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QS

This lecture is mostly about QS, the quadratic sieve.

© QS is technology from the 1980’s - 1990's.

© Superseded by NFS since circa 1995.
© Yet, QS is faster for factoring numbers below e.g. 120dd.

This not of merely historical value:
© QS embodies many of the state-of-the-art techniques still

used nowadays.
© Stating these techniques in the QS context frees us from the

mathematical clutter around NFS.
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Our dummy example was not so stupid

The quadratic sieve (Pomerance, 1983) is a combination of two
things:
© First idea: pick a simple «naturally small» function:
© Consider |f(i)| = | qm—‘ + i>2 — N|.
© For |x| < S < VN, we have |f(i)] <25VN +¢

© Second idea: Factor residues completely differently.

© The process used is known as sieving.
© Sieving eliminates the per-relation factoring cost.

We will study more size improvements with the MPQS (multiple
polynomial QS) algorithm.
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Plan

Sieving
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Plan

Sieving
Idea
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Sieving

Key facts about sieving

© One decides beforehand of a sieving space: interval

[-S...9].

® “for each i/, for each p, do” becomes “for each p, for each i,
do”.
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Sieving, visually
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Sieving, visually
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Sieving for the function in QS

Let £(x) = (c +x)2 = N, with ¢ = [VN|.
Given p, how does one describe the set:

Sp={ie[-S...5], f(i)=0 mod p}.
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Sieving for the function in QS

Let £(x) = (c +x)2 = N, with ¢ = [VN|.
Given p, how does one describe the set:

Sp={ie[-S...5], f(i)=0 mod p}.

Answer: @ this depends on the roots mod p of the quadratic f(x).

© 0, 1, or 2 roots depending on (%)
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Computing all valuations at once

Fix p. Let (at most) ry, r1 be the roots mod p of f.
{ie[-S...5], f(i)=0 mod p} ={r, 0+ p,...JU{n,n+p,...}.

Algorithm: We maintain an array T[i] indexed by i € [-S...S].

® For each p < B, do:

© Compute rp,
© r:=ry. While r < S do:

© T[r] + TI[r]+ logp,
® r<r+p.

© idem for ry as well as {r; — kp}.
© Do this also for prime powers

© For all j such that T[i] = log|f(i)|, we know that f(i) is
smooth.
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Sieving with powers
(harder)

Assume that 7(i) = 0 has 2 distinct roots mod p (so p t disc(f).

e How many roots mod p? ?
e How many roots mod p* ?
© Which log contribution should we add ?
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T[i] = log |f(i)| < f(i) smooth

For each p* (assuming we consider k up to co. In fact we don't):

© we have characterized the set Sy« = {i, v,(f(i)) > k}.
© we have added log, p to T|[i] for each / in this set.

Thus eventually:

Tlil=>Y_| Y. logp|,

pEPp \ ks.t. iGSpk

=Z( > |ogp),

pePy (F(1))>k
= Y vp(f(i))log p,
pEPB

= log (B-smooth part of f(i)).
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Plan

Sieving

Impact on analysis
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QS: analysis

How many sieve updates per prime number p 7
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QS: analysis

< 4S5

p—1

How many sieve updates per prime number p 7

Total number of sieve updates:
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QS: analysis

. . <4S

How many sieve updates per prime number p 7 T
p —

Total number of sieve updates: O(Sloglog B).

Assuming S is large enough so that we have enough relations
eventually, the relation collection cost is O(S) o O(S(log 5)°M).

Strategy for analysis:

© Size of residues.
© Smoothness probability.
© Number of relations obtained. Condition for having enough.

© Cost for re-factoring f (i) when once has been identified as
smooth.

© Linear system cost.
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QS: analysis

Let S = Ly[o,s] and B = Ly[B, b].
o 1F() = | ([VN] +i) N <7
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QS: analysis

Let S = Ly[o,s] and B = Ly[B, b], with o < 1.
o [F()] = | ([VAV] +1)" = N| < 25V +¢ = La[1.1/2+ o(1)].

© Smoothness probability:
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QS: analysis

Let S = Ly[o,s] and B = Ly[B, b], with o < 1.

2
o |F(i)| = ([VN] +7) = N| <25VN+e = Ly[1,1/2+0(1)].
© Smoothness probability: Ly[1 — 3, —2(1 — B)].
e Condition for having enough relations:
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QS: analysis

Let S = Ly[o,s] and B = Ly[B, b], with o < 1.

2
o |F(i)| = ([VN] +7) = N| <25VN+e = Ly[1,1/2+0(1)].
© Smoothness probability: Ly[1 — 3, —2(1 — B)].
e Condition for having enough relations:
1
Lulo, s]x Lu[l = B, == (1 = B)] = L[5, b,
1

(s bigger would just cost more). Relation collection:
Ln[1/2,b+ Z].
© Refactoring 7
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QS: analysis

Let S = Ly[o,s] and B = Ly[B, b], with o < 1.

o [F()] = | ([VAV] +1)" = N| < 25V +¢ = La[1.1/2+ o(1)].

© Smoothness probability: Ly[1 — 3, —2(1 — B)].
e Condition for having enough relations:
1
Lnfo,s] > Ln[l = B, =5 (1 = B)] = Ln[B, b,
1

(s bigger would just cost more). Relation collection:
Ln[1/2,b+ Z].

© Refactoring ? Ly[1/2,25b].

© Linear system ?
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QS: analysis

Let S = Ly[o,s] and B = Ly[B, b], with o < 1.

2
o |F(i)| = ([VN] +7) = N| <25VN+e = Ly[1,1/2+0(1)].
© Smoothness probability: Ly[1 — 3, —2(1 — B)].
e Condition for having enough relations:
1
Lulo, s]x Lu[l = B, == (1 = B)] = L[5, b,
1

(s bigger would just cost more). Relation collection:
Ln[1/2,b+ Z].

© Refactoring ? Ly[1/2,25b].

© Linear system ? Ly[1/2,wb] for some w (w = 3 for Gauss).

Total: Ly[1/2,b+ 4ib] + Ly[1/2,2b] + Ly[1/2,wb).
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QS: complexity

We need to optimize Ly[1/2, b+ ] + Ly[1/2,wb] (since w > 2).
Unless summands are equal, one is o() of the others.
Thus bopt given by bopt + ﬁ = whqpt.

© Set w = 3. Then byt = 7 and QS = Ly[1/2, 2%].
@ If we can do w =2, bope = 3, and QS = Ly[1/2,1].
Notice that the cost for factoring relations has vanished.

Therefore, the complexity of linear algebra plays a role.
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MPQS
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MPQS (Montgomery)

Annoying feature of QS: |f(x)| gets bigger as x grows.
max = 25v/N.

Quest: find other functions playing the role of f(x).
What happens if we look at (ax + b)? for some a, b ?

(ax 4 b)? = a°x? + 2axb + b?
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MPQS (Montgomery)

Annoying feature of QS: |f(x)| gets bigger as x grows.
max = 2S5v/N.

Quest: find other functions playing the role of f(x).
What happens if we look at (ax + b)? for some a, b ?

(ax 4 b)? = a®x? + 2axb + b? — ac + ac for any c,

If we have b2 — ac = N:

1
“(ax + b)?> = ax®> +2bx +c mod N.

a
Fix a s.t. (g) = 1. Choose b g st. B2=N mod a. Setc <0
accordingly.
~ [N N
lax? + 2bx + c| € {, S%a— ] .
a a
For a given S, smallest values for a ~ M. = Bound %SW
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MPQS

© For a given sieve interval size, we have found a better
polynomial.
© More important, we have many such polynomials.

© Provided a is a product of factor base primes, a large number
of polynomials can be used (other option: a = [J).

© Shorter intervals per polynomial = smaller residues.

@ Initialization cost per polynomial: solving b> = N mod a.
See SIQS for a way to amortize this (e.g. in CrPo).

MPQS (with improvements to be discussed) is the leading
algorithm today for p below 100-120 decimal digits.
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Plan

Sieving tricks
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Sieving tricks

Sieving can be made less accurate but faster:

© For the array T[], log values can be stored as 8-bit integers.

© One may skip some primes or prime powers (pays little).
© very small primes (many sieve updates, small contribution, +

leveled).

© large powers (contribution is only log p for one sieve value over
pX).

© Unwise to skip large p: large contribution, important for
accuracy.

© “qualification” test: T[i] > log f(i) — &, with
e = cofactor bound.
o If e" < B, for each such i, cofactor g € Pg: we have a
relation.
o If e® < B2, for each such i, q prime, possibly < B.
We have a complete factorization, but not a relation. Too bad.
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Large primes

Idea (dates back to CFRAC):

® Fix a “large prime bound"” L.

© As long as the cofator is < L, keep the “partial relations” as
well, since we get them for free (almost).

© The cofactor g is called a large prime.

Two partial relations with the same large prime g can be combined:

(i) = smooth x q,
f(i") = smooth x q,
f(i)f(i'") = smooth x [J.

K partial relations = how many recombined relations ? Birthday
paradox.

Cours MPRI 2-12-2

22/40



Number of matches

Thm. K independent, uniformly random picks from a set of size L
2
yield an expecte total number of g—L matches.

Proof: cheat a little, or use generating functions, or do otherwise.

Keeping partial relations seems a waste at first. Eventually this
pays off.

Note: recombined relations are heavier.
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Two large primes

Experimentally, sieving is efficient. This leads to PPMPQS:
© Not too harmful to loosen the qualification and allow
cofactors > B2,
© Such (not necessarily prime) cofactors need to be factored.

© Allowing two large primes, we obtain “partial-partial”
relations.

Old terminology: @ “full” (FF) relation: no large prime ;
© “partial” (FP) relation: one large prime ;
© “partial-partial” (PP) relation: two large

primes.

Modern statements of this method refer only to partial relations,
and consider also more large primes.
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Matching multiple large primes — the old way

Consider a graph where:

© vertices are large primes ;

© edges are relations ;

© an edge (relation R) connects two vertices (g1, q2) iff R
involves g1, go.

© Add a special vertex 1 to which all FP relations are connected.

A cycle in this large prime graph yields:

a3
ns rn3
— rnrn3r3 = smooth x [.
i ——
rno

)

Hunting cycles: union-find algorithm (easy).
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Matching large primes — the modern way

Consider arbitrarily many large primes — no real distinction with
‘Pp primes anyway.

We thus have a very large set of partial relations, which go through
several passes.

© Duplicate removal.

© Singleton removal: when only one relation involves a given
prime.

© Merges: when prime g appears in only k relations:

© Replace k relations with g by kK — 1 without g.
© Try to do this the smart way.

© Use hash tables and a lot of RAM everywhere.
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Cofactorization

Because of large primes, we bring our interest on sieve locations
which do not necessarily yield relations.

© Some sieve reports are promising.
© We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology).

Several «strategiesy:
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Cofactorization

Because of large primes, we bring our interest on sieve locations
which do not necessarily yield relations.

© Some sieve reports are promising.

© We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology).

Several «strategiesy:

© Trial-divide up to some bound.
© «Resieve» up to some bound, but record primes.

© Use small-p-sensible algorithms: p £+ 1, ECM.
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Cofactorization

Because of large primes, we bring our interest on sieve locations
which do not necessarily yield relations.
© Some sieve reports are promising.

© We need to factor them before we decide to keep or discard.
This is called the cofactorization step (more NFS terminology).

Several «strategiesy:

© Trial-divide up to some bound.

© «Resieve» up to some bound, but record primes.
© Use small-p-sensible algorithms: p £+ 1, ECM.

© Maybe even run (MP)QS recursively ?

On top of that, early abort, e.g.: if trial division yields too little,
forget about this relation.
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QS/MPQS: conclusion

((((P)P)MP)/SI)QS is a living algorithm for factoring.

© relatively easy to understand / implement.

© complexity for factoring N depends only on N.

© for N of moderate size, MPQS is the way to go today.

© publicly available implementation: msieve.

Note: none of the sieving tricks affect the complexity:
Ln[1/2,14 o(1)] (assuming w = 2).
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Plan

Yield optimization
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Factor 2N, factor N

We often have some freedom @ factor N
@ or factor kN for small k.

Knuth: «this is a rather curious way to proceed (if not downright
stupid)» (TAOCP2, 4.5.4).

e CFRAC: CFE of v/N gives congruences p2 — Ng2 = v,.
© (MP)QS: Values of a quadratic polynomial of discriminant N.

Key idea

If we use kN instead, maybe some small p divide more often ?

Plan @ Characterize p's which divide the residue.

© Get a heuristic measure to maximize # divisors.
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Why focus on this ?

Yield optimization has been studied for CFRAC, MPQS, and NFS.

® For CFRAC and NFS: some technicalities.
@ Easier for MPQS, useful to get the idea.

Nowadays, the grandchild of the CFRAC « choice of multiplier » is
part of NFS's « polynomial selection » step.
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(-valuation of a random integer

If X is a random integer:

© Prob (v(X)>1)=1%;
® Prob (v(X) >2) = Z%
© Prob (1(X) >3) = 4.
© etc.
Total: 1 1 1
E[ve(X)] = 7 17% 71
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Residues for MPQS

Residues for MPQS are:

f(x) = ax®+2bx+c = % [(ax + b)? = (% — ac)| = = [(ax + b)* — ]

L

Assume ¢ 1 a (¢ | a more boring).

#{Classes of sieve updates mod ¢} = #{v/N mod ¢}.
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Residues for MPQS

Residues for MPQS are:

L

1
f(x) = ax+2bxtc = - [(ax + b)? = (b — ac)| =
Assume ¢ 1 a (¢ | a more boring).

#{Classes of sieve updates mod ¢} = #{v/N mod ¢}.

Let r; = # square roots of N mod /.

On average, after sieving: log|f(x)| — T[x] = log|f(x)| — > re 'lf’gf.
For a random integer y of the same size: log |y| — |°_gf.

Discrepancy function: > (1 — rg)léoge
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Residues for MPQS

Residues for MPQS are:

L

1
f(x) = ax+2bxtc = - [(ax + b)? = (b — ac)| =
Assume ¢ 1 a (¢ | a more boring).

#{Classes of sieve updates mod ¢} = #{VkN mod ¢}.

Let r;, = # square roots of kN mod /.

On average, after sieving: log|f(x)| — T[x] = log|f(x)| — > re 'lf’gf.
For a random integer y of the same size: log |y| — |°_gf.

Discrepancy function: a(k) = > (1 — rg)llf’gg.
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Choice of the multiplier

Choosing an adequate multiplier k:

© may increase the amount of sieve contributions from small
primes.

© drawback: f(x) grows with k.

The key idea remains: having many roots modulo small primes is
good.
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Yield optimization (Pomerance-Wagstaff)
(harder)

CFRAC looks at @, = p? — kNg?, with k a square-free integer.

Which necessary condition should an odd prime £ satisfy, in order
to have £ | Q, ?
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Yield optimization (Pomerance-Wagstaff)
(harder)

CFRAC looks at @, = p? — kNg?, with k a square-free integer.

Which necessary condition should an odd prime £ satisfy, in order
to have £ | Q, ? Answer: (%) =1

Can choose k + freely (as long as k = Ly[1/2, o(1)]).

Theorem: average (-valuation in CFRAC

The average ¢-valuation of X (for £ odd prime) is

1 . . . .
© ;— if X is a random integer ;

0 if % = -1,
_ . 1 : KN\ _
e If X = Qn. 7+1 if 7 | = 0,
Hil . ﬁ if % =1 (assuming p,, g, random cc
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(-valuation: proof
(harder)

If X = Qn = p2 — kNg2 and (&) = 0.
Assumption: (pn, qn) are random coprime integers.

Modulo ¢: (pn, gn) maps to something uniformly random in ...
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(-valuation: proof
(harder)

If X = Qn = p2 — kNg2 and (&) = 0.

Assumption: (pn, qn) are random coprime integers.

Modulo ¢: (pn, gn) maps to something uniformly random in P(IF,).
© Prob (v(X) > 1) = 7 ;
© Prob (v4(X) > 2) = 0 (because gcd(pn, gn) = 1).

Total:

En(X)] = 5.
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(-valuation: proof

(harder)

If X = Qn = p2 — kNq2 and (%) = 1.
Amongst ¢ + 1 choices for (p, : q,) € P}(F,), exactly two lead to
0] Qn.

© Prob(vy(X) > 1) = ;% ;
© Prob (14(X) > 2) = %5 (two roots in P(Z/127)) ;
© Prob (v(X) > 3) = 25 ;
@ etc
Total:
2 1 2/

E[W(X)]:£+1'1—%:e2—1'
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CFRAC: yield optimization
(harder)

Let f(k, /) be the expected average f-valuation of p2? — kNg? as
above.

We choose values of k for which F(k) is large, where:

F(k)y=>" <f(k,£) — g_ll) log, /.

{<B

Idea: when e.g. F(k) =~ 3, we expect Q, ~ X to be smooth almost
as often as a random integer ~ %

Yield optimization is important in practice, and also important
today with NFS.
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Plan for next time

© CFRAC/QS/MPQS/NFS all build relations.
© We are faced with a linear system to be solved.

© The system is always sparse

Next lecture: sparse linear algebra algorithms.

Goal: solve a sparse n x n system in O(n?).

sparse: at most (log n)°() non-zero coefficients per row).
p g p
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Exercises

Exercise 1

Give the space complexity for sieving over an interval of length S
with primes up to B, if one keeps track of all sieved primes for

each location.
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