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Lecture 2/5: Sieving and other improvements

(lecturer for part 2/3): E. Thomé
/* */ C,A,
/* */ R,a,
/* */ M,E,

L,i=
5,e,

d[5],Q[999 ]={0};main(N ){for
(;i--;e=scanf("%" "d",d+i));for(A =*d;
++i<A ;++Q[ i*i% A],R= i[Q]?
R:i); for(;i --;) for(M =A;M
--;N +=!M*Q [E%A ],e+= Q[(A
+E*E- R*L* L%A) %A]) for(
E=i,L=M,a=4;a;C= i*E+R*M*L,L=(M*E +i*L)

%A,E=C%A+a --[d]);printf ("%d"
"\n",
(e+N*
N)/2

/* cc caramel.c; echo f3 f2 f1 f0 p | ./a.out */ -A);}
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QS

This lecture is mostly about QS, the quadratic sieve.

QS is technology from the 1980’s - 1990’s.
Superseded by NFS since circa 1995.
Yet, QS is faster for factoring numbers below e.g. 120dd.

This not of merely historical value:

QS embodies many of the state-of-the-art techniques still
used nowadays.
Stating these techniques in the QS context frees us from the
mathematical clutter around NFS.
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Our dummy example was not so stupid

The quadratic sieve (Pomerance, 1983) is a combination of two
things:

First idea: pick a simple «naturally small» function:
Consider |f (i)| =

∣∣ (⌈√N
⌉
+ i
)2
− N

∣∣.
For |x | ≤ S �

√
N, we have |f (i)| ≤ 2S

√
N + ε

Second idea: Factor residues completely differently.
The process used is known as sieving.
Sieving eliminates the per-relation factoring cost.

We will study more size improvements with the MPQS (multiple
polynomial QS) algorithm.
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Sieving

Key facts about sieving

One decides beforehand of a sieving space: interval
[[−S . . . S]].
“for each i , for each p, do” becomes “for each p, for each i ,
do”.
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Sieving, visually
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Sieving for the function in QS

Let f (x) = (c + x)2 − N, with c =
⌈√

N
⌉
.

Given p, how does one describe the set:

Sp = {i ∈ [[−S . . . S]], f (i) ≡ 0 mod p} .

Answer: this depends on the roots mod p of the quadratic f (x).
0, 1, or 2 roots depending on

(
N
p

)
.
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Computing all valuations at once

Fix p. Let (at most) r0, r1 be the roots mod p of f .

{i ∈ [[−S . . . S]], f (i) ≡ 0 mod p} = {r0, r0 ± p, . . .}∪{r1, r1 ± p, . . .} .

Algorithm: We maintain an array T [i ] indexed by i ∈ [[−S . . . S]].

For each p ≤ B, do:
Compute r0, r1
r := r0. While r ≤ S do:

T [r ]← T [r ] + log p,
r ← r + p.

idem for r1 as well as {ri − kp}.
Do this also for prime powers
For all i such that T [i ] = log |f (i)|, we know that f (i) is
smooth.
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Sieving with powers
(harder)

Assume that f (i) ≡ 0 has 2 distinct roots mod p (so p - disc(f ).

How many roots mod p2 ?
How many roots mod pk ?
Which log contribution should we add ?
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T [i ] = log |f (i)| ⇔ f (i) smooth
For each pk (assuming we consider k up to ∞. In fact we don’t):

we have characterized the set Spk = {i , νp(f (i)) ≥ k}.
we have added log2 p to T [i ] for each i in this set.

Thus eventually:

T [i ] =
∑

p∈PB

 ∑
k s.t. i∈Spk

log p

 ,
=
∑

p∈PB

 ∑
k, νp(f (i))≥k

log p

 ,
=
∑

p∈PB

νp(f (i)) log p,

= log (B-smooth part of f (i)) .
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QS: analysis

How many sieve updates per prime number p ?

≤ 4S
p − 1.

Total number of sieve updates: O(S log logB).
Assuming S is large enough so that we have enough relations
eventually, the relation collection cost is Õ(S) def

= O(S(log S)O(1)).
Strategy for analysis:

Size of residues.
Smoothness probability.
Number of relations obtained. Condition for having enough.
Cost for re-factoring f (i) when once has been identified as
smooth.
Linear system cost.
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QS: analysis
Let S = LN [σ, s] and B = LN [β, b].

|f (i)| =
∣∣ (⌈√N

⌉
+ i
)2
−N

∣∣ ≤ ?

2S
√

N+ε = LN [1, 1/2+o(1)].
Smoothness probability: LN [1− β,− 1

2b (1− β)].
Condition for having enough relations:

LN [σ, s]× LN [1− β,−
1
2b (1− β)] = LN [β, b],

σ = β = 1/2, s − 1
4b = b.

(s bigger would just cost more). Relation collection:
LN [1/2, b + 1

4b ].
Refactoring ? LN [1/2, 2b].
Linear system ? LN [1/2, ωb] for some ω (ω = 3 for Gauss).

Total: LN [1/2, b +
1
4b ] + LN [1/2, 2b] + LN [1/2, ωb].
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QS: analysis
Let S = LN [σ, s] and B = LN [β, b], with σ < 1.
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QS: complexity

We need to optimize LN [1/2, b + 1
4b ] + LN [1/2, ωb] (since ω ≥ 2).

Unless summands are equal, one is o() of the others.
Thus bopt given by bopt +

1
4bopt

= ωbopt.

Set ω = 3. Then bopt =
1

2
√

2 , and QS = LN [1/2, 3
2
√

2 ].

If we can do ω = 2, bopt =
1
2 , and QS = LN [1/2, 1].

Notice that the cost for factoring relations has vanished.
Therefore, the complexity of linear algebra plays a role.
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MPQS (Montgomery)
Annoying feature of QS: |f (x)| gets bigger as x grows.
max = 2S

√
N.

Quest: find other functions playing the role of f (x).
What happens if we look at (ax + b)2 for some a, b ?

(ax + b)2 = a2x2 + 2axb + b2

− ac + ac for any c,

If we have b2 − ac = N:
1
a (ax + b)2 ≡ ax2 + 2bx + c mod N.

Fix a s.t.
(

N
a

)
= 1. Choose b ≤ a

2 s.t. b2 ≡ N mod a. Set c < 0
accordingly.

|ax2 + 2bx + c|
∼
∈
[N

a , S
2a − N

a

]
.

For a given S, smallest values for a ≈ 2
√

N
S . ⇒ Bound 1√

2S
√

N.
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MPQS

For a given sieve interval size, we have found a better
polynomial.
More important, we have many such polynomials.
Provided a is a product of factor base primes, a large number
of polynomials can be used (other option: a = �).
Shorter intervals per polynomial ⇒ smaller residues.
Initialization cost per polynomial: solving b2 ≡ N mod a.
See SIQS for a way to amortize this (e.g. in CrPo).

MPQS (with improvements to be discussed) is the leading
algorithm today for p below 100-120 decimal digits.
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Sieving tricks

Sieving can be made less accurate but faster:

For the array T [], log values can be stored as 8-bit integers.
One may skip some primes or prime powers (pays little).

very small primes (many sieve updates, small contribution, ±
leveled).
large powers (contribution is only log p for one sieve value over
pk).
Unwise to skip large p: large contribution, important for
accuracy.

“qualification” test: T [i ] ≥ log f (i)− κ, with
eκ = cofactor bound.

If eκ ≤ B, for each such i , cofactor q ∈ PB : we have a
relation.
If eκ ≤ B2, for each such i , q prime, possibly ≤ B.
We have a complete factorization, but not a relation. Too bad.
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Large primes

Idea (dates back to CFRAC):

Fix a “large prime bound” L.
As long as the cofator is ≤ L, keep the “partial relations” as
well, since we get them for free (almost).
The cofactor q is called a large prime.

Two partial relations with the same large prime q can be combined:

f (i) = smooth× q,
f (i ′) = smooth× q,

f (i)f (i ′) = smooth×�.

K partial relations ⇒ how many recombined relations ? Birthday
paradox.
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Number of matches

Thm. K independent, uniformly random picks from a set of size L
yield an expecte total number of K2

2L matches.
Proof: cheat a little, or use generating functions, or do otherwise.
Keeping partial relations seems a waste at first. Eventually this
pays off.
Note: recombined relations are heavier.
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Two large primes

Experimentally, sieving is efficient. This leads to PPMPQS:

Not too harmful to loosen the qualification and allow
cofactors > B2.
Such (not necessarily prime) cofactors need to be factored.
Allowing two large primes, we obtain “partial-partial”
relations.

Old terminology: “full” (FF) relation: no large prime ;
“partial” (FP) relation: one large prime ;
“partial-partial” (PP) relation: two large
primes.

Modern statements of this method refer only to partial relations,
and consider also more large primes.
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Matching multiple large primes – the old way
Consider a graph where:

vertices are large primes ;
edges are relations ;
an edge (relation R) connects two vertices (q1, q2) iff R
involves q1, q2.
Add a special vertex 1 to which all FP relations are connected.

A cycle in this large prime graph yields:
q3

q1 q2r1,2

r2,3r1,3
−→ r1,2r2,3r1,3 = smooth×�.

Hunting cycles: union-find algorithm (easy).
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Matching large primes – the modern way

Consider arbitrarily many large primes – no real distinction with
PB primes anyway.
We thus have a very large set of partial relations, which go through
several passes.

Duplicate removal.
Singleton removal: when only one relation involves a given
prime.
Merges: when prime q appears in only k relations:

Replace k relations with q by k − 1 without q.
Try to do this the smart way.

Use hash tables and a lot of RAM everywhere.
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Cofactorization

Because of large primes, we bring our interest on sieve locations
which do not necessarily yield relations.

Some sieve reports are promising.
We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology).
Several «strategies»:

Trial-divide up to some bound.
«Resieve» up to some bound, but record primes.
Use small-p-sensible algorithms: p ± 1, ECM.
Maybe even run (MP)QS recursively ?

On top of that, early abort, e.g.: if trial division yields too little,
forget about this relation.
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QS/MPQS: conclusion

((((P)P)MP)/SI)QS is a living algorithm for factoring.

relatively easy to understand / implement.
complexity for factoring N depends only on N.
for N of moderate size, MPQS is the way to go today.
publicly available implementation: msieve.

Note: none of the sieving tricks affect the complexity:
LN [1/2, 1+ o(1)] (assuming ω = 2).
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Plan

About QS

Sieving

MPQS

Sieving tricks

Yield optimization
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Factor 2N , factor N

We often have some freedom factor N
or factor kN for small k.

Knuth: «this is a rather curious way to proceed (if not downright
stupid)» (TAOCP2, 4.5.4).

CFRAC: CFE of
√

N gives congruences p2
n − Nq2

n = vn.
(MP)QS: Values of a quadratic polynomial of discriminant N.

Key idea

If we use kN instead, maybe some small p divide more often ?

Plan Characterize p’s which divide the residue.
Get a heuristic measure to maximize # divisors.
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Why focus on this ?

Yield optimization has been studied for CFRAC, MPQS, and NFS.

For CFRAC and NFS: some technicalities.
Easier for MPQS, useful to get the idea.

Nowadays, the grandchild of the CFRAC « choice of multiplier » is
part of NFS’s « polynomial selection » step.
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`-valuation of a random integer

If X is a random integer:

Prob (ν`(X ) ≥ 1) = 1
` ;

Prob (ν`(X ) ≥ 2) = 1
`2 ;

Prob (ν`(X ) ≥ 3) = 1
`3 .

etc.

Total:
E [ν`(X )] =

1
`
· 1
1− 1

`

=
1

`− 1 .

Cours MPRI 2-12-2 32/40



Residues for MPQS

Residues for MPQS are:

f (x) = ax2+2bx+c =
1
a
[
(ax + b)2 − (b2 − ac)

]
=

1
a
[
(ax + b)2 − N

]
.

Assume ` - a (` | a more boring).

#{Classes of sieve updates mod `} = #{
√

N mod `}.

Let r` = # square roots of N mod `.
On average, after sieving: log |f (x)| − T [x ] = log |f (x)| −

∑
r` log `
`−1 .

For a random integer y of the same size: log |y | −
∑ log `

`−1 .

Discrepancy function:
∑
(1− r`) log `

`−1 .
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Residues for MPQS are:

f (x) = ax2+2bx+c =
1
a
[
(ax + b)2 − (b2 − ac)

]
=

1
a
[
(ax + b)2 − kN

]
.

Assume ` - a (` | a more boring).

#{Classes of sieve updates mod `} = #{
√

kN mod `}.

Let r` = # square roots of kN mod `.
On average, after sieving: log |f (x)| − T [x ] = log |f (x)| −

∑
r` log `
`−1 .

For a random integer y of the same size: log |y | −
∑ log `

`−1 .

Discrepancy function: α(k) =
∑
(1− r`) log `

`−1 .

Cours MPRI 2-12-2 33/40



Choice of the multiplier

Choosing an adequate multiplier k:

may increase the amount of sieve contributions from small
primes.
drawback: f (x) grows with k.

The key idea remains: having many roots modulo small primes is
good.
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Yield optimization (Pomerance-Wagstaff)
(harder)

CFRAC looks at Qn = p2
n − kNq2

n, with k a square-free integer.
Which necessary condition should an odd prime ` satisfy, in order
to have ` | Qn ?

Answer:
(

kN
`

)
= 1.

Can choose k ± freely (as long as k = LN [1/2, o(1)]).

Theorem: average `-valuation in CFRAC

The average `-valuation of X (for ` odd prime) is
1
`−1 if X is a random integer ;

If X = Qn:


0 if

(
kN
`

)
= −1,

1
`+1 if

(
kN
`

)
= 0,

2
`+1 ·

`
`−1 if

(
kN
`

)
= 1 (assuming pn, qn random coprime).
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`-valuation: proof
(harder)

If X = Qn = p2
n − kNq2

n and
(

k
`

)
= 0.

Assumption: (pn, qn) are random coprime integers.
Modulo `: (pn, qn) maps to something uniformly random in . . .

Prob (ν`(X ) ≥ 1) = 1
`+1 ;

Prob (ν`(X ) ≥ 2) = 0 (because gcd(pn, qn) = 1).

Total:
E [ν`(X )] =

1
`+ 1 .
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`-valuation: proof
(harder)

If X = Qn = p2
n − kNq2

n and
(

k
`

)
= 1.

Amongst `+ 1 choices for (pn : qn) ∈ P1(F`), exactly two lead to
` | Qn.

Prob (ν`(X ) ≥ 1) = 2
`+1 ;

Prob (ν`(X ) ≥ 2) = 2
`2+` (two roots in P1(Z/̀ 2Z)) ;

Prob (ν`(X ) ≥ 3) = 2
`3+`2 ;

etc

Total:
E [ν`(X )] =

2
`+ 1 ·

1
1− 1

`

=
2`

`2 − 1 .
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CFRAC: yield optimization
(harder)

Let f (k, `) be the expected average `-valuation of p2
n − kNq2

n as
above.
We choose values of k for which F (k) is large, where:

F (k) =
∑
`<B

(
f (k, `)− 1

`− 1

)
log2 `.

Idea: when e.g. F (k) ≈ 3, we expect Qn ≈ X to be smooth almost
as often as a random integer ≈ X

23 .
Yield optimization is important in practice, and also important
today with NFS.
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Plan for next time

CFRAC/QS/MPQS/NFS all build relations.
We are faced with a linear system to be solved.
The system is always sparse

Next lecture: sparse linear algebra algorithms.
Goal: solve a sparse n × n system in Õ(n2).
(sparse: at most (log n)O(1) non-zero coefficients per row).
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Exercises

Exercise 1
Give the space complexity for sieving over an interval of length S
with primes up to B, if one keeps track of all sieved primes for
each location.
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