Cours MPRI 2-12-2

Lecture $1 / 5$: Factoring by combining congruences

(lecturer for part 2/3): E. Thomé

Nov. 5th, 2012

Plan

Tentative plan for the lectures to come Congruences of squares Analyzing smoothness-based algorithm

Exercises

Tentative plan

- Nov. 5th (today): Congruences of squares; CFRAC; Adleman's algorithm for discrete logs; Elements for analysis.
- Nov. 12th: The idea of sieving; Implications for analysis; Some improvements.
- Nov. 19th: Sparse linear algebra; The Lanczos and Wiedemann algorithms; Analysis issues; Implementation issues.
- Nov. 26th: Exercises.
- Dec. 3rd: Exam.
- Dec. 10th: Number Field Sieve (I); Factoring with cubic integers; Some algebraic number theory background.
- Dec. 17th: Number Field Sieve (II); Steps being worked on w.r.t NFS; Some record computations; NFS and its cousins.

Copy-paste of a slide from lecture 1, part 1

The difficulty of discrete logarithm computations

Over finite fields:

- \mathbb{F}_{p} :
- Best algorithm so far: à la NFS $O\left(L_{p}\left[1 / 3, c^{\prime}\right]\right)$ (Gordon, Schirokauer).
- record with 160dd: T. Kleinjung (2007); 3.3 years of PC 3.2 GHz Xeon64; matrix 2, 177, $226 \times 2,177,026$ with 289, 976, 350 non-zero coefficients, inverted in 14 years CPU.
- $\mathbb{F}_{p^{n}}$: Adleman-DeMarrais, function field sieve + optimizations.
- $p=2$: Coppersmith; record with \mathbb{F}_{2613} : Joux/Lercier (2005).
- record $\mathbb{F}_{36 \times 71}$: Hayashi et al. (2010), http://eprint.iacr.org/2010/090.
- Medium p case: Joux+Lercier.

$$
L_{N}[\alpha, c]=\exp \left((c+o(1))(\log N)^{\alpha}(\log \log N)^{1-\alpha}\right)
$$

Breaking news: DL record in characteristic 2 has just been updated.

DL record for \mathbb{F}_{2619}

This was really an old record (2005).

- DL computed using the Function Field Sieve algorithm. (a cousin of the Number Field Sieve).
- Computation done in almost a day.
- About 160 core-hours of sieving.
- Linear algebra (18hrs) using graphics cards.
- This entails nice C code programming done in Nancy.
- Announced last week at the ECC 2012 workshop in Mexico.

Lecture material

All slides and extra material will appear on the page:

> http://www.loria.fr/~thome/MPRI/

Lectures are on Monday, expect slides to be posted by Tuesday evening typically.

Plan

Tentative plan for the lectures to come

Congruences of squares

Analyzing smoothness-based algorithm

Exercises

Plan

Congruences of squares
The key idea
Dixon's random squares algorithm
Continued fractions
The quadratic sieve idea
Related stuff: Adleman's algorithm for DL

Factoring ?

Is 8051 a prime, and if not, can you factor it ?

Factoring ?

Is 8051 a prime, and if not, can you factor it ? There's a trick:

$$
\begin{aligned}
8051 & =8100-49, \\
& =90^{2}-7^{2}, \\
& =83 \times 97
\end{aligned}
$$

Congruences of squares

An early idea (not really with algorithmic intent) due to Fermat.
We try to factor N. Set $r=\lceil\sqrt{N}\rceil$.

- For $i=0, \ldots$, compute $f(i)=(r+i)^{2}-N$.
- If $f(i)$ is a square, then we have:

$$
\begin{aligned}
(r+i)^{2}-N & =x^{2} \\
(r+i-x)(r+i+x) & =N .
\end{aligned}
$$

Let $N=p q$. This method factors N in time $O(|p-q|)$. This suceeds if p, q are too close to \sqrt{N}. Otherwise hopeless.

Solving the «nearby p, q » case efficiently

Exercise: factor N if $|p-c|<\sqrt[4]{N}$, with $c=\lfloor\sqrt{N}\rfloor$

- Write $N=(c+r)(c-s)$.
- Show that $s \geq r$.
- Give a polynomial-time calculation which recovers $r s$.
- Deduce $(r-s)$, and finally both r and s.
- This improvement does solve the «too easy case».
- Yet, the key idea of Fermat remains: search for squares. Fruitful for many other algorithms.

Congruences of squares

Given a composite N, what does $x^{2} \equiv y^{2} \bmod N$ give ?

$$
\begin{aligned}
x^{2} & \equiv y^{2} \\
(x-y)(x+y) & \equiv 0 \\
\left(\frac{x}{y}-1\right)\left(\frac{x}{y}+1\right) & \equiv 0 \quad(\text { we may assume } \operatorname{gcd}(y, N)=1)
\end{aligned}
$$

N with k distinct prime factors $\Rightarrow 2^{k}$ square roots of 1

- A "random" congruence $x^{2} \equiv y^{2}$ reveals a factor with prob $1-\frac{1}{2^{k-1}}$.
- Note that this cannot work for prime powers.

Kraitchik

From the 1930's:

- Looking at congruences is enough.
- If $r^{2} \bmod N$ and $s^{2} \bmod N$ are not squares, but their product is, then we succeed.

This is the principle of combination of congruences.

Combination of congruences

$$
\begin{aligned}
& 46^{2} \bmod 2041=75=3 \times 5^{2}, \\
& 47^{2} \bmod 2041=168=2^{3} \times 3 \times 7, \\
& 48^{2} \bmod 2041=263=1 \text { am lazy, too hard } \ldots \\
& 49^{2} \bmod 2041=360=2^{3} \times 3^{2} \times 5, \\
& 50^{2} \bmod 2041=459=3^{3} \times 17, \\
& 51^{2} \bmod 2041=560=2^{4} \times 5 \times 7,
\end{aligned}
$$

This leads to

$$
(\underbrace{46 \times 47 \times 49 \times 51}_{x})^{2} \equiv 2^{10} 3^{4} 5^{4} 7^{2} \equiv(\underbrace{2^{5} 3^{2} 5^{2} 7}_{y})^{2} \bmod N .
$$

And $\operatorname{gcd}(x-y, N)=13$.

Combination of congruences

$$
\begin{aligned}
& 46^{2} \bmod 2041=75=3 \times 5^{2}, \\
& 47^{2} \bmod 2041=168=2^{3} \times 3 \times 7, \\
& 48^{2} \bmod 2041=263=1 \text { am lazy, too hard } \ldots \\
& 49^{2} \bmod 2041=360=2^{3} \times 3^{2} \times 5, \\
& 50^{2} \bmod 2041=459=3^{3} \times 17, \\
& 51^{2} \bmod 2041=560=2^{4} \times 5 \times 7,
\end{aligned}
$$

Important facts

- We are chiefly interested in smooth numbers.
- Only the parity of exponents really counts.
- We are certainly affected by the size of the residues.

Two distinct prospects

Research towards a «better» factoring based on combination on congruences may focus on:

- Obtaining a (probabilistic) algorithm whose runtime can be analyzed and proven rigorously.
Example: Dixon's algorithm (next).
- Obtaining a rather fast algorithm, but whose runtime is possibly only heuristic.
Examples: CFRAC, QS, NFS.
Cryptanalysis is rather biased towards «fast, but heuristic».

Plan

Congruences of squares
The key idea
Dixon's random squares algorithm
Continued fractions
The quadratic sieve idea
Related stuff: Adleman's algorithm for DL

Dixon's random squares algorithm

This was formalized by Dixon in the 1970's. Proven $L(1 / 2)$.

- We are interested in the factorization of $r^{2} \bmod N$ only if it is smooth.
- We fix a smoothness bound B.
- The set of primes \mathcal{P}_{B} is called the factor base.

Algorithm:

- Pick r at random. Test divisibility by all primes below B. If $r^{2} \bmod N$ is B-smooth, keep the relation:

$$
r_{i}^{2} \equiv p_{1}^{e_{i, 1}} \times \cdots \times p_{k}^{e_{i, k}} \quad \bmod N
$$

- Try to combine these. This is a linear algebra problem over \mathbb{F}_{2}.

Combination by linear algebra

We have a set \mathcal{R} of relations $r_{i}^{2} \equiv p_{1}^{e_{i, 1}} \times \cdots \times p_{k}^{e_{i, k}}$.

- Consider the matrix $M \in \mathcal{M}_{\# \mathcal{R} \times \# \mathcal{P}}(\mathbb{Z}), M=\left(e_{i, j}\right)$.

$$
\begin{aligned}
& 46^{2} \bmod 2041=75=3 \times 5^{2}, \\
& 47^{2} \bmod 2041=168=2^{3} \times 3 \times 7, \quad \Longrightarrow \\
& 49^{2} \bmod 2041=360=2^{3} \times 3^{2} \times 5, \\
& 51^{2} \bmod 2041=560=2^{4} \times 5 \times 7,
\end{aligned}
$$

- A vector $V=\left(v_{i}\right)_{1 \leq i \leq \# \mathcal{R}}$ yields $V M=\left(\sum_{i} v_{i} e_{i, j}\right)_{j}$, and:

$$
\left(\prod r_{i}^{v_{i}}\right)^{2} \equiv \prod_{j} p_{j}^{\sum_{i} v_{i} e_{i, j}}
$$

- We want V such that coordinates of $V M$ are even: it suffices to search for (left) nullspace elements over the field \mathbb{F}_{2}.

Look forward into analysis

For analyzing Dixon's algorithm, one needs:

- An estimate on the size of $r^{2} \bmod N$, and its probability of B-smoothness given the bound B.
- Time complexity for solving the linear system which arises.

The result of the analysis gives the optimal value for the factor base bound B

Performance handicaps in Dixon's algorithm

Dixon's algorithm is nice for getting a proven algorithm. However, performance-wise, it suffers from the large size of $r^{2} \bmod N$.

Performance handicaps in Dixon's algorithm

Dixon's algorithm is nice for getting a proven algorithm. However, performance-wise, it suffers from the large size of $r^{2} \bmod N$.

- $r^{2} \bmod N \approx N$

Performance handicaps in Dixon's algorithm

Dixon's algorithm is nice for getting a proven algorithm.
However, performance-wise, it suffers from the large size of $r^{2} \bmod N$.

- $r^{2} \bmod N \approx N$
- Hopefully we're trial-dividing...

A faster algorithm would appreciate smaller residues.

- Continued fractions give such a thing.
- The quadratic sieve also does this, and brings the sieving idea.

Plan

Congruences of squares
The key idea
Dixon's random squares algorithm
Continued fractions
The quadratic sieve idea
Related stuff: Adleman's algorithm for DL

Continued fractions

Def. The continued fraction expansion of $x \in \mathbb{R}$ is the sequence of expressions

$$
\left[a_{0} ; a_{1}, \ldots ; a_{n}\right]=a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}} .
$$

Where the expression ends with $1 / a_{n}$ eventually and the integers a_{i} are obtained by the iteration

$$
a_{i}=\left\lfloor x_{i}\right\rfloor, \quad x_{i+1}=\frac{1}{x_{i}-a_{i}} .
$$

Continued fractions (cont'd)

Countless facts and identities.

- The rational number $\frac{p_{n}}{q_{n}}=\left[a_{0} ; a_{1}, \ldots ; a_{n}\right]$ is called the n-th convergent. (convergents converge towards x).
- $x \in \mathbb{Q} \Leftrightarrow$ CFE is finite.
- $[\mathbb{Q}(x): \mathbb{Q}]=2 \Leftrightarrow$ CFE is eventually periodic.
- $p_{n} q_{n-1}-p_{n-1} q_{n}=(-1)^{n}$ (hence $\operatorname{gcd}\left(p_{n}, q_{n}\right)=1$).
- $\left|x-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n} q_{n+1}}$.

The latter yields: $\left|p_{n}^{2}-x^{2} q_{n}^{2}\right|<2 x$ for $x>1$ and $n \geq 0$.

CFRAC (Morrison-Brillhart)

CFRAC follows the same methodology as Dixon's algorithm, but uses the CFE for $x=\sqrt{k N}$ as a source of relations (assume $k=1$ to start with).

- $Q_{n}=p_{n}^{2}-x^{2} q_{n}^{2}$ is an integer, $\left|Q_{n}\right|<2 \sqrt{k N}$.
- Thus Q_{n} is a square modulo N.
- Q_{n}, p_{n} can be computed using integer arithmetic (which is exact).
(Note: this is slightly difficult to prove).
Algorithm: © Select a factor base
- For some k, compute $\left(p_{n}\right)_{n}$ and $\left(Q_{n}\right)_{n}\left(q_{n}\right.$ not needed) for the CFE of $\sqrt{k N}$.
- Whenever Q_{n} is smooth, output a relation.
- Possibly repeat this with other values of k.
- enough relations ? \Rightarrow solve the linear system.

CFRAC: look forward into analysis

The analysis for CFRAC will proceed the same way as we will do Dixon's.

- We changed the way to form residues. These are now $O(\sqrt{N})$ instead of $O(N)$.
- However, we can not prove that the residues are uniformly distributed: rigorous smoothness results will not hold.

Plan for analysis: © Set B to be optimized.

- The size of the residues is ...
- The smoothness probability is ...
- The per-residue factoring cost is ...
- The total relation collection cost is ...
- The linear system cost is ...

In the end, complexity better than Dixon's (albeit heuristic).

Plan

Congruences of squares
The key idea
Dixon's random squares algorithm
Continued fractions
The quadratic sieve idea Related stuff: Adleman's algorithm for DL

Our dummy example was not so stupid

The quadratic sieve (Pomerance, 1983) is a combination of two things:

- First idea: pick a simple «naturally small» function:
- Consider $|f(i)|=\left|([\sqrt{N}\rceil+i)^{2}-N\right|$.
- For $|x| \leq S \ll \sqrt{N}$, we have $|f(i)| \leq 2 S \sqrt{N}+\epsilon$
- Second idea: Factor residues completely differently.
- The process used is known as sieving.
- Sieving eliminates the per-relation factoring cost.

We will study more size improvements with the MPQS (multiple polynomial QS) algorithm.

Plan

Congruences of squares
The key idea
Dixon's random squares algorithm
Continued fractions
The quadratic sieve idea
Related stuff: Adleman's algorithm for DL

Context switch

We change context completely.

Discrete Logarithm Problem in \mathbb{F}_{p}^{\times}.

We have $\mathbb{F}_{p}^{\times}=\langle g\rangle$, and $a \in \mathbb{F}_{p}^{\times}$. Search for ℓ s.t. $a \equiv g^{\ell} \bmod p$.
(more crypto-relevant: work in a subgroup $G<\mathbb{F}_{p}^{\times}$of prime order q).

Similar framework: © Fix a factor base bound B.

- Pick random values r, and keep those for which $g^{r} \bmod p$ is B-smooth.
- Aim at \#rels = \#FB elements.

Solving the linear system gives logs for FB elements.
To compute $\log _{g} a$: Find r s.t. $a g^{r}$ is B-smooth.

Differences DL versus factorisation

The most important difference is in linear algebra:

- No longer «congruences of squares». Matrix is over \mathbb{F}_{q}.
- Look for a right kernel, not a left kernel.

Note: as presented, Adleman's algorithm has:

- a precomputation stage: logs of FB elememts.
- an individual log stage: given a, find $\log _{g} a$.

Nice DL algorithms nowadays keep this small per-logarithm cost.

Plan

Tentative plan for the lectures to come

Congruences of squares

Analyzing smoothness-based algorithm

Exercises

Plan

Analyzing smoothness-based algorithm
Smooth numbers

Analyzing the algorithms

A crucial species: smooth numbers

Def. A B-smooth number N has all its prime factors $\leq B$. de Bruijn's function: $\psi(x, y)=\operatorname{Card}\{N \leq x, p \mid N \Rightarrow p \leq y\}$.

Main theorem (Canfield, Erdős, Pomerance)

For all $\varepsilon>0$, uniformly in $y \geq(\log x)^{1+\varepsilon}$, when $x \rightarrow \infty$

$$
\psi(x, y) / x=u^{-u(1+o(1))}, \quad u=\log x / \log y .
$$

A useful function:

$$
L_{x}(\alpha, c)=\exp \left(c(\log x)^{\alpha}(\log \log x)^{1-\alpha}\right)
$$

Prop. For all $\alpha>0, \beta>0$, when $x \rightarrow \infty$

$$
\psi\left(x^{\alpha}, L_{x}(1 / 2, \beta)\right) / x^{\alpha}=L_{x}\left(1 / 2, \frac{-\alpha}{2 \beta}+o(1)\right) .
$$

More on L

Handy function introduced (we think) by R. Schroeppel:

$$
L_{x}(\alpha, c)=\exp \left(c(\log x)^{\alpha}(\log \log x)^{1-\alpha}\right) .
$$

- $L_{x}(0, c)=$ polynomial in $\log x$.
- $L_{x}(1, c)=$ exponential in $\log x$.
- L is often called the sub-exponential function.

Reformulation of C-E-P

An integer $\leq L_{x}(\alpha, u)$ is $L_{x}(\beta, v)$-smooth with probability:

$$
L_{x}\left(\alpha-\beta,-\frac{u}{v}(\alpha-\beta)\right)^{1+o(1)} .
$$

For example, a random integer modulo N has a probability $L_{N}(1 / 2, \cdot)$ of being $L_{N}(1 / 2, \cdot)$-smooth.

Plan

Analyzing smoothness-based algorithm

Smooth numbers

Analyzing the algorithms

Random squares algorithm: analysis

We have $r^{2} \bmod N \approx L_{N}[1 ; 1]$. Set the smoothness bound $B=L_{N}[\beta, b]$.

- $\operatorname{Prob}\left(r^{2} \bmod N\right.$ is B-smooth $)=L_{N}\left[1-\beta ;-\frac{1}{b}(1-\beta)+o(1)\right]$.
- The cost for testing a relation is $O(B)=L_{N}[\beta, b]$.

We need $\approx B$ relations \Rightarrow relation collection
$L_{N}[\beta ; b]^{2} \times L_{N}\left[1-\beta ; \frac{1}{b}(1-\beta)\right]$.

- This constrains $\beta=\frac{1}{2} \Rightarrow$ rel. collec. $=L_{N}\left[1 / 2,2 b+\frac{1}{2 b}\right]$.
- Assume an $n \times n$ linear system can be solved in $O\left(n^{\omega}\right)$. Then a kernel element is found in time $L_{N}[1 / 2, \omega b]$.
- Total $L_{N}\left[1 / 2,2 b+\frac{1}{2 b}\right]+L_{N}[1 / 2, \omega b]$.

For $\omega=3$, optimum is $b=\frac{1}{2}$. Total complexity $L[1 / 2,2]$.

Several remarks

Dixon's algorithm has the advantage of being simply stated, and proven.
Yet, in $L[1 / 2,2]$ the constant is large, and affected by several things which can be improved:

- Size of the residues to be factored;
- Method used for factoring ;
- Method used for solving a linear system.

Tentative plan for the lectures to come Congruences of squares

 Analyzing smoothness-based algorithm

 Analyzing smoothness-based algorithm}

Exercises

Some exercises to finish the lecture

Exercise 1

Consider an algorithm which obtains one relation each time it finds a B-smooth number, of size X, with

$$
B=L_{N}[\beta, b], \quad X=L_{N}[\sigma, s] .
$$

Question: how many non-zero entries per row do we have in the matrix, w.r.t. the number of rows/cols ?

Exercise 2

Given Moore's law, and assuming no algorithmic advances, how should the size of a number N evolve as a function of the number of years during which we want it to remain impossible to factor.

More exercises

Exercise 3

Provide an algorithm solving the «nearby p, q » case (see earlier slide).

Exercise 4
Provide a heuristic analysis of CFRAC.

