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Plan

Tentative plan for the lectures to come
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Tentative plan

© Nov. 5th (today): Congruences of squares; CFRAC;
Adleman’s algorithm for discrete logs; Elements for analysis.

© Nov. 12th: The idea of sieving; Implications for analysis;
Some improvements.

© Nov. 19th: Sparse linear algebra; The Lanczos and
Wiedemann algorithms; Analysis issues; Implementation
issues.

® Nov. 26th: Exercises.
® Dec. 3rd: Exam.

© Dec. 10th: Number Field Sieve (I); Factoring with cubic
integers; Some algebraic number theory background.

© Dec. 17th: Number Field Sieve (Il); Steps being worked on
w.r.t NFS; Some record computations; NFS and its cousins.
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Copy-paste of a slide from lecture 1, part 1

The difficulty of discrete logarithm computations

Over finite fields:
o Iy

v

Best algorithm so far: & laNFS O(L,[1/3,¢]) (Gordon,
Schirokauer).

record with 160dd: T. Kleinjung (2007); 3.3 years of PC 3.2 GHz
Xeon64; matrix 2,177,226 x 2,177,026 with 289,976, 350 non-zero
coefficients, inverted in 14 years CPU.

v

e F,: Adleman-DeMarrais, function field sieve + optimizations.

p = 2: Coppersmith; record with F,si:: Joux/Lercier (2005).
record i : Hayashi et al. (2010),
http://eprint.iacr.org/2010/090.

Medium p case: Joux+Lercier.

v

v

v

L[, ¢] = exp((c + o(1))(log N)* (loglog N)' ).

F. Morain — Ecole polytechnique ~ MPRI - cours 2.12.2 - 2011-2012 10117

Breaking news: DL record in characteristic 2 has just been
updated.
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DL record for Fy619

This was really an old record (2005).

© DL computed using the Function Field Sieve algorithm.
(a cousin of the Number Field Sieve).
© Computation done in almost a day.

© About 160 core-hours of sieving.
© Linear algebra (18hrs) using graphics cards.
© This entails nice C code programming done in Nancy.

© Announced last week at the ECC 2012 workshop in Mexico.
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Lecture material

All slides and extra material will appear on the page:
http://www.loria.fr/~thome/MPRI/

Lectures are on Monday, expect slides to be posted by Tuesday
evening typically.
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http://www.loria.fr/~thome/MPRI/

Plan

Congruences of squares
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Plan

Congruences of squares
The key idea
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Factoring ?

Is 8051 a prime, and if not, can you factor it ?
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Factoring ?

Is 8051 a prime, and if not, can you factor it ? There's a trick:

8051 = 8100 — 49,
=90% — 72,
=83 x 97.
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Congruences of squares

An early idea (not really with algorithmic intent) due to Fermat.

We try to factor N. Set r = [\/NW

© Fori=0,..., compute f(i) = (r +i)> - N.
e If (i) is a square, then we have:
(r+i2?-N =x2,
(r+i—=x)(r+i+x) =N.
Let N = pg. This method factors N in time O(|p — q|).
This suceeds if p, g are too close to v/N. Otherwise hopeless.
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Solving the «nearby p, g » case efficiently

Exercise: factor N if |p — c| < Vv/N, with ¢ = {\/NJ

Write N = (c+r)(c — s).
Show that s > r.

Give a polynomial-time calculation which recovers rs.

Deduce (r — s), and finally both r and s.

This improvement does solve the «too easy casen.

Yet, the key idea of Fermat remains: search for squares.
Fruitful for many other algorithms.
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Congruences of squares

Given a composite N, what does x> = y?> mod N give ?

x* =2,

(x—y)x+y)=0,

(; - 1) (; + 1) =0 (we may assume gcd(y, N) =1).

N with k distinct prime factors = 2% square roots of 1

© A “random” congruence x> = y? reveals a factor with prob

1

© Note that this cannot work for prime powers.
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Kraitchik

From the 1930’s:

© Looking at congruences is enough.

@ If r> mod N and s?> mod N are not squares, but their product
is, then we succeed.

This is the principle of combination of congruences.
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Combination of congruences

462 mod 2041 = 75 = 3 x 5°,

47° mod 2041 = 168 = 23 x 3 x 7,

482 mod 2041 = 263 = | am lazy, too hard. ..
492 mod 2041 = 360 = 23 x 32 x 5,

502 mod 2041 = 459 = 33 x 17,

512 mod 2041 = 560 = 2* x 5 x 7,

This leads to

(46 x 47 x 49 x 51)? = 2103%5%72 = (2°3%527)?  mod N.
—_——
X y

And gcd(x — y, N) = 13.
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Combination of congruences

462 mod 2041 = 75 = 3 x 5°,

47° mod 2041 = 168 = 23 x 3 x 7,

482 mod 2041 = 263 = | am lazy, too hard. ..
492 mod 2041 = 360 = 23 x 32 x 5,

502 mod 2041 = 459 = 33 x 17,

512 mod 2041 = 560 = 2* x 5 x 7,

Important facts

© We are chiefly interested in smooth numbers.

© Only the parity of exponents really counts.

© We are certainly affected by the size of the residues.
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Two distinct prospects

Research towards a «better» factoring based on combination on
congruences may focus on:

e Obtaining a (probabilistic) algorithm whose runtime can be
analyzed and proven rigorously.
Example: Dixon's algorithm (next).

© Obtaining a rather fast algorithm, but whose runtime is
possibly only heuristic.
Examples: CFRAC, QS, NFS.

Cryptanalysis is rather biased towards «fast, but heuristic».
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Plan

Congruences of squares

Dixon's random squares algorithm
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Dixon's random squares algorithm

This was formalized by Dixon in the 1970's. Proven L(1/2).

® We are interested in the factorization of r?> mod N only if it is
smooth.

® We fix a smoothness bound B.

© The set of primes Pg is called the factor base.
Algorithm:

© Pick r at random. Test divisibility by all primes below B.
If > mod N is B-smooth, keep the relation:
r2=pit x oo x pl* mod N.

1

© Try to combine these. This is a linear algebra problem over F.
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Combination by linear algebra

. €j €;
We have a set R of relations r,-2 =p; XX pk"k.

e Consider the matrix M € Myugrxxp(Z), M = (e;j).

46° mod 2041 =75 = 3 x 5%, 0120
47° mod 2041 =168 =2>x3x7, _ 3 1 01
2 mrm A3 a2 3210
49?2 mod 2041 = 360 = 23 x 32 x 5, 101 1

512 mod 2041 =560 = 2* x 5 x 7,

@ A vector V = (V,')lS;S#R yields VM = (Z, v,-e,-J)J-, and:
Tm? =T1p~"
J

® We want V such that coordinates of VM are even: it suffices
to search for (left) nullspace elements over the field F».
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Look forward into analysis

For analyzing Dixon’s algorithm, one needs:

@ An estimate on the size of r?> mod N, and its probability of
B-smoothness given the bound B.

© Time complexity for solving the linear system which arises.

The result of the analysis gives the optimal value for the factor
base bound B
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Performance handicaps in Dixon's algorithm

Dixon's algorithm is nice for getting a proven algorithm.

However, performance-wise, it suffers from the large size of
r> mod N.
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Performance handicaps in Dixon's algorithm

Dixon's algorithm is nice for getting a proven algorithm.

However, performance-wise, it suffers from the large size of
r> mod N.

© r’mod N~ N
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Performance handicaps in Dixon's algorithm

Dixon's algorithm is nice for getting a proven algorithm.

However, performance-wise, it suffers from the large size of
r> mod N.

® r’mod N~ N
© Hopefully we're trial-dividing. . .
A faster algorithm would appreciate smaller residues.

© Continued fractions give such a thing.

© The quadratic sieve also does this, and brings the sieving idea.
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Plan

Congruences of squares

Continued fractions
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Continued fractions

Def. The continued fraction expansion of x € R is the sequence of
expressions

[a0; a1,...;an] = a0 +
ai +
as +

1
33_|_

Where the expression ends with 1/a, eventually and the integers a;
are obtained by the iteration

1

x,-—a,-'

aj = LXiJ s Xi+1 =
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Continued fractions (cont'd)

Countless facts and identities.

® The rational number % = [a0; a1, . . .; an| is called the n-th
convergent. (convergents converge towards x).

© x € Q & CFE is finite.
¢ [Q(x) : Q] =2 < CFE is eventually periodic.

© Pndn-1— Pn-1qn = (—1)" (hence gcd(pn, gn) = 1).
1

_ Pn PR S
o [om< 1

dn

The latter yields: |p2 — x?q2| < 2x for x > 1 and n > 0.
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CFRAC (Morrison-Brillhart)

CFRAC follows the same methodology as Dixon's algorithm, but
uses the CFE for x = v/ kN as a source of relations (assume k =1
to start with).

© Q, = p2 —x%q? is an integer, |Q,| < 2VkN.

© Thus Q, is a square modulo N.

© Qn, pn can be computed using integer arithmetic (which is
exact).
(Note: this is slightly difficult to prove).

Algorithm: @ Select a factor base
© For some k, compute (pp), and (Qn)n (gn not
needed) for the CFE of v/kN.
© Whenever Q, is smooth, output a relation.
© Possibly repeat this with other values of k.

© enough relations ? = solve the linear system.
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CFRAC: look forward into analysis

The analysis for CFRAC will proceed the same way as we will do
Dixon’s.

© We changed the way to form residues.
These are now O(v/N) instead of O(N).

© However, we can not prove that the residues are uniformly
distributed: rigorous smoothness results will not hold.

Plan for analysis: @ Set B to be optimized.
The size of the residues is ...

The smoothness probability is . ..

©

©

© The per-residue factoring cost is ...

© The total relation collection cost is ...
©

The linear system cost is ...

In the end, complexity better than Dixon's (albeit heuristic).
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Plan

Congruences of squares

The quadratic sieve idea
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Our dummy example was not so stupid

The quadratic sieve (Pomerance, 1983) is a combination of two
things:
© First idea: pick a simple «naturally small» function:
© Consider |f(i)| = | qm—‘ + i>2 — N|.
© For |x| < S < VN, we have |f(i)] <25VN +¢

© Second idea: Factor residues completely differently.

© The process used is known as sieving.
© Sieving eliminates the per-relation factoring cost.

We will study more size improvements with the MPQS (multiple
polynomial QS) algorithm.
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Plan

Congruences of squares

Related stuff: Adleman’s algorithm for DL
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Context switch

We change context completely.

Discrete Logarithm Problem in I .

We have F; = (g), and a € F. Search for £ s.t. a= g’ mod p.

(more crypto-relevant: work in a subgroup G < [F7 of prime order
q).
Similar framework: ® Fix a factor base bound B.

© Pick random values r, and keep those for
which g” mod p is B-smooth.

© Aim at #rels = #FB elements.

Solving the linear system gives logs for FB elements.
To compute logg a: Find r s.t. ag” is B-smooth.
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Differences DL versus factorisation

The most important difference is in linear algebra:

© No longer «congruences of squaresy. Matrix is over [F.

© Look for a right kernel, not a left kernel.
Note: as presented, Adleman’s algorithm has:

© a precomputation stage: logs of FB elememts.

© an individual log stage: given a, find log, a.

Nice DL algorithms nowadays keep this small per-logarithm cost.
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Plan

Analyzing smoothness-based algorithm
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Plan

Analyzing smoothness-based algorithm

Smooth numbers
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A crucial species: smooth numbers

Def. A B-smooth number N has all its prime factors < B.
de Bruijn’s function: ¢(x,y) = Card{N < x,p | N = p < y}.

Main theorem (Canfield, Erdés, Pomerance)

For all € > 0, uniformly in y > (log x)}*¢, when x — oo

—u(1+o(1)

Y(x,y)/x =u u=logx/logy.

A useful function:
Ly(a, c) = exp (c(log x)*(log log x)l_a> .
Prop. For all a > 0, 8 > 0, when x — o

Y(x, L(1/2,8))/x* = Lx(1/2, 5z + o(1)).

ﬂ
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More on L

Handy function introduced (we think) by R. Schroeppel:
Ly(cr,c) = exp (c(log x)*(log log x)l_o‘) .

® L,(0,c) = polynomial in log x.
® L,(1,c) = exponential in log x.
@ L is often called the sub-exponential function.

Reformulation of C-E-P

An integer < Ly(a, u) is Ly(3, v)-smooth with probability:

L(a = B, ~=(a = B)) .

For example, a random integer modulo N has a probability
Ln(1/2,-) of being Ly(1/2,-)-smooth.
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Plan

Analyzing smoothness-based algorithm

Analyzing the algorithms
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Random squares algorithm: analysis

We have r?> mod N = Ly[1;1]. Set the smoothness bound
B = LN[ﬁv b]

® Prob(r? mod N is B-smooth) = Ly[1 — f3; —%(1 — B) + o(1)].

© The cost for testing a relation is O(B) = Ln|[5, b].

We need =~ B relations = relation collection

Ln[B; b]* x L[l — B; £(1 = B)].

© This constrains = % = rel. collec. = Ly[1/2,2b + ﬁ]

© Assume an n X n linear system can be solved in O(n*). Then
a kernel element is found in time Ly[1/2,wb].

e Total Ly[1/2,2b+ 3] + Ln[1/2,wb].

For w = 3, optimum is b = 3. Total complexity L[1/2,2].
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Several remarks

Dixon’s algorithm has the advantage of being simply stated, and
proven.
Yet, in L[1/2,2] the constant is large, and affected by several
things which can be improved:

@ Size of the residues to be factored ;

© Method used for factoring ;

© Method used for solving a linear system.
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Plan

Exercises
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Some exercises to finish the lecture

Exercise 1

Consider an algorithm which obtains one relation each time it finds
a B-smooth number, of size X, with

B=LN[,8,b], X=LN[O',S].

Question: how many non-zero entries per row do we have in the
matrix, w.r.t. the number of rows/cols ?

Exercise 2

Given Moore's law, and assuming no algorithmic advances, how
should the size of a number N evolve as a function of the number
of years during which we want it to remain impossible to factor.
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More exercises

Exercise 3

Provide an algorithm solving the «nearby p, g» case (see earlier
slide).

Exercise 4

Provide a heuristic analysis of CFRAC.
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