Cours MPRI 2-12-2

Lecture $2 / 5$: Sieving and other improvements
(lecturer for part 2/3): E. Thomé

Nov. 12th, 2012

Plan

About QS

Sieving

MPQS

Sieving tricks

Yield optimization

This lecture is mostly about QS, the quadratic sieve.

- QS is technology from the 1980's - 1990's.
- Superseded by NFS since circa 1995.
- Yet, QS is faster for factoring numbers below e.g. 120dd.

This not of merely historical value:

- QS embodies many of the state-of-the-art techniques still used nowadays.
- Stating these techniques in the QS context frees us from the mathematical clutter around NFS.

Our dummy example was not so stupid

The quadratic sieve (Pomerance, 1983) is a combination of two things:

- First idea: pick a simple «naturally small» function:
- Consider $|f(i)|=\left|([\sqrt{N}\rceil+i)^{2}-N\right|$.
- For $|x| \leq S \ll \sqrt{N}$, we have $|f(i)| \leq 2 S \sqrt{N}+\epsilon$
- Second idea: Factor residues completely differently.
- The process used is known as sieving.
- Sieving eliminates the per-relation factoring cost.

We will study more size improvements with the MPQS (multiple polynomial QS) algorithm.

Plan

About QS

Sieving

MPQS

Sieving tricks

Yield optimization

Plan

Sieving
Idea
Impact on analysis

Sieving

Key facts about sieving

- One decides beforehand of a sieving space: interval $\llbracket-S \ldots S \rrbracket$.
- "for each i, for each p, do" becomes "for each p, for each i, do".

Sieving, visually

Sieving, visually

Sieving, visually

Sieving, visually

Sieving for the function in QS

Let $f(x)=(c+x)^{2}-N$, with $c=\lceil\sqrt{N}\rceil$.
Given p, how does one describe the set:

$$
\mathcal{S}_{p}=\{i \in \llbracket-S \ldots S \rrbracket, f(i) \equiv 0 \quad \bmod p\} .
$$

Sieving for the function in QS

Let $f(x)=(c+x)^{2}-N$, with $c=\lceil\sqrt{N}\rceil$.
Given p, how does one describe the set:

$$
\mathcal{S}_{p}=\{i \in \llbracket-S \ldots S \rrbracket, f(i) \equiv 0 \quad \bmod p\} .
$$

Answer: - this depends on the roots $\bmod p$ of the quadratic $f(x)$.

- 0,1 , or 2 roots depending on $\left(\frac{N}{p}\right)$.

Computing all valuations at once

Fix p. Let $\left(\right.$ at most) r_{0}, r_{1} be the roots $\bmod p$ of f.
$\{i \in \llbracket-S \ldots S \rrbracket, f(i) \equiv 0 \bmod p\}=\left\{r_{0}, r_{0} \pm p, \ldots\right\} \cup\left\{r_{1}, r_{1} \pm p, \ldots\right\}$.
Algorithm: We maintain an array $T[i]$ indexed by $i \in \llbracket-S \ldots S \rrbracket$.

- For each $p \leq B$, do:
- Compute r_{0}, r_{1}
- $r:=r_{0}$. While $r \leq S$ do:
- $T[r] \leftarrow T[r]+\log p$,
- $r \leftarrow r+p$.
- idem for r_{1} as well as $\left\{r_{i}-k p\right\}$.
- Do this also for prime powers
- For all i such that $T[i]=\log |f(i)|$, we know that $f(i)$ is smooth.

Sieving with powers

(harder)

Assume that $f(i) \equiv 0$ has 2 distinct roots $\bmod p($ so $p \nmid \operatorname{disc}(f)$.

- How many roots mod p^{2} ?
- How many roots mod p^{k} ?
- Which log contribution should we add ?

$T[i]=\log |f(i)| \Leftrightarrow f(i)$ smooth

For each p^{k} (assuming we consider k up to ∞. In fact we don't):

- we have characterized the set $\mathcal{S}_{p^{k}}=\left\{i, \nu_{p}(f(i)) \geq k\right\}$.
- we have added $\log _{2} p$ to $T[i]$ for each i in this set.

Thus eventually:

$$
\begin{aligned}
T[i] & =\sum_{p \in \mathcal{P}_{B}}\left(\sum_{k \text { s.t. } i \in \mathcal{S}_{p^{k}}} \log p\right), \\
& =\sum_{p \in \mathcal{P}_{B}}\left(\sum_{k, \nu_{p}(f(i)) \geq k} \log p\right), \\
& =\sum_{p \in \mathcal{P}_{B}} \nu_{p}(f(i)) \log p, \\
& =\log (B \text {-smooth part of } f(i)) .
\end{aligned}
$$

Plan

Sieving
 Idea
 Impact on analysis

QS: analysis

How many sieve updates per prime number p ?

QS: analysis

How many sieve updates per prime number $p ? \frac{\leq 4 S}{p-1}$.
Total number of sieve updates:

QS: analysis

How many sieve updates per prime number $p ? \frac{\leq 4 S}{p-1}$.
Total number of sieve updates: $\quad O(S \log \log B)$.
Assuming S is large enough so that we have enough relations eventually, the relation collection cost is $\widetilde{O}(S) \stackrel{\text { def }}{=} O\left(S(\log S)^{O(1)}\right)$.
Strategy for analysis:

- Size of residues.
- Smoothness probability.
- Number of relations obtained. Condition for having enough.
- Cost for re-factoring $f(i)$ when once has been identified as smooth.
- Linear system cost.

QS: analysis

Let $S=L_{N}[\sigma, s]$ and $B=L_{N}[\beta, b]$.

- $|f(i)|=\left|([\sqrt{N}]+i)^{2}-N\right| \leq$?

QS: analysis

Let $S=L_{N}[\sigma, s]$ and $B=L_{N}[\beta, b]$, with $\sigma<1$.

- $|f(i)|=\left|([\sqrt{N}\rceil+i)^{2}-N\right| \leq 2 S \sqrt{N}+\epsilon=L_{N}[1,1 / 2+o(1)]$.
- Smoothness probability:

QS: analysis

Let $S=L_{N}[\sigma, s]$ and $B=L_{N}[\beta, b]$, with $\sigma<1$.

- $|f(i)|=\left|([\sqrt{N}\rceil+i)^{2}-N\right| \leq 2 S \sqrt{N}+\epsilon=L_{N}[1,1 / 2+o(1)]$.
- Smoothness probability: $L_{N}\left[1-\beta,-\frac{1}{2 b}(1-\beta)\right]$.
- Condition for having enough relations:

QS: analysis

Let $S=L_{N}[\sigma, s]$ and $B=L_{N}[\beta, b]$, with $\sigma<1$.

- $|f(i)|=\left|([\sqrt{N}\rceil+i)^{2}-N\right| \leq 2 S \sqrt{N}+\epsilon=L_{N}[1,1 / 2+o(1)]$.
- Smoothness probability: $L_{N}\left[1-\beta,-\frac{1}{2 b}(1-\beta)\right]$.
- Condition for having enough relations:

$$
\begin{gathered}
L_{N}[\sigma, s] \times L_{N}\left[1-\beta,-\frac{1}{2 b}(1-\beta)\right]=L_{N}[\beta, b], \\
\sigma=\beta=1 / 2, \quad s-\frac{1}{4 b}=b .
\end{gathered}
$$

(s bigger would just cost more). Relation collection: $L_{N}\left[1 / 2, b+\frac{1}{4 b}\right]$.

- Refactoring ?

QS: analysis

Let $S=L_{N}[\sigma, s]$ and $B=L_{N}[\beta, b]$, with $\sigma<1$.

- $|f(i)|=\left|([\sqrt{N}\rceil+i)^{2}-N\right| \leq 2 S \sqrt{N}+\epsilon=L_{N}[1,1 / 2+o(1)]$.
- Smoothness probability: $L_{N}\left[1-\beta,-\frac{1}{2 b}(1-\beta)\right]$.
- Condition for having enough relations:

$$
\begin{gathered}
L_{N}[\sigma, s] \times L_{N}\left[1-\beta,-\frac{1}{2 b}(1-\beta)\right]=L_{N}[\beta, b], \\
\sigma=\beta=1 / 2, \quad s-\frac{1}{4 b}=b .
\end{gathered}
$$

(s bigger would just cost more). Relation collection: $L_{N}\left[1 / 2, b+\frac{1}{4 b}\right]$.

- Refactoring ? $L_{N}[1 / 2,2 b]$.
- Linear system ?

QS: analysis

Let $S=L_{N}[\sigma, s]$ and $B=L_{N}[\beta, b]$, with $\sigma<1$.

- $|f(i)|=\left|([\sqrt{N}\rceil+i)^{2}-N\right| \leq 2 S \sqrt{N}+\epsilon=L_{N}[1,1 / 2+o(1)]$.
- Smoothness probability: $L_{N}\left[1-\beta,-\frac{1}{2 b}(1-\beta)\right]$.
- Condition for having enough relations:

$$
\begin{gathered}
L_{N}[\sigma, s] \times L_{N}\left[1-\beta,-\frac{1}{2 b}(1-\beta)\right]=L_{N}[\beta, b], \\
\sigma=\beta=1 / 2, \quad s-\frac{1}{4 b}=b .
\end{gathered}
$$

(s bigger would just cost more). Relation collection:
$L_{N}\left[1 / 2, b+\frac{1}{4 b}\right]$.

- Refactoring ? $L_{N}[1 / 2,2 b]$.
- Linear system ? $L_{N}[1 / 2, \omega b]$ for some $\omega(\omega=3$ for Gauss).

Total: $\quad L_{N}\left[1 / 2, b+\frac{1}{4 b}\right]+L_{N}[1 / 2,2 b]+L_{N}[1 / 2, \omega b]$.

QS: complexity

We need to optimize $L_{N}\left[1 / 2, b+\frac{1}{4 b}\right]+L_{N}[1 / 2, \omega b]$ (since $\omega \geq 2$).
Unless summands are equal, one is $o()$ of the others.
Thus b_{opt} given by $b_{\mathrm{opt}}+\frac{1}{4 b_{\mathrm{opt}}}=\omega b_{\mathrm{opt}}$.

- Set $\omega=3$. Then $b_{\text {opt }}=\frac{1}{2 \sqrt{2}}$, and $\mathrm{QS}=L_{N}\left[1 / 2, \frac{3}{2 \sqrt{2}}\right]$.
- If we can do $\omega=2, b_{\text {opt }}=\frac{1}{2}$, and $\mathrm{QS}=L_{N}[1 / 2,1]$.

Notice that the cost for factoring relations has vanished.
Therefore, the complexity of linear algebra plays a role.

About QS

Sieving

MPQS

Sieving tricks

Yield optimization

MPQS (Montgomery)

Annoying feature of QS: $|f(x)|$ gets bigger as x grows. $\max =2 S \sqrt{N}$.
Quest: find other functions playing the role of $f(x)$.
What happens if we look at $(a x+b)^{2}$ for some a, b ?

$$
(a x+b)^{2}=a^{2} x^{2}+2 a x b+b^{2}
$$

MPQS (Montgomery)

Annoying feature of QS: $|f(x)|$ gets bigger as x grows. $\max =2 S \sqrt{N}$.
Quest: find other functions playing the role of $f(x)$.
What happens if we look at $(a x+b)^{2}$ for some a, b ?

$$
(a x+b)^{2}=a^{2} x^{2}+2 a x b+b^{2}-a c+a c \text { for any } c,
$$

If we have $b^{2}-a c=N$:

$$
\frac{1}{a}(a x+b)^{2} \equiv a x^{2}+2 b x+c \quad \bmod N .
$$

Fix a s.t. $\left(\frac{N}{a}\right)=1$. Choose $b \leq \frac{a}{2}$ s.t. $b^{2} \equiv N \bmod a$. Set $c<0$ accordingly.

$$
\left|a x^{2}+2 b x+c\right| \tilde{\epsilon}\left[\frac{N}{a}, S^{2} a-\frac{N}{a}\right] .
$$

For a given S, smallest values for $a \approx \frac{2 \sqrt{N}}{S} . \Rightarrow$ Bound $\frac{1}{\sqrt{2}} S \sqrt{N}$.

MPQS

- For a given sieve interval size, we have found a better polynomial.
- More important, we have many such polynomials.
- Provided a is a product of factor base primes, a large number of polynomials can be used (other option: $a=\square$).
- Shorter intervals per polynomial \Rightarrow smaller residues.
- Initialization cost per polynomial: solving $b^{2} \equiv N \bmod a$. See SIQS for a way to amortize this (e.g. in CrPo).

MPQS (with improvements to be discussed) is the leading algorithm today for p below 100-120 decimal digits.

Plan

About QS

Sieving

MPQS

Sieving tricks

Yield optimization

Sieving tricks

Sieving can be made less accurate but faster:

- For the array $T[]$, log values can be stored as 8 -bit integers.
- One may skip some primes or prime powers (pays little).
- very small primes (many sieve updates, small contribution, \pm leveled).
- large powers (contribution is only $\log p$ for one sieve value over p^{k}).
- Unwise to skip large p : large contribution, important for accuracy.
- "qualification" test: $T[i] \geq \log f(i)-\kappa$, with $e^{\kappa}=$ cofactor bound.
- If $e^{\kappa} \leq B$, for each such i, cofactor $q \in \mathcal{P}_{B}$: we have a relation.
- If $e^{\kappa} \leq B^{2}$, for each such i, q prime, possibly $\leq B$. We have a complete factorization, but not a relation. Too bad.

Large primes

Idea (dates back to CFRAC):

- Fix a "large prime bound" L.
- As long as the cofator is $\leq L$, keep the "partial relations" as well, since we get them for free (almost).
- The cofactor q is called a large prime.

Two partial relations with the same large prime q can be combined:

$$
\begin{aligned}
f(i) & =\text { smooth } \times q, \\
f\left(i^{\prime}\right) & =\text { smooth } \times q, \\
f(i) f\left(i^{\prime}\right) & =\text { smooth } \times \square .
\end{aligned}
$$

K partial relations \Rightarrow how many recombined relations ? Birthday paradox.

Number of matches

Thm. K independent, uniformly random picks from a set of size L yield an expecte total number of $\frac{K^{2}}{2 L}$ matches.
Proof: cheat a little, or use generating functions, or do otherwise. Keeping partial relations seems a waste at first. Eventually this pays off.
Note: recombined relations are heavier.

Two large primes

Experimentally, sieving is efficient. This leads to PPMPQS:

- Not too harmful to loosen the qualification and allow cofactors $>B^{2}$.
- Such (not necessarily prime) cofactors need to be factored.
- Allowing two large primes, we obtain "partial-partial" relations.

Old terminology: © "full" (FF) relation: no large prime ;

- "partial" (FP) relation: one large prime ;
- "partial-partial" (PP) relation: two large primes.

Modern statements of this method refer only to partial relations, and consider also more large primes.

Matching multiple large primes - the old way

Consider a graph where:

- vertices are large primes ;
- edges are relations;
- an edge (relation R) connects two vertices $\left(q_{1}, q_{2}\right)$ iff R involves q_{1}, q_{2}.
- Add a special vertex 1 to which all FP relations are connected.

A cycle in this large prime graph yields:

Hunting cycles: union-find algorithm (easy).

Matching large primes - the modern way

Consider arbitrarily many large primes - no real distinction with \mathcal{P}_{B} primes anyway.
We thus have a very large set of partial relations, which go through several passes.

- Duplicate removal.
- Singleton removal: when only one relation involves a given prime.
- Merges: when prime q appears in only k relations:
- Replace k relations with q by $k-1$ without q.
- Try to do this the smart way.
- Use hash tables and a lot of RAM everywhere.

Cofactorization

Because of large primes, we bring our interest on sieve locations which do not necessarily yield relations.

- Some sieve reports are promising.
- We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology). Several «strategies»:

Cofactorization

Because of large primes, we bring our interest on sieve locations which do not necessarily yield relations.

- Some sieve reports are promising.
- We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology). Several «strategies»:

- Trial-divide up to some bound.

Cofactorization

Because of large primes, we bring our interest on sieve locations which do not necessarily yield relations.

- Some sieve reports are promising.
- We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology).
Several «strategies»:

- Trial-divide up to some bound.
- «Resieve» up to some bound, but record primes.

Cofactorization

Because of large primes, we bring our interest on sieve locations which do not necessarily yield relations.

- Some sieve reports are promising.
- We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology).
Several «strategies»:

- Trial-divide up to some bound.
- «Resieve» up to some bound, but record primes.
- Use small- p-sensible algorithms: $p \pm 1, \mathrm{ECM}$.

Cofactorization

Because of large primes, we bring our interest on sieve locations which do not necessarily yield relations.

- Some sieve reports are promising.
- We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology).
Several «strategies»:

- Trial-divide up to some bound.
- «Resieve» up to some bound, but record primes.
- Use small- p-sensible algorithms: $p \pm 1, \mathrm{ECM}$.
- Maybe even run (MP)QS recursively ?

On top of that, early abort, e.g.: if trial division yields too little, forget about this relation.

QS/MPQS: conclusion

((((P)P)MP)/SI)QS is a living algorithm for factoring.

- relatively easy to understand / implement.
- complexity for factoring N depends only on N.
- for N of moderate size, MPQS is the way to go today.
- publicly available implementation: msieve.

Note: none of the sieving tricks affect the complexity:
$L_{N}[1 / 2,1+o(1)]$ (assuming $\omega=2$).

Plan

About QS
Sieving
MPQS
Sieving tricks
Yield optimization

Factor $2 N$, factor N

We often have some freedom © factor N

- or factor $k N$ for small k.

Knuth: «this is a rather curious way to proceed (if not downright stupid)» (TAOCP2, 4.5.4).

- CFRAC: CFE of \sqrt{N} gives congruences $p_{n}^{2}-N q_{n}^{2}=v_{n}$.
- (MP)QS: Values of a quadratic polynomial of discriminant N.

Key idea

If we use $k N$ instead, maybe some small p divide more often ?

Plan - Characterize p 's which divide the residue.

- Get a heuristic measure to maximize \# divisors.

Why focus on this?

Yield optimization has been studied for CFRAC, MPQS, and NFS.

- For CFRAC and NFS: some technicalities.
- Easier for MPQS, useful to get the idea.

Nowadays, the grandchild of the CFRAC «choice of multiplier » is part of NFS's « polynomial selection »step.

ℓ-valuation of a random integer

If X is a random integer:

- $\operatorname{Prob}\left(\nu_{\ell}(X) \geq 1\right)=\frac{1}{\ell}$;
- $\operatorname{Prob}\left(\nu_{\ell}(X) \geq 2\right)=\frac{1}{\ell^{2}}$;
- $\operatorname{Prob}\left(\nu_{\ell}(X) \geq 3\right)=\frac{1}{\ell^{3}}$.
- etc.

Total:

$$
E\left[\nu_{\ell}(X)\right]=\frac{1}{\ell} \cdot \frac{1}{1-\frac{1}{\ell}}=\frac{1}{\ell-1} .
$$

Residues for MPQS

Residues for MPQS are:
$f(x)=a x^{2}+2 b x+c=\frac{1}{a}\left[(a x+b)^{2}-\left(b^{2}-a c\right)\right]=\frac{1}{a}\left[(a x+b)^{2}-N\right]$.
Assume $\ell \nmid a(\ell \mid$ a more boring).
$\#\{$ Classes of sieve updates $\bmod \ell\}=\#\{\sqrt{N} \bmod \ell\}$.

Residues for MPQS

Residues for MPQS are:
$f(x)=a x^{2}+2 b x+c=\frac{1}{a}\left[(a x+b)^{2}-\left(b^{2}-a c\right)\right]=\frac{1}{a}\left[(a x+b)^{2}-N\right]$.
Assume $\ell \nmid$ a ($\ell \mid$ a more boring). $\#\{$ Classes of sieve updates $\bmod \ell\}=\#\{\sqrt{N} \bmod \ell\}$.

Let $r_{\ell}=\#$ square roots of $N \bmod \ell$.
On average, after sieving: $\log |f(x)|-T[x]=\log |f(x)|-\sum r_{\ell} \frac{\log \ell}{\ell-1}$.
For a random integer y of the same size: $\quad \log |y|-\sum \frac{\log \ell}{\ell-1}$.
Discrepancy function: $\sum\left(1-r_{\ell}\right) \frac{\log \ell}{\ell-1}$.

Residues for MPQS

Residues for MPQS are:
$f(x)=a x^{2}+2 b x+c=\frac{1}{a}\left[(a x+b)^{2}-\left(b^{2}-a c\right)\right]=\frac{1}{a}\left[(a x+b)^{2}-k N\right]$
Assume $\ell \nmid a(\ell \mid$ a more boring).
$\#\{$ Classes of sieve updates $\bmod \ell\}=\#\{\sqrt{k N} \bmod \ell\}$.
Let $r_{\ell}=\#$ square roots of $k N \bmod \ell$.
On average, after sieving: $\log |f(x)|-T[x]=\log |f(x)|-\sum r_{\ell} \frac{\log \ell}{\ell-1}$.
For a random integer y of the same size: $\quad \log |y|-\sum \frac{\log \ell}{\ell-1}$.
Discrepancy function: $\alpha(k)=\sum\left(1-r_{\ell}\right) \frac{\log \ell}{\ell-1}$.

Choice of the multiplier

Choosing an adequate multiplier k :

- may increase the amount of sieve contributions from small primes.
- drawback: $f(x)$ grows with k.

The key idea remains: having many roots modulo small primes is good.

Yield optimization (Pomerance-Wagstaff)

CFRAC looks at $Q_{n}=p_{n}^{2}-k N q_{n}^{2}$, with k a square-free integer. Which necessary condition should an odd prime ℓ satisfy, in order to have $\ell \mid Q_{n}$?

Yield optimization (Pomerance-Wagstaff)

CFRAC looks at $Q_{n}=p_{n}^{2}-k N q_{n}^{2}$, with k a square-free integer.
Which necessary condition should an odd prime ℓ satisfy, in order to have $\ell \mid Q_{n}$? Answer: $\left(\frac{k N}{\ell}\right)=1$.
Can choose $k \pm$ freely (as long as $k=L_{N}[1 / 2, o(1)]$).

Theorem: average ℓ-valuation in CFRAC

The average ℓ-valuation of X (for ℓ odd prime) is

- $\frac{1}{\ell-1}$ if X is a random integer ;
- If $X=Q_{n}: \begin{cases}0 & \text { if }\left(\frac{k N}{\ell}\right)=-1, \\ \frac{1}{\ell+1} & \text { if }\left(\frac{k N}{\ell}\right)=0, \\ \frac{2}{\ell+1} \cdot \frac{\ell}{\ell-1} & \text { if }\left(\frac{k N}{\ell}\right)=1\end{cases}$
(assuming p_{n}, q_{n} random co

ℓ-valuation: proof

If $X=Q_{n}=p_{n}^{2}-k N q_{n}^{2}$ and $\left(\frac{k}{\ell}\right)=0$.
Assumption: $\left(p_{n}, q_{n}\right)$ are random coprime integers.
Modulo $\ell:\left(p_{n}, q_{n}\right)$ maps to something uniformly random in \ldots

ℓ-valuation: proof

If $X=Q_{n}=p_{n}^{2}-k N q_{n}^{2}$ and $\left(\frac{k}{\ell}\right)=0$.
Assumption: $\left(p_{n}, q_{n}\right)$ are random coprime integers.
Modulo ℓ : $\left(p_{n}, q_{n}\right)$ maps to something uniformly random in $\mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)$.

- $\operatorname{Prob}\left(\nu_{\ell}(X) \geq 1\right)=\frac{1}{\ell+1}$;
- $\operatorname{Prob}\left(\nu_{\ell}(X) \geq 2\right)=0\left(\right.$ because $\left.\operatorname{gcd}\left(p_{n}, q_{n}\right)=1\right)$.

Total:

$$
E\left[\nu_{\ell}(X)\right]=\frac{1}{\ell+1}
$$

ℓ-valuation: proof

If $X=Q_{n}=p_{n}^{2}-k N q_{n}^{2}$ and $\left(\frac{k}{\ell}\right)=1$.
Amongst $\ell+1$ choices for $\left(p_{n}: q_{n}\right) \in \mathbb{P}^{1}\left(\mathbb{F}_{\ell}\right)$, exactly two lead to $\ell \mid Q_{n}$.

- $\operatorname{Prob}\left(\nu_{\ell}(X) \geq 1\right)=\frac{2}{\ell+1}$;
- $\operatorname{Prob}\left(\nu_{\ell}(X) \geq 2\right)=\frac{2}{\ell^{2}+\ell}\left(\right.$ two roots in $\left.\mathbb{P}^{1}\left(\mathbb{Z} / \ell^{2} \mathbb{Z}\right)\right)$;
- $\operatorname{Prob}\left(\nu_{\ell}(X) \geq 3\right)=\frac{2}{\ell^{3}+\ell^{2}}$;
- etc

Total:

$$
E\left[\nu_{\ell}(X)\right]=\frac{2}{\ell+1} \cdot \frac{1}{1-\frac{1}{\ell}}=\frac{2 \ell}{\ell^{2}-1} .
$$

CFRAC: yield optimization

Let $f(k, \ell)$ be the expected average ℓ-valuation of $p_{n}^{2}-k N q_{n}^{2}$ as above.
We choose values of k for which $F(k)$ is large, where:

$$
F(k)=\sum_{\ell<B}\left(f(k, \ell)-\frac{1}{\ell-1}\right) \log _{2} \ell .
$$

Idea: when e.g. $F(k) \approx 3$, we expect $Q_{n} \approx X$ to be smooth almost as often as a random integer $\approx \frac{X}{2^{3}}$.
Yield optimization is important in practice, and also important today with NFS.

Plan for next time

- CFRAC/QS/MPQS/NFS all build relations.
- We are faced with a linear system to be solved.
- The system is always sparse

Next lecture: sparse linear algebra algorithms.
Goal: solve a sparse $n \times n$ system in $\widetilde{O}\left(n^{2}\right)$.
(sparse: at most $(\log n)^{O(1)}$ non-zero coefficients per row).

Exercises

Exercise 1

Give the space complexity for sieving over an interval of length S with primes up to B, if one keeps track of all sieved primes for each location.

