedemann algorithm offers the possibility of
splitting most of the computation into several in-
dependent computations, thereby allowing a very
desirable coarse-grain parallelism. This advent of
the block Wiedemann algorithm as an alternative
to the block Lanczos algorithm appeared first on
a significant scale in [5] and [4].

III. THE BLOCK WIEDEMANN ALGORITHM

The block Wiedemann algorithm [6] is a block
extension of the Wiedemann algorithm [7]. This
method is a priori specific to finite fields. We
give here an outline of the algorithm. A complete
exposition of the block Wiedemann algorithm can
be found in several places [6], [8], [9] and some
of the references therein.

The starting point of the block Wiedemann
algorithm is a vector block y, consisting of n
linearly independent N -bit vectors. One typically
takes n = 64n′, so that n′ sequences of N 64-bit
words are needed to store the vector y. A second
input is a vector block x, similarly consisting of
m linearly independent N -bit vectors. Here m is a
second blocking parameter, not necessarily equal
to n. Likewise, we typically set m = 64m′. The
analysis of the algorithm requires the vectors in the
block x be random vectors. However for efficiency
we content ourselves with x being a set of m unit
vectors, while y is indeed random.

A. First step: scalar products

The first step of the block Wiedemann algorithm
computes the first L =

⌈
N
m

⌉
+
⌈
N
n

⌉
terms of the

following power series. Throughout the paper, tα
denotes the transpose of a vector or a matrix α.

A(X) =
L∑
i=0

aiX
i =

L∑
i=0

txM iyXi.

The computation of this series can be done by
repeating the following iteration:
• Set y0 ← y, and i = 0;
• Output ai = txyi. Set yi+1 = Myi, and i←
i+ 1;

• Repeat previous step until i = L.
The key observation here is that column j

of the matrices (ai)i does not depend on the
columns j′ of the starting vector y, as long as
j 6= j′. Therefore, the terms of the series A(X)
can be computed piecewise, e.g. 64 columns by
64 columns. This is exactly how the computation
is carried out. Using the superscript notation S(j)

to denote the submatrix extracted from a matrix
S by selecting the 64 columns of indices 64j to
64j + 63, we thus have:

a
(j)
i = txM iy(j),

ai =
(
a
(0)
i a

(1)
i . . . a

(n′−1)
i

)
Producing the terms of A(X) therefore essen-

tially involves repeated application of the black
box. Each submatrix A(X)(j) gives rise to a
sequence of m × 64 matrices over GF(2); we
have n′ such sequences of L terms. A sequence
of ` consecutive terms of such a sequence is thus
made of ` × m × 64 bits. Note that a sequence
(a(j)
i )i=i0...i0+`−1 requires only prior knowledge

of the vector y(j)
i0

= M i0y(j).

B. Second step: linear generator

The next (central) step of the block Wiedemann
algorithm computes a linear generator for A(X).
Description of how this step works is out of scope
here, the reader is referred to [9] for an algorithm
of complexity O((m+ n)2N logN) for this task.
This linear generator is an n× n matrix F (X) of
polynomials of degree

⌈
N
n

⌉
such that

w =
dN

n e∑
i=0

M iy tFi

is with high probability an element of the kernel
of the matrix M . This step is the one whose
complexity grows with the blocking factors m and
n, and furthermore it does not lend itself well to
running on a grid platform. However the flexibility
in the choice of parameters made it possible to



arrange so that this step is not a stumbling block.
For example, for the rsa768 computation, only
two days of computation were necessary.

C. Third step: evaluation

The final step uses the generator, and proceeds
similarly to the first step. The operations are:
• Set y0 ← y, S = 0, and i = 0;
• Do S ← S + yi

tFi. Set yi+1 = Myi, and
i← i+ 1;

• Repeat previous step until i =
⌈
N
n

⌉
. Output

S = w.
As was already pointed out for the first step

of the computation, it is possible to split the
computation of S into several independent tasks.
Indeed, we have:

S =
dN

n e∑
i=0

M iy tFi,

=
n′−1∑
j=0

dN
n e∑
i=0

M iy(j) tF
(j)
i

where the superscript notation (j) is as in Sec-
tion III-A. It follows that S = w can be computed
as a sum of several partial sums. The formula
above explicits already n′ clearly identified partial
sums, but in fact, assuming a few vectors y(j)

i0
have

been kept from the first step of the computation,
it is possible to compute the partial sum:

S
(j)
(i0...i0+`−1) =

i0+`−1∑
i=i0

M i−i0y
(j)
i0

tF
(j)
i .

Such a sum is a vector block of Nn bits. Note
the considerable difference with the size of the
results from the first step. Here, partial sums are
large and do not depend on the length ` of the
partial computation.

IV. SPLITTING INTO SMALL TASKS

A. Steps 1 and 3 into pieces

Having developed the outline of the block
Wiedemann algorithm, we now wish to identify
a decomposition of steps 1 and 3 into subtasks.
The intent is that one such subtask is run on one
cluster, and several subtasks can run concurrently
on different, unconnected clusters.

Computations of steps 1 and 3 relate to n′ dif-
ferent recurring sequences y(0), . . . , y(n′−1). Fo-
cusing on sequence number j, the data computed
from the sequence elements y

(j)
i0

to y
(j)
i0+`−1 is

thus derived from the knowledge of the starting
iteration y(j)

i0
, as well as some auxiliary data.

More specifically, we can instantiate the data
sizes at stake here with the rsa768 matrix sizes.
The blocking factors chosen for the rsa768
computation were m = 1024 (hence m′ = 16)
and n = 512 (hence n′ = 8).

First, iterations i0 to i0 + ` − 1 of step 1 on
sequence j require the input vector y(j)

i0
. This rep-

resents N machine words of 64 bits, which is 1.43
GB. The output of this subtask is the collection
of tiny matrices

{
txy

(j)
i , i0 ≤ i < i0 + `

}
. Each

such matrix is an m×64 matrix, which occupies 8
kB of memory. The output of the subtask is there-
fore 8` kB, plus the ending iteration y(j)

i0+`
. Step 1

has to run until iteration number L ≈ 565, 000.
Iterations i0 to i0 + `− 1 of step 3 on sequence

j also require the input vector y(j)
i0

(which may
have been kept from the step 1 runs). Further-
more, the linear generator coefficients F

(j)
i are

required to compute the result
∑i0+`−1
i=i0

y
(j)
i

tF
(j)
i .

The amount of linear generator data to be read
is ` coefficient matrices of size n × 64, which
corresponds to 4` kB. The output of the subtask
is the partial sum, which is n′ times as large as a
vector, hence about 12 GB. The ending iteration
y
(j)
i0+`

, as before, is also needed. Step 3 has to run
until iteration number

⌈
N
n

⌉
≈ 375, 000.

B. Concurrent computations

We have already mentioned that computations
relative to different recurring sequences are unre-
lated, so that they can run on different unconnected
computing resources. Also, note that step 3 uses
iterates y(j)

i0
which have already been computed by

step 1. While storing all iterates would obviously
be a bad idea, it appears that storing a few of
them increases the potential number of concurrent
subtasks that can run during step 3.

C. Constraints for choosing clusters

The choice of an appropriate cluster for running
a subtask is driven by several criteria. Most of
the time spent in the computation is related to
the matrix-times-vector multiplications. Therefore
it is natural, among the available clusters, to
favour those with a high-speed network available
(Myrinet, Infiniband for example). We also require
obviously that the matrix, as well as all required
temporary buffers, fit in RAM on the cluster
nodes. As a rule of thumb, for the rsa768 matrix,
this requires a total of 200 GB of RAM.

We assume that a (subset of a) cluster to be used
contains a number of cores which can be written
as p × q. This way, the communication between



jobs can follow the virtual topology of a p×q 2D-
torus. In order to minimize the communication, p
and q are therefore preferably of comparable size3.
Running a subtask on such a grid of pq jobs (in the
MPI sense) requires an expensive precomputation
(preparation of the matrix data), whose output is
a set of files of approximate total size 75 GB.

D. Roadmap of a subtask

A subtask, when specified as an abstract de-
scription such as “work with iterations i0 to
i0 + `− 1 of step 1”, and when run on a specific
(sub-) cluster, goes through several steps. When
a job starts on the computer cluster, no persistent
storage exists, so that the complete required data
set must be imported from central storage before
computations can actually begin. This includes the
precomputed matrix data mentioned above, the
starting iteration y

(j)
i0

, as well as for step 3 the

linear generator data
{
F

(j)
i , i0 ≤ i < i0 + `

}
.

Likewise, all results must be saved to central
storage, because all local data is lost when the job
terminates.

V. SEVERAL CLUSTERS FOR SEVERAL
SUBTASKS

The crux of our approach is the capability to
adapt to a changing set of available clusters. The
clusters which, as per the criteria developed in the
previous section, are eligible for running a subtask
at a given moment, are not always the same. Ta-
ble II at the end of this article gives an indication
on the number of different configurations which
have been used. This dynamic set of available
resources contrasts with the situation of “in-house”
clusters which in favourable cases can be tailored
specifically to the needs of the computation.

The management of the computation at the
“central” level (above the “subtask” level) has two
facets. Of course, this includes the dispatching
of subtasks on the different computer clusters.
This dispatching must be efficient, and must avoid
exhausting the computing resources (this concern
appears because Grid’5000 is an experimentation
grid). Another facet is related to one of the key dif-
ferences between a dedicated cluster and a shared
computing resource. As alluded to in Section IV,
we cannot rely on persistent local storage on the

3A matrix-times vector multiplication typically induces q
broadcasts in groups of p jobs in one dimension, followed
by p reductions in groups of q jobs in the other dimension.
As briefly argued in the introduction, the specifics of how the
matrix-times-vector multiplication is performed on a cluster are
not detailed further here.

nodes. This implies that storage is an issue which
must be handled at the central level.

A. Scheduling grid jobs for subtasks

The complete rsa768 linear algebra computa-
tion lasted about four months, but each subtask is
limited to the maximum job length allowed in the
platform (about 60 hours for Grid’5000). There-
fore, organizing subtasks is a matter of scheduling
grid jobs via the job submission systems. Since
the rsa768 linear system was solved as a joint
effort with other groups from ÉPFL (Switzerland)
and NTT (Japan), only 4 of the 8 sequences were
available for use on Grid’5000. This means that
at a given time, up to 4 jobs (subtasks) could be
running on the platform. A job has to be bound to
a particular cluster, so as to make best use of the
resources. While the block Wiedemann algorithm
as a whole has some asynchronism capability, sub-
tasks want to work as synchronously as possible.

Of course, as Grid’5000 is a shared resource,
it was not reasonable to use some of its clusters
exclusively during the whole computation. Instead,
after discussion with the steering committee, we
compromised on using two types of jobs:
• reservations a few hours beforehand on some

clusters, or submission bound to start im-
mediately – in that case, the resources were
assigned to us for the whole duration of the
job. This was done in general at most a
couple of hours beforehand so as to let other
users get a chance of using the clusters, and
only during nights and week-ends ;

• “best-effort” jobs – which are automatically
killed if another user requests the resources
with a higher priority. This allowed us to use
the platform when no other user was asking
for the resources, and to release the resources
as soon as they are requested by another job.

The characteristics we considered for submit-
ting jobs were mostly speed, and sometimes re-
liability. We built a table of the speeds achieved
by given clusters for our application. Also, some
clusters were large enough to be able to fit several
jobs, e.g. three 24-node jobs. Given the clusters
available at a given time, this chart indicates
the preferred choice, maximizing the cumulated
number of iterations computed per second. This
selection step evolved from manual choice at the
beginning of the rsa768 computation, towards a
largely automated procedure.

As remarked in paragraph IV-B, step 3 is less
constrained in terms of the number of concurrent
jobs running, therefore the optimization is relaxed.



data size output from input to
Input matrix 105 GB none balancing
Balancing 75 GB balancing 1+3
Vectors y

(j)
i 1.43 GB 1+3 1+3

Matrices a
(j)
i 8 kB 1 2

Matrices F
(j)
i 4 kB 2 3

S
(j)
i0...i0+`−1 12 GB 3 none

Table I
FILES USED WITHIN THE COMPUTATION. STEPS 1, 2, 3

REFER TO THE BLOCK WIEDEMANN STEPS.
STEP 2 IS NOT COMPUTED ON THE GRID PLATFORM.

This implies that clusters which are a priori much
slower than others, notably by lack of a fast
interconnect, can become of some use.

Including “best-effort” jobs in the computation
is by no means obvious. It relies on the possibility
of achieving quick startup times and efficient
periodic checkpoints through the use of adequate
storage. This is explained in the following para-
graphs.

B. Storage points, data sets, and transfers

Terabytes are cheap. However, terabytes of ef-
ficient, fast storage, near computing resources,
are considerably more expensive to install and to
maintain. We elected to aim at carrying out the
rsa768 computation with a limited amount of
storage close to the computing resources, while
offloading to servers outside of Grid’5000 most of
the data which was not meant to be reused shortly.
We thus consider three classes of storage points.
The first class is the set of compute nodes, which
have no persistent local storage. They do however
have access to Grid’5000 storage servers, which
form the second class. Storage on these servers is
persistent and available, but there is no reason to
overuse it – we have been allowed a reasonable
quota of 500 GB on three storage points, partially
redundant. These servers are accessible (with rea-
sonable throughput) from all compute nodes, but
not from outside of Grid’5000 without tunnels.
Storage servers are not meant to run computations.
The last class is storage outside of Grid’5000.
There is hardly any limit here, as we have typically
used a handful of large disks on desktop machines.
These machines can access Grid’5000 storage
nodes with SSH tunnels, and have CPU power for
small tasks (checks, assembling files).

The data sets have been described in Section IV
and are listed also in Table I. An important remark
is that the precomputed matrix data adapted to
one cluster size weight 75 GB. Therefore, for
the amount of required data to remain reasonable,

we chose to restrict to splittings 8 × 8, 12 × 12,
14 × 14, and 16 × 16; this already requires 300
GB of storage, which need to be available on the
storage nodes because at any job startup, one of
these data sets must be imported. This restricts
the available cluster sizes, while still offering a
reasonable variety of possible configurations.

Once started, a job must import its input data,
begin the computation, optionally save its results
periodically, and if possible trap a notification of
approaching termination so as to get time to save
a last checkpoint and the corresponding data.

The input data to be imported is the 75 GB
precomputed balancing data, the starting vector
y
(j)
i , and for step 3 the relevant linear generator

file F (j). How to import these files ? The question
of how not to do it is easily settled. Compute nodes
have access to site storage via the NFS protocol,
but the data throughputs are bad. After having tried
several options, we chose the following solution:
• On each of the storage nodes on which we

had a storage allowance, an rsync daemon
listens on a custom port. This daemon, in
order to limit the load on the machine, honors
only a limited number of concurrent requests
using the max connections parameter.
The storage node from which a compute node
tries to import a given file is selected at ran-
dom. The compute node keeps trying servers
at random until one accepts its request.

• An optimization is useful in the case where
several jobs of identical size are expected
to run at a given site (quite frequent within
step 3). Each node holding a local copy
of some submatrix file announces it with a
phony symbolic link on the NFS partition
(the link target being the node name), and
listens with an rsync daemon on the same
usual custom port. Compute nodes willing
to retrieve the same file have therefore a
way to first check for the availability of the
corresponding file. This optimization helped
reducing the data import times dramatically,
when applicable of course.

C. Checkpoints

Once the data file has been imported, compu-
tations can start. The key question is when and
how to trigger saving of intermediate checkpoints
and results. Triggering one checkpoint implies the
production of an amount of data equal to:
• 1.43 GB + 8` kB within step 1, where ` is

the distance to the previous checkpoint.



• 1.43 GB + 12 GB within step 3, irrespective
of the distance to the previous checkpoint.

The choice of the checkpoint frequency is re-
lated to the lifetime of a job. Bar possible er-
rors, this lifetime is decided at submission time,
typically several hours, e.g. 12h. The lifetime of
a best-effort job is unpredictable (and can be
arbitrarily small). We used the following rules:
• Always trigger a checkpoint at least at mul-

tiples of 4096 iterations.
• For best-effort jobs, trigger periodic check-

points so as to avoid losing the output of
long-running jobs. We chose an 80 minutes
period.

• Trigger a checkpoint 10 minutes (for step 1)
to 20 minutes (for step 3) before job end.

Saving of checkpoint data and results by com-
pute nodes to storage servers was done with the
same rsync scheme that was used for import-
ing input data. However, since saving results has
higher priority than importing data, we used a
second rsync port, with a larger number of
allowed connections. Each storage server had thus
typically 4 to 8 maximum outbound connections,
and 8 to 12 maximum inbound connections.

It must be noted that the aggregated bandwidth
consumed by saving checkpoints in step 3 can
be quite considerable if the grid platform is used
at the peak of its possibilities. For the rsa768
computation, up to 15 concurrent subtasks could
run during step 3. Assuming all are run by best-
effort jobs, the total amount of data produced
reaches in such a case about 40 MB/s on the
whole grid. Depending on which kind of data path
has to absorb this traffic (e.g. by offloading the
data to remote servers), this can be an issue. This
“peak” problem has not occurred in the course of
the rsa768 computation. As a partial solution,
assembling the partial sums of step 3 (replacing
Sa...b−1 and Sb...c−1 by their sum Sa...c−1) can be
done from within the grid platform, which avoids
the possibly slower link from the grid platform
to the outside. To do so, we first need to gain
confidence in the partial sum files, which is the
purpose of the following section.

VI. LIVING WITH ERRORS

The amount of data computed requires that
some checks for data integrity be performed. It
turns out that it is possible to do such checks with
the block Wiedemann algorithm quite easily.

Step 1 checks boil down to verifying that
(a(j)
i )i=i0...i0+`−1 and y

(j)
i0+`

are both consistent

with the vector y(j)
i0

. We do this check for constant
length `, such that all the iterates whose index is
a multiple of ` are saved (given the checkpoint
frequencies indicated above, we choose ` = 4096).
For this check, we fix a dimension µ arbitrarily
(e.g. µ = m), and precompute random µ × m
matrices r0, . . . , r`−1, as well as the vectors tVr =∑`−1
k=0 rk

txMk, and tC` = txM `. Computing
vectors Vr and C` has a mild computational cost.
The check is whether tVry

(j)
i0

=
∑`−1
k=0 rka

(j)
i0+k

,
and also whether tC`y

(j)
i0

= txy
(j)
i0+`

. This check
is only a dot product, and can be done with
very limited resources. Errors are detected with
satisfactory probability.

For step 3, a similar procedure can be used to
check that a partial sum S

(j)
(i0...i0+`−1) is valid.

This check does not require that the length `
be fixed beforehand. This is particularly handy
because the partial sum files turn out to be very
large, and the need to assemble them into files of
equal sizes, but representing a larger work length
`, is desired. This can be done only if the different
partial files are validated. The check is done as
follows. Pick an arbitrary small integer δ, such
that txM δ has no zero coordinate. The check is
the following:

txM δS
(j)
(i0...i`−1) =

i0+`−1∑
i=i0

ai+δ
tF

(j)
i .

This check is fast and accurate enough for our
purposes. As for the previous check, performing
the verification is not expensive.

While previous computations of this sort by
the authors led to errors at various levels, this
time the only source of errors was the occasional
truncation of data files. This offline mechanism for
checking integrity of result files proved therefore
satisfactory, since the hardware was sufficiently
reliable.

VII. CONCLUSION

The main unknown associated with the
rsa768 computation was whether the linear alge-
bra would be doable with reasonable expenses and
resources. While it was not obvious at first, and
triggered many obstacles, we succeeded in proving
that a distributed platform such as Grid’5000,
despite being composed of a variety of clusters
with different CPU and network interconnects,
provides an effective answer. We were able to use
6 different clusters on Grid’5000, with 16 different
configurations, as is illustrated by Table II. Most
unexpectedly, we were also able to adapt to the



(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L)
Lausanne 56 2×AMD 2427 2.2 12 16 ib20g 12 144 4.3 4.8 40%
Tokyo 110 2×Pentium-D 3.0 2 5 eth1g 110 220 5.8 7.8 n/a
Grenoble 34 2×Xeon E5420 2.5 8 8 ib20g 24 144 3.7 30%
Lille 46 2×Xeon E5440 2.8 8 8 mx10g 36 144 3.1 3.3 31%

32 256 3.8 38%
24 144 4.4 33%

Nancy 92 2×Xeon L5420 2.5 8 16 ib20g 64 256 2.2 2.4 41%
36 144 3.0 3.2 31%
24 144 3.5 4.2 30%
18 144 5.0 31%
16 64 6.5 19%

Orsay 120 2×AMD 250 2.4 2 2 mx10g 98 196 2.8 3.9 32%
Rennes 96 2×Xeon 5148 2.3 4 4 mx10g 64 256 2.5 2.7 37%

49 196 2.9 3.5 33%
Rennes 64 2×Xeon L5420 2.5 8 32 eth1g 49 196 6.2 67%

24 144 8.4 67%
18 144 10.0 68%

8 64 18.0 56%

Table II
TIMINGS ON VARIOUS CLUSTERS. (A) LOCATION; (B) TOTAL NUMBER OF NODES; (C,D) CPU TYPE, FREQUENCY (GHZ); (E)
CORES PER NODE; (F) RAM PER NODE (GB); (G) INTERCONNECT (ETH1G: GIGABIT ETHERNET, MX10G: 10GBPS MYRINET,

IB20G: 20GBPS INFINIBAND); (H) JOB SIZE (NUMBER OF NODES); (I) NUMBER OF CORES USED PER JOB; (J,K) TIME PER
ITERATION IN SECONDS (J: STAGE 1, K: STAGE 3 ; BLANK: NEVER USED); (L) PERCENTAGE USED FOR COMMUNICATION.

constraints of best-effort jobs, and use them ef-
fectively through appropriate use of checkpoints
and distributed data storage.

Timings given in Table II indicate the perfor-
mance obtained in Fall 2009 for the computation
as it has been actually run, during a period of
approximately three months (the fastest available
cluster among those we used would have done
the complete computation in about the same time
if used exclusively). The total CPU time spent
for this computation was slightly above 100 CPU
core-years. The computation described in this ar-
ticle was carried out as a compromise between the
time for developing the infrastructure of programs
for managing the individual tasks, and the goal of
eventually obtaining the solution to the linear sys-
tem. Some aspects of the approach have been iden-
tified as candidates for possible improvements, no-
tably the “peak bandwidth” problem mentioned at
the end of Section V. Further experiments of this
kind would have to take this problem into account,
possibly in a different way. Overall though, little
doubt is left: moderately larger matrices are clearly
within reach using this approach.

REFERENCES

[1] T. Kleinjung, K. Aoki, J. Franke, A. Lenstra,
E. Thomé, J. Bos, P. Gaudry, A. Kruppa, P. Mont-
gomery, D. A. Osvik, H. te Riele, A. Timofeev, and
P. Zimmermann, “Factorization of a 768-bit RSA
modulus,” in CRYPTO 2010, ser. Lecture Notes in
Comput. Sci., vol. 6223. Springer–Verlag, 2010,
pp. 333–350.

[2] A. K. Lenstra and H. W. Lenstra, Jr., Eds., The
development of the number field sieve, ser. Lecture
Notes in Math., vol. 1554. Springer–Verlag, 1993.

[3] B. A. LaMacchia and A. M. Odlyzko, “Solving
large sparse linear systems over finite fields,” in
CRYPTO ’90, ser. Lecture Notes in Comput. Sci.,
A. J. Menezes and S. A. Vanstone, Eds., vol. 537.
Springer–Verlag, 1990, pp. 109–133.

[4] K. Aoki, J. Franke, T. Kleinjung, A. K. Lenstra,
and D. Osvik, “A kilobit special number field sieve
factorization,” in ASIACRYPT’2007, ser. Lecture
Notes in Comput. Sci., vol. 4833. Springer–Verlag,
2007, pp. 1–12.

[5] E. Thomé, “Computation of discrete logarithms in
F2607 ,” in ASIACRYPT 2001, ser. Lecture Notes in
Comput. Sci., C. Boyd and E. Dawson, Eds., vol.
2248. Springer–Verlag, 2001, pp. 107–124.

[6] D. Coppersmith, “Solving linear equations over
GF(2) via block Wiedemann algorithm,” Math.
Comp., vol. 62, no. 205, pp. 333–350, Jan. 1994.

[7] D. H. Wiedemann, “Solving sparse linear equations
over finite fields,” IEEE Trans. Inform. Theory, vol.
IT–32, no. 1, pp. 54–62, Jan. 1986.

[8] E. Kaltofen and A. Lobo, “Distributed matrix-free
solution of large sparse linear systems over finite
fields,” Algorithmica, vol. 24, no. 4, pp. 331–348,
1999.

[9] E. Thomé, “Subquadratic computation of vector
generating polynomials and improvement of the
block Wiedemann algorithm,” J. Symbolic Comput.,
vol. 33, no. 5, pp. 757–775, Jul. 2002.


