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Cryptography is ubiquitous
Numerous applications of cryptography nowadays.

Many public-key cryptographic procotols rely on the hardness of
some number-theoretical problems to guarantee their security.
Cryptographic motivation: study algorithms to solve them.

Purportedly hard problems, so hard work.
Having an idea about real hardness is important.

Bad assessment ⇒ bad security.
Accurate assessment ⇒ well chosen key sizes.

HDR E. Thomé 3/34



Crypto primitives based on number theory

Among others, two “king” problems:

Integer factorization (hence RSA). N → p , q

Discrete logarithm (DL) (El Gamal, DSA). gx , g → x

or: xP,P → x

The Number Field Sieve algorithm (NFS) can attack these
problems, and is central to our research.

Our research work is at multiple levels: algorithms,
complexity analysis,
implementation.
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The central role of NFS

NFS

Curves
Linear

Algebra

Arithmetics DL on curves:
large primes.
FFS for curves.

Linear algebra.
NFS-related problems are
our target.
Efficient arithmetics:
NFS uses these.
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The Number Field Sieve (NFS)
NFS is the fastest integer factorization algorithm asymptotically.
Teaching NFS?

Takes a while (at least a 1-semester course).
NFS embeds many sub-algorithms (possibly including itself!).
NFS has many variants.

Our contributions related to NFS

Group effort most of the time, but important own involvement.

algorithms;
record computations;
implementation;
use NFS to solve other problems.
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The diagram
The key to understanding NFS is this diagram.

Z[x ]

Q ⊃ Z[m] Z[α] ⊂ K

Z/NZ

x 7→ m x 7→ α

ϕg : t 7→ t mod N ϕf : α 7→ m mod N

NFS searches for many a − bx such that:

a − bm ∈ Q is smooth (product of small primes),
(a − bα) is smooth (product of small prime ideals).

Combination by linear algebra ⇒ congruence of squares ⇒ factors.
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Implementation of NFS

Best way to learn NFS: implement it.
ANR CADO (2007–2010): cado-nfs implementation [GKM+11]
Joint effort Nancy–LIX.

Started completely afresh.
State-of-the-art or close to it almost everywhere.
A nice playground for new ideas.
Example: a new NFS square root algorithm. [Tho12]

Largest number factored with cado-nfs: RSA-704 [BTZ12]
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State of the art NFS: RSA-768 [KAF+10]

RSA-768=1 230 186 684 530 117 755 130 494 958 384 962 720 772 853 569 595 334 792 197 322 452 151 726

400 507 263 657 518 745 202 199 786 469 389 956 474 942 774 063 845 925 192 557 326 303 453 731 548 268

507 917 026 122 142 913 461 670 429 214 311 602 221 240 479 274 737 794 080 665 351 419 597 459 856 902

143 413 = 33 478 071 698 956 898 786 044 169 848 212 690 817 704 794 983 713 768 568 912 431 388 982 883

793 878 002 287 614 711 652 531 743 087 737 814 467 999 489 × 36 746 043 666 799 590 428 244 633 799 627

952 632 279 158 164 343 087 642 676 032 283 815 739 666 511 279 233 373 417 143 396 810 270 092 798 736

308 917.

A key size from old times ? yes and no.

768-bit keys were in use by the banking industry until ≈ 2007.
Google’s DKIM system was using 512-bit keys until 07/2012.
(Most DKIM keys below 768-bit still today).
Still 2% of the internet SSL servers use 512-bit keys.
Assumptions like “people are no fools” sometimes doubtful.
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State of the art NFS: RSA-768 [KAF+10]

Running the computation has been serious business.

Titanic relation collection

64 billion relations, 5 terabytes,
1.5 rels/s/core ⇒ 1500 core-years.
Idle time on many clusters.
Strived to minimize
human supervision time. [KBL+12]

5%

Others

4%

CWI

8%

Bonn

15%NTT

38%
CARAMEL

30%

EPFL

Titanic linear algebra

193M equations and unknowns, over GF(2).
Block Wiedemann algorithm key to success. [Tho02]
Use of computer grids. [KNT10]

It will soon be time to go further ! (see perspectives)
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State of the art NFS: RSA-768 [KAF+10]

Running the computation has been serious business.

Titanic relation collection

Titanic linear algebra

193M equations and unknowns, over GF(2).
Block Wiedemann algorithm key to success. [Tho02]
Use of computer grids. [KNT10]

It will soon be time to go further ! (see perspectives)

HDR E. Thomé 11/34



Variants of NFS

A common pattern can be used to describe:
NFS as a factoring algorithm.
NFS-DL, for DL in finite fields (large p).
FFS, for DL in finite fields (small p).
generalizes Coppersmith’s DL algorithm.
Past own contributions [Tho01]
Future: new ANR project.

log p

log log n

NFS-HD

NFS-DL

FFS

Our work also shows new applications of NFS.

1-sided NFS for oracle-assisted RSA problems [JNT08]
1-sided NFS-DL for oracle-assisted DH problems [JLNT09]
Adapted FFS for DL on high genus curves [EGT11]
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1-sided variants
Crypto proofs invoke the hardness of some problems.

Rather usual situation: somewhat artificial problems.
Example: “one-more” type RSA problems.

Attacker A allowed a query phase.
A learns { e

√
x mod N} for a query set X 3 x .

A receives a challenge c.
Claim: infeasible for A to find e

√
c.

Is it really hard?

This is much easier than factoring N [JNT08]

Use queries to find e
√p for p in rational factor base.

Find relations involving e
√
π for π in algebraic factor base.

Linear algebra to find { e
√
π}, descent.

Key: the relation search needs 1-sided smoothness.

Complexity: LN [1/3, (64/9)1/3] LN [1/3, (32/9)1/3]. (=SNFS)
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DL problem on (Jacobians of) curves
Algebraic curves: very serious contender for the “best group to do
crypto” contest.

P

Q

P + Q

g = 1.

P1 P2

Q1

Q2

R1 R2

g = 2.

What about higher genus? Any good for crypto?
What does our background on NFS tell us?
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Arithmetic in Jacobians

Elements of JacC(Fq): divisors

D = (P1) + · · ·+ (Pr )− r(∞).

Formal sums of at most g points (over Fq, Galois stable).
Group law easy: polynomial arithmetic.
Easy to tell into how many points D splits.
# JacC(Fq) ≈ qg .

Finding x such that xD1 = D2:
DL algo (Adleman–DeMarrais–Huang), but for small g (Gaudry):

Factor base = points over Fq.
Try to split xD1 + yD2, for random x , y .
Linear algebra ⇒ relation αD1 + βD2 = 0 ⇒ DL solution.
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Complexity of genus 3 DLP

Improvements over the period 2000–2007.

1999, Gaudry: O(q2). Slower than
√

#G .
2000, Harley: O(q3/2), balancing relations and linear algebra.
2003, Thériault: large prime variation, O(q10/7).

(an old idea from CFRAC times)

2004, Gaudry, T., Thériault, Diem. [GTTD07]
Two large primes, O(q4/3).

Old idea from MPQS times.
Originality here: analysis shows a win.
Implementation: pays off for groups above 60 bits.

2006, Diem: specially for quartics, O(q).
In-depth study [DT08]
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Genus 3 is dead! (almost)

Non-hyperelliptic genus 3 curves may be written as plane quartics.

Fix two points over Fq.
Draw a line.
Yields relations faster than before.
Linear algebra solution.

Outcome for genus 3 [DT08]

Õ(q) algorithm. DLP similar to genus 2 curve over Fq.
Practical algorithm. Pays off early.

Group sizes ≈ 110-bit doable.
Proven complexity, rigorous study of heuristics.
Relate to random graph properties.
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NFS for curves

Large (growing) genus g : An L[1/2] algorithm exists.
What about an L[1/3] algorithm?

Answer: for a special class of curves, YES. [EGT11]

C : f (t, x) = 0, with degt f ≈ g2/3, degx f ≈ g1/3.

We try to intersect functions φ(t, x) = a(t)− xb(t) with the curve:

degx φ = 1, degt φ = g1/3: intersect at most g2/3 times.
Hope for smoothness of the intersection.
Linear algebra as usual.
Difficult part: the descent for computing logs.

Application to e.g. Cab curves with a ≈ b2:
Algorithm of complexity L#G [1/3, (64/9)1/3].

HDR E. Thomé 19/34



NFS for curves

Large (growing) genus g : An L[1/2] algorithm exists.
What about an L[1/3] algorithm?

Answer: for a special class of curves, YES. [EGT11]

C : f (t, x) = 0, with degt f ≈ g2/3, degx f ≈ g1/3.

We try to intersect functions φ(t, x) = a(t)− xb(t) with the curve:

degx φ = 1, degt φ = g1/3: intersect at most g2/3 times.
Hope for smoothness of the intersection.
Linear algebra as usual.
Difficult part: the descent for computing logs.

Application to e.g. Cab curves with a ≈ b2:
Algorithm of complexity L#G [1/3, (64/9)1/3].

HDR E. Thomé 19/34
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Sparse LA over finite fields: challenges
NFS and DL algorithms provide us with large, sparse matrices.

NFS: matrices defined over F2.
RSA-768: 193M rows/cols, 27G nz

RSA-704: 88M rows/cols, 16G nz
DL: matrices defined over Fp.

F2619 : 660k rows/cols, 66M nz

100% PDE-free!

We are talking exact arithmetic.
No symmetry. No structural zeroes.
Domain decomposition does not work. No physics.
Convergence does not make sense.
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Algorithms adapted to our problem

Block Lanczos. Nice if one has a large cluster.
Block Wiedemann. Offers better distribution opportunities.
Key to success: fast algorithm for central step. [Tho02]

cado-nfs contains an implementation. [GKM+11]

Hard work.
Code completely rewritten several times.
Not quite ready for IOCCC yet.
Most important parts:

Only some thousands of lines of code.
Many commits, many hours of work.
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The cado-nfs linear algebra
Core matrix times vector routines in assembly.
#define one xor(idxreg, bufreg1, bufreg2, offset) \

movzwq % ## idxreg, % ## bufreg1 ; \
shrq $16, %r ## idxreg ; \
movq (%rsi,% ## bufreg1, 8), % ## bufreg2 ; \
xorq % ## bufreg2, (%rdi,%r ## idxreg, 8) ; \
movl offset(%rbp), %e ## idxreg

one xor(ax, r14, r8, 0)
one xor(bx, r12, r9, 4)
one xor(cx, r14, r10, 8)
one xor(dx, r12, r11, 12)

Work with threads and MPI.

+

+

+

+

Optimization down to the level of MPI collectives.
Also adapt to GPUs (H. Jeljeli’s work).
F2619 : 660k rows/cols, 66M nz: 17 hours [BBD+12]
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Block Wiedemann and distribution

Fact: Accessing large, tightly interconnected computers is hard.
OTOH, mid-size (20-100 nodes) clusters are common.
E.g. Grid’5000: many mid-size clusters.

Block Wiedemann allows to split the computation:

Several distinct sites (=clusters), with minimal I/O.
Asymptotically fast reconstruction needed. [Tho02]

RSA-768: Did ≈40% of linear algebra on Grid’5000. [KNT10]

6 clusters (≤ 4 simultaneously), 16 different configs.
Run on whichever was available at a given time.
Partly done in best-effort mode.

RSA-704: complete linear algebra on Grid’5000. [BTZ12]

Exclusively best-effort jobs. Incurred overhead ≈40%.
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Small objects

Fast arithmetic is always a good thing. In the crypto context:

Cryptography: strive to make a cryptosystem efficient.
Cryptanalysis: strive to make the attack efficient.

This applies in particular to finite field arithmetic.

NFS-DL: linear algebra over Fp.
DL for curves: arithmetic in Fq and JacC(Fq).

Given the usage pattern, compile-time optimizations are relevant.

Avoid generic, one-size-fits-all code.
Allow modulus-specific code.
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Small objects
mpfq: software for fast finite field arithmetic. [GT07]

Code generating program.
All field-dependent control flow becomes static.
Reasonable interface in the end.
Set some speed records at the outset.
Now used e.g. within cado-nfs.

The characteristic two part was merged in gf2x. [BGTZ08]

Use vector instructions;
Unroll for small sizes;
CPU-dependent
choice of “best” code.
Used in NTL.

__v2di ss1, ss2, s1s, s2s;
__v2di t00, t11, tk;
ss1 = _mm_loadu_si128((__v2di *)s1);
ss2 = _mm_loadu_si128((__v2di *)s2);
t00 = _mm_clmulepi64_si128(ss1, ss2, 0);
t11 = _mm_clmulepi64_si128(ss1, ss2, 17);
s1s = _mm_shuffle_epi32(ss1, 78);
ss1 ˆ= s1s;
s2s = _mm_shuffle_epi32(ss2, 78);
ss2 ˆ= s2s;
tk = t00 ˆ t11 ˆ _mm_clmulepi64_si128(ss1, ss2, 0);
_mm_storeu_si128((__v2di *)t, t00 ˆ _mm_slli_si128(tk, 8));
_mm_storeu_si128((__v2di *)(t+2), t11 ˆ _mm_srli_si128(tk, 8));
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Large objects

Once small poly multiplications are fast, what about large ones?

Schönhage’s ternary FFT.
Cantor’s additive FFT.
Gao-Mateer’s modification of Cantor’s algorithm.

All tested within gf2x. [BGTZ08]

Ternary FFT fastest unless
transforms are reused.
Cantor pays off quickly e.g.
for 4× 4 matrix products.
Gao-Mateer presently not
competitive.
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NFS and friends
The obvious milestone for integer factoring: RSA-1024.

Not today, but we have it in sight.
RSA-896 will be an interesting step. Could start soon.

Code improvements sought.

We now have several implementations. Pick the best parts.
Micro-optimizations very effective sometimes.
Seek better adaptation to existing hardware.

grids and best-effort for LA.
GPUs and clusters thereof. Other hardware?

New algorithmic ideas?

NFS is a collection of many steps.
Even a marginal improvement of one step is worthwhile.
e.g.: central step in block Wiedemann likes middle product.
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NFS and friends
The obvious milestone for integer factoring: RSA-1024.

Not today, but we have it in sight.
RSA-896 will be an interesting step. Could start soon.

RSA-1024 is too exciting to be done in “business as usual” fashion.
Hardware very likely to come into play.

Bring hardware people into the game.
Seek new CPU designs.
Modify algorithms to better suit hardware.

Will we be able to use fancy hardware for sieving?
More planning ahead for organization of the computation.

Shall we use distributed clients (à la BOINC) ?
Which resources for linear algebra ?

Try new algorithms / strategies when available.
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NFS and friends

ANR CATREL project (tomorrow→2016).

Invest time on NFS-like algorithms for finite field DLP.
Try new crazy things.
NFS for factoring has received significant attention, NFS-DL
and FFS less so. Fix this.
Do new records (easy).
F2619 done as a warm-up. Plenty ahead.

This has an impact on pairings, in particular.
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Perspectives for curves

Goals: Explicit isogenies in genus 2.
Walking isogeny graphs for genus 2 Jacobians over Fp.
Computation of modular polynomials over Fp.

Many tools still to be developed. Current targets:

Fast computation of theta constants.
Existing software by Dupont.
Common work with Enge:
CM at h = 6000, well above state of the art.

Work of R. Cosset (defended 11/2011) very useful.
Evaluation of Θ(Ω, z) isogenies.
Isogeny graphs in genus 2, beyond avisogenies.
Some nice graphs (with Ionica), for max. RM.
Not much modp yet.
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Arithmetics
Results always to be made available in software form.
Gao-Mateer algorithm in F2[x ].

The sort of beautiful trick one would like to see effective.
Complexity O(n log n log log n), better than Cantor.
Yet, no win. Why ?

Additions dominate complexity-wise.
So far, for implementations, multiplications dominate.
Be alert about new CPUs.
An effective truncated variant is yet to be invented.

Any better complexity?
Maybe Fürer-like
O(n log n2O(log∗ n))?
As of yet, no F2[x ] equivalent.
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[GT07] P. Gaudry and E. Thomé, The mpFq library and implementing curve-based key exchanges, SPEED:
Software Performance Enhancement for Encryption and Decryption, 49–64, 2007.
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