
Cours MPRI 2-12-2
Lecture 1/5: Factoring by combining congruences

(lecturer for part 2/3): E. Thomé
/* */ C,A,
/* */ R,a,
/* */ M,E,

L,i=
5,e,

d[5],Q[999 ]={0};main(N ){for
(;i--;e=scanf("%" "d",d+i));for(A =*d;
++i<A ;++Q[ i*i% A],R= i[Q]?
R:i); for(;i --;) for(M =A;M
--;N +=!M*Q [E%A ],e+= Q[(A
+E*E- R*L* L%A) %A]) for(
E=i,L=M,a=4;a;C= i*E+R*M*L,L=(M*E +i*L)

%A,E=C%A+a --[d]);printf ("%d"
"\n",
(e+N*
N)/2

/* cc caramel.c; echo f3 f2 f1 f0 p | ./a.out */ -A);}

CARAMEL

Nov. 5th, 2012
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Tentative plan

Nov. 5th (today): Congruences of squares; CFRAC;
Adleman’s algorithm for discrete logs; Elements for analysis.
Nov. 12th: The idea of sieving; Implications for analysis;
Some improvements.
Nov. 19th: Sparse linear algebra; The Lanczos and
Wiedemann algorithms; Analysis issues; Implementation
issues.
Nov. 26th: Exercises.
Dec. 3rd: Exam.
Dec. 10th: Number Field Sieve (I); Factoring with cubic
integers; Some algebraic number theory background.
Dec. 17th: Number Field Sieve (II); Steps being worked on
w.r.t NFS; Some record computations; NFS and its cousins.
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Copy-paste of a slide from lecture 1, part 1

Cryptographic motivations: two algorithms

A) Diffie-Hellman

Public parameters: p prime number, g generator of F∗
p .

Protocol:
A

ga mod p−→ B

A
gb mod p←− B

A : KAB = (gb)a ≡ gab mod p

B : KBA = (ga)b ≡ gab mod p

DH problem: given (p, g, ga, gb), compute gab.

DL problem: given (p, g, ga), find a.

Thm. DL⇒ DH; converse true for a large class of groups (Maurer &
Wolf).

⇒ Goal for us: find a good resistant group.
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The difficulty of discrete logarithm computations

Over finite fields:
• Fp:

I Best algorithm so far: à la NFS O(Lp[1/3, c′]) (Gordon,
Schirokauer).

I record with 160dd: T. Kleinjung (2007); 3.3 years of PC 3.2 GHz
Xeon64; matrix 2, 177, 226 × 2, 177, 026 with 289, 976, 350 non-zero
coefficients, inverted in 14 years CPU.

• Fpn : Adleman-DeMarrais, function field sieve + optimizations.
I p = 2: Coppersmith; record with F2613 : Joux/Lercier (2005).
I record F36×71 : Hayashi et al. (2010),
http://eprint.iacr.org/2010/090.

I Medium p case: Joux+Lercier.

LN [α, c] = exp((c + o(1))(log N)α(log log N)1−α).
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ECDLP

ECC112b: taken from
http://lacal.epfl.ch/page81774.html,
Bos/Kaihara/Kleinjung/Lenstra/Montgomery (EPFL/Alcatel-Lucent
Bell Laboratories/MSR)

p = (2128 − 3)/(11 · 6949), curve secp112r1

• 3.5 months on 200 PS3; 8.5× 1016 ec additions (≈ 14 full 56-bit
DES key searches); started on January 13, 2009, and finished
on July 8, 2009.

• half a billion distinguished points using 0.6 Terabyte of disk
space.
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As a quick comparison
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FIGURE: (Log of) Security vs. bit size of key (exponential, L(1/2), L(1/3))

Lx[α, c] = exp
(
(c + o(1))(log x)α(log log x)1−α) .

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2011-2012 12/17

Breaking news: DL record in characteristic 2 has just been
updated.
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DL record for F2619

This was really an old record (2005).

DL computed using the Function Field Sieve algorithm.
(a cousin of the Number Field Sieve).
Computation done in almost a day.

About 160 core-hours of sieving.
Linear algebra (18hrs) using graphics cards.
This entails nice C code programming done in Nancy.

Announced last week at the ECC 2012 workshop in Mexico.
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Lecture material

All slides and extra material will appear on the page:

http://www.loria.fr/~thome/MPRI/

Lectures are on Monday, expect slides to be posted by Tuesday
evening typically.
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Factoring ?

Is 8051 a prime, and if not, can you factor it ?

There’s a trick:

8051 = 8100− 49,
= 902 − 72,

= 83× 97.
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Congruences of squares

An early idea (not really with algorithmic intent) due to Fermat.
We try to factor N. Set r =

⌈√
N
⌉
.

For i = 0, . . ., compute f (i) = (r + i)2 − N.
If f (i) is a square, then we have:

(r + i)2 − N = x2,
(r + i − x)(r + i + x) = N.

Let N = pq. This method factors N in time O(|p − q|).
This suceeds if p, q are too close to

√
N. Otherwise hopeless.
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Solving the «nearby p, q » case efficiently

Exercise: factor N if |p − c| < 4
√

N , with c =
⌊√

N
⌋

Write N = (c + r)(c − s).
Show that s ≥ r .
Give a polynomial-time calculation which recovers rs.
Deduce (r − s), and finally both r and s.

This improvement does solve the «too easy case».
Yet, the key idea of Fermat remains: search for squares.
Fruitful for many other algorithms.
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Congruences of squares

Given a composite N, what does x2 ≡ y2 mod N give ?

x2 ≡ y2,

(x − y)(x + y) ≡ 0,(x
y − 1

)(x
y + 1

)
≡ 0 (we may assume gcd(y ,N) = 1).

N with k distinct prime factors ⇒ 2k square roots of 1

A “random” congruence x2 ≡ y2 reveals a factor with prob
1− 1

2k−1 .
Note that this cannot work for prime powers.
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Kraitchik

From the 1930’s:

Looking at congruences is enough.
If r2 mod N and s2 mod N are not squares, but their product
is, then we succeed.

This is the principle of combination of congruences.
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Combination of congruences

462 mod 2041 = 75 = 3× 52,

472 mod 2041 = 168 = 23 × 3× 7,
482 mod 2041 = 263 = I am lazy, too hard. . .
492 mod 2041 = 360 = 23 × 32 × 5,
502 mod 2041 = 459 = 33 × 17,
512 mod 2041 = 560 = 24 × 5× 7, . . .

This leads to

(46× 47× 49× 51︸ ︷︷ ︸
x

)2 ≡ 210345472 ≡ (2532527︸ ︷︷ ︸
y

)2 mod N.

And gcd(x − y ,N) = 13.
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Combination of congruences

462 mod 2041 = 75 = 3× 52,

472 mod 2041 = 168 = 23 × 3× 7,
482 mod 2041 = 263 = I am lazy, too hard. . .
492 mod 2041 = 360 = 23 × 32 × 5,
502 mod 2041 = 459 = 33 × 17,
512 mod 2041 = 560 = 24 × 5× 7, . . .

Important facts

We are chiefly interested in smooth numbers.
Only the parity of exponents really counts.
We are certainly affected by the size of the residues.
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Two distinct prospects

Research towards a «better» factoring based on combination on
congruences may focus on:

Obtaining a (probabilistic) algorithm whose runtime can be
analyzed and proven rigorously.
Example: Dixon’s algorithm (next).
Obtaining a rather fast algorithm, but whose runtime is
possibly only heuristic.
Examples: CFRAC, QS, NFS.

Cryptanalysis is rather biased towards «fast, but heuristic».
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Dixon’s random squares algorithm

This was formalized by Dixon in the 1970’s. Proven L(1/2).

We are interested in the factorization of r2 mod N only if it is
smooth.
We fix a smoothness bound B.
The set of primes PB is called the factor base.

Algorithm:

Pick r at random. Test divisibility by all primes below B.
If r2 mod N is B-smooth, keep the relation:

r2
i ≡ pei,1

1 × · · · × pei,k
k mod N.

Try to combine these. This is a linear algebra problem over F2.
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Combination by linear algebra
We have a set R of relations r2

i ≡ pei,1
1 × · · · × pei,k

k .

Consider the matrix M ∈M#R×#P(Z), M = (ei ,j).

462 mod 2041 = 75 = 3× 52,

472 mod 2041 = 168 = 23 × 3× 7,
492 mod 2041 = 360 = 23 × 32 × 5,
512 mod 2041 = 560 = 24 × 5× 7,

=⇒


0 1 2 0
3 1 0 1
3 2 1 0
4 0 1 1


A vector V = (vi)1≤i≤#R yields VM = (

∑
i viei ,j)j , and:

(
∏

r vi
i )2 ≡

∏
j

p
∑

i vi ei,j
j .

We want V such that coordinates of VM are even: it suffices
to search for (left) nullspace elements over the field F2.
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Look forward into analysis

For analyzing Dixon’s algorithm, one needs:

An estimate on the size of r2 mod N, and its probability of
B-smoothness given the bound B.
Time complexity for solving the linear system which arises.

The result of the analysis gives the optimal value for the factor
base bound B
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Performance handicaps in Dixon’s algorithm

Dixon’s algorithm is nice for getting a proven algorithm.
However, performance-wise, it suffers from the large size of
r2 mod N.

r2 mod N ≈ N
Hopefully we’re trial-dividing. . .

A faster algorithm would appreciate smaller residues.

Continued fractions give such a thing.
The quadratic sieve also does this, and brings the sieving idea.
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Continued fractions

Def. The continued fraction expansion of x ∈ R is the sequence of
expressions

[a0; a1, . . . ; an] = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

Where the expression ends with 1/an eventually and the integers ai
are obtained by the iteration

ai = bxic , xi+1 =
1

xi − ai
.
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Continued fractions (cont’d)

Countless facts and identities.

The rational number pn
qn

= [a0; a1, . . . ; an] is called the n-th
convergent. (convergents converge towards x).
x ∈ Q⇔ CFE is finite.
[Q(x) : Q] = 2⇔ CFE is eventually periodic.
pnqn−1 − pn−1qn = (−1)n (hence gcd(pn, qn) = 1).∣∣∣x − pn

qn

∣∣∣ < 1
qnqn+1

.

The latter yields:
∣∣p2

n − x2q2
n
∣∣ < 2x for x > 1 and n ≥ 0.
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CFRAC (Morrison-Brillhart)
CFRAC follows the same methodology as Dixon’s algorithm, but
uses the CFE for x =

√
kN as a source of relations (assume k = 1

to start with).

Qn = p2
n − x2q2

n is an integer, |Qn| < 2
√

kN.
Thus Qn is a square modulo N.
Qn, pn can be computed using integer arithmetic (which is
exact).
(Note: this is slightly difficult to prove).

Algorithm: Select a factor base
For some k, compute (pn)n and (Qn)n (qn not
needed) for the CFE of

√
kN.

Whenever Qn is smooth, output a relation.
Possibly repeat this with other values of k.

enough relations ? ⇒ solve the linear system.
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CFRAC: look forward into analysis
The analysis for CFRAC will proceed the same way as we will do
Dixon’s.

We changed the way to form residues.
These are now O(

√
N) instead of O(N).

However, we can not prove that the residues are uniformly
distributed: rigorous smoothness results will not hold.

Plan for analysis: Set B to be optimized.
The size of the residues is . . .
The smoothness probability is . . .
The per-residue factoring cost is . . .
The total relation collection cost is . . .
The linear system cost is . . .

In the end, complexity better than Dixon’s (albeit heuristic).
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Our dummy example was not so stupid

The quadratic sieve (Pomerance, 1983) is a combination of two
things:

First idea: pick a simple «naturally small» function:
Consider |f (i)| =

∣∣ (⌈√N
⌉
+ i
)2
− N

∣∣.
For |x | ≤ S �

√
N, we have |f (i)| ≤ 2S

√
N + ε

Second idea: Factor residues completely differently.
The process used is known as sieving.
Sieving eliminates the per-relation factoring cost.

We will study more size improvements with the MPQS (multiple
polynomial QS) algorithm.
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Context switch
We change context completely.

Discrete Logarithm Problem in F×p .

We have F×p = 〈g〉, and a ∈ F×p . Search for ` s.t. a ≡ g ` mod p.

(more crypto-relevant: work in a subgroup G < F×p of prime order
q).

Similar framework: Fix a factor base bound B.
Pick random values r , and keep those for
which g r mod p is B-smooth.
Aim at #rels = #FB elements.

Solving the linear system gives logs for FB elements.
To compute logg a: Find r s.t. ag r is B-smooth.

Cours MPRI 2-12-2 29/40



Differences DL versus factorisation

The most important difference is in linear algebra:

No longer «congruences of squares». Matrix is over Fq.
Look for a right kernel, not a left kernel.

Note: as presented, Adleman’s algorithm has:

a precomputation stage: logs of FB elememts.
an individual log stage: given a, find logg a.

Nice DL algorithms nowadays keep this small per-logarithm cost.
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A crucial species: smooth numbers
Def. A B-smooth number N has all its prime factors ≤ B.
de Bruijn’s function: ψ(x , y) = Card{N ≤ x , p | N ⇒ p ≤ y}.

Main theorem (Canfield, Erdős, Pomerance)

For all ε > 0, uniformly in y ≥ (log x)1+ε, when x →∞

ψ(x , y)/x = u−u(1+o(1)), u = log x/ log y .

A useful function:

Lx (α, c) = exp
(
c(log x)α(log log x)1−α

)
.

Prop. For all α > 0, β > 0, when x →∞

ψ(xα, Lx (1/2, β))/xα = Lx (1/2,
−α
2β + o(1)).
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More on L
Handy function introduced (we think) by R. Schroeppel:

Lx (α, c) = exp
(
c(log x)α(log log x)1−α

)
.

Lx (0, c) = polynomial in log x .
Lx (1, c) = exponential in log x .
L is often called the sub-exponential function.

Reformulation of C-E-P
An integer ≤ Lx (α, u) is Lx (β, v)-smooth with probability:

Lx (α− β,−
u
v (α− β))

1+o(1).

For example, a random integer modulo N has a probability
LN(1/2, ·) of being LN(1/2, ·)-smooth.
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Random squares algorithm: analysis

We have r2 mod N ≈ LN [1; 1]. Set the smoothness bound
B = LN [β, b].

Prob(r2 mod N is B-smooth) = LN [1− β;− 1
b (1− β) + o(1)].

The cost for testing a relation is O(B) = LN [β, b].

We need ≈ B relations ⇒ relation collection
LN [β; b]2 × LN [1− β; 1

b (1− β)].

This constrains β = 1
2 ⇒ rel. collec. = LN [1/2, 2b + 1

2b ].
Assume an n × n linear system can be solved in O(nω). Then
a kernel element is found in time LN [1/2, ωb].
Total LN [1/2, 2b + 1

2b ] + LN [1/2, ωb].

For ω = 3, optimum is b = 1
2 . Total complexity L[1/2, 2].
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Several remarks

Dixon’s algorithm has the advantage of being simply stated, and
proven.
Yet, in L[1/2, 2] the constant is large, and affected by several
things which can be improved:

Size of the residues to be factored ;
Method used for factoring ;
Method used for solving a linear system.
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Some exercises to finish the lecture

Exercise 1
Consider an algorithm which obtains one relation each time it finds
a B-smooth number, of size X , with

B = LN [β, b], X = LN [σ, s].

Question: how many non-zero entries per row do we have in the
matrix, w.r.t. the number of rows/cols ?

Exercise 2
Given Moore’s law, and assuming no algorithmic advances, how
should the size of a number N evolve as a function of the number
of years during which we want it to remain impossible to factor.
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More exercises

Exercise 3
Provide an algorithm solving the «nearby p, q» case (see earlier
slide).

Exercise 4
Provide a heuristic analysis of CFRAC.
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