Cours MPRI 2-12-2 Lecture 2/5: Sieving and other improvements

(lecturer for part 2/3): E. Thomé

Nov. 12th, 2012

Plan

About QS

Sieving

MPQS

Sieving tricks

Yield optimization

This lecture is mostly about QS, the quadratic sieve.

- QS is technology from the 1980's 1990's.
- Superseded by NFS since circa 1995.
- Yet, QS is faster for factoring numbers below e.g. 120dd.

This not of merely historical value:

- QS embodies many of the state-of-the-art techniques still used nowadays.
- Stating these techniques in the QS context frees us from the mathematical clutter around NFS.

The quadratic sieve (Pomerance, 1983) is a combination of two things:

• First idea: pick a simple «naturally small» function:

• Consider
$$|f(i)| = |\left(\left\lceil \sqrt{N} \right\rceil + i\right)^2 - N|$$
.

• For
$$|x| \leq S \ll \sqrt{N}$$
, we have $|f(i)| \leq 2S\sqrt{N} + \epsilon$

- Second idea: Factor residues completely differently.
 - The process used is known as sieving.
 - Sieving eliminates the per-relation factoring cost.

We will study more size improvements with the MPQS (multiple polynomial QS) algorithm.

Plan

Yield optimization

Plan

Sieving

Idea

Impact on analysis

Sieving

Key facts about sieving

- One decides beforehand of a sieving space: interval [-S...S].
- "for each *i*, for each *p*, do" becomes "for each *p*, for each *i*, do".

	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•
]•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•
]•	•	•	•	•	•		٠	•	۰	•	•	۰	٠	•	٠	•	•	•	•
]•	•	•	•	•	•		۰	•	•	•	•	•	٠	•	۰	•	•	•	•
	•	•	•	•	•	•	•	٠	•	۰	•	•	•	٠	•	٠	•	•	•	•
	•	•	•	•	•	•	•	۰	•	۰	•	•	۰	٠	•	۰	•	•	•	•
]•	•	•	•	•	•	•	٠	•	۰	•	•	۰	٠	•	٠	•	•	•	•
Г]•	•	•	•	•	•	•	٠	•	•	•	•	۰	٠	•	٠	•	•	•	•

	••]	•	•	•		••		•	٠	•		••		•	•	•		••]	•		• •		••		۰	•	•		••		•	•	•		••		•
	•		••		•	•	•		••		•	•	•		••		•][•	•		••		•][•	•		••		•	۰	•		••		۰	•	•		••
]•		•		••		•		•		••			•	•		••	1	•		• •		••]	•	•	•		••		•	•	•		••		•	•	•
]••]	•	•	•		••		•	•	•		••		•	•	•		••][•		• •		••		•	•	•		••		•	•	•		••		•
Ľ	•		••		•	•	•		••		•	•			••		•		•		••	1	•][•	•		••		•	•	•		••		•	•	•		••
	•][•	•		••		•	•	•		••			•	•		••	1	•		• •		••		•	•	•		••		•	•	•		••		•	•	•
]••	1	•	•	•		••		•	٠	•		••		•	•	•		••	1	•		• •		••		•	•	•		••		•	•	•		••		•
Г	•		••		•	•	•		••		•	•	•		••		•	1	•	١Г	•	٦٢	_●	1	•		••		•	•	٠		••		٠	•	•		••

Let
$$f(x) = (c + x)^2 - N$$
, with $c = \lfloor \sqrt{N} \rfloor$.
Given p , how does one describe the set:

 $\mathcal{S}_p = \{i \in \llbracket -S \dots S \rrbracket, f(i) \equiv 0 \mod p\}.$

Let
$$f(x) = (c + x)^2 - N$$
, with $c = \left\lceil \sqrt{N} \right\rceil$.
Given p , how does one describe the set:

 $\mathcal{S}_p = \{i \in \llbracket -S \dots S \rrbracket, f(i) \equiv 0 \mod p\}.$

Answer: ● this depends on the roots mod p of the quadratic f(x).
● 0, 1, or 2 roots depending on (^N/_p).

Computing all valuations at once

Fix p. Let (at most) r_0 , r_1 be the roots mod p of f.

 $\{i \in [-S \dots S], f(i) \equiv 0 \mod p\} = \{r_0, r_0 \pm p, \dots\} \cup \{r_1, r_1 \pm p, \dots\}.$

Algorithm: We maintain an array T[i] indexed by $i \in [-S \dots S]$.

For all i such that T[i] = log |f(i)|, we know that f(i) is smooth.

Sieving with powers (harder)

Assume that $f(i) \equiv 0$ has 2 distinct roots mod p (so $p \nmid \operatorname{disc}(f)$.

- How many roots mod p^2 ?
- How many roots mod p^k ?
- Which log contribution should we add ?

$T[i] = \log |f(i)| \Leftrightarrow f(i) \text{ smooth}$

For each p^k (assuming we consider k up to ∞ . In fact we don't):

- we have characterized the set $S_{p^k} = \{i, \nu_p(f(i)) \ge k\}.$
- we have added $\log_2 p$ to T[i] for each *i* in this set.

Thus eventually:

$$T[i] = \sum_{p \in \mathcal{P}_B} \left(\sum_{k \text{ s.t. } i \in \mathcal{S}_{p^k}} \log p \right),$$
$$= \sum_{p \in \mathcal{P}_B} \left(\sum_{k, \ \nu_p(f(i)) \ge k} \log p \right),$$
$$= \sum_{p \in \mathcal{P}_B} \nu_p(f(i)) \log p,$$
$$= \log (B\text{-smooth part of } f(i)).$$

Plan

Sieving

Idea

Impact on analysis

How many sieve updates per prime number p?

How many sieve updates per prime number p? $\frac{\leq 4S}{p-1}$. Total number of sieve updates:

How many sieve updates per prime number p? $\frac{\leq 4S}{p-1}$. Total number of sieve updates: $O(S \log \log B)$. Assuming S is large enough so that we have enough relations eventually, the relation collection cost is $\tilde{O}(S) \stackrel{\text{def}}{=} O(S(\log S)^{O(1)})$. Strategy for analysis:

- Size of residues.
- Smoothness probability.
- Number of relations obtained. Condition for having enough.
- Cost for re-factoring f(i) when once has been identified as smooth.
- Linear system cost.

Let
$$S = L_N[\sigma, s]$$
 and $B = L_N[\beta, b]$.
• $|f(i)| = |([\sqrt{N}] + i)^2 - N| \le ?$

Let $S = L_N[\sigma, s]$ and $B = L_N[\beta, b]$, with $\sigma < 1$.

•
$$|f(i)| = |\left(\left\lceil \sqrt{N} \right\rceil + i\right)^2 - N| \le 2S\sqrt{N} + \epsilon = L_N[1, 1/2 + o(1)].$$

Smoothness probability:

Let $S = L_N[\sigma, s]$ and $B = L_N[\beta, b]$, with $\sigma < 1$.

- $|f(i)| = |\left(\left\lceil \sqrt{N} \right\rceil + i\right)^2 N| \le 2S\sqrt{N} + \epsilon = L_N[1, 1/2 + o(1)].$
- Smoothness probability: $L_N[1-\beta, -\frac{1}{2b}(1-\beta)]$.
- Condition for having enough relations:

Let $S = L_N[\sigma, s]$ and $B = L_N[\beta, b]$, with $\sigma < 1$.

- $|f(i)| = |\left(\left\lceil \sqrt{N} \right\rceil + i\right)^2 N| \le 2S\sqrt{N} + \epsilon = L_N[1, 1/2 + o(1)].$
- Smoothness probability: $L_N[1-\beta, -\frac{1}{2b}(1-\beta)]$.
- Condition for having enough relations:

$$L_N[\sigma, s] \times L_N[1-eta, -rac{1}{2b}(1-eta)] = L_N[eta, b],$$

 $\sigma = eta = 1/2, \qquad s - rac{1}{4b} = b.$

(s bigger would just cost more). Relation collection: L_N[1/2, b + ¹/_{4b}].
Refactoring ?

Let $S = L_N[\sigma, s]$ and $B = L_N[\beta, b]$, with $\sigma < 1$.

- $|f(i)| = |\left(\left\lceil \sqrt{N} \right\rceil + i\right)^2 N| \le 2S\sqrt{N} + \epsilon = L_N[1, 1/2 + o(1)].$
- Smoothness probability: $L_N[1-\beta, -\frac{1}{2b}(1-\beta)]$.
- Condition for having enough relations:

$$L_N[\sigma, s] \times L_N[1 - \beta, -\frac{1}{2b}(1 - \beta)] = L_N[\beta, b],$$

$$\sigma = \beta = 1/2, \qquad s - \frac{1}{4b} = b.$$

(s bigger would just cost more). Relation collection: $L_N[1/2, b + \frac{1}{4b}]$.

- Refactoring ? $L_N[1/2, 2b]$.
- Linear system ?

Let $S = L_N[\sigma, s]$ and $B = L_N[\beta, b]$, with $\sigma < 1$.

- $|f(i)| = |\left(\left\lceil \sqrt{N} \right\rceil + i\right)^2 N| \le 2S\sqrt{N} + \epsilon = L_N[1, 1/2 + o(1)].$
- Smoothness probability: $L_N[1-\beta, -\frac{1}{2b}(1-\beta)]$.
- Condition for having enough relations:

$$egin{aligned} &L_N[\sigma,s] imes L_N[1-eta,-rac{1}{2b}(1-eta)] = L_N[eta,b], \ &\sigma=eta=1/2, \qquad s-rac{1}{4b}=b. \end{aligned}$$

(s bigger would just cost more). Relation collection: $L_N[1/2, b + \frac{1}{4b}]$.

- Refactoring ? $L_N[1/2, 2b]$.
- Linear system ? $L_N[1/2, \omega b]$ for some ω ($\omega = 3$ for Gauss).

Total:
$$L_N[1/2, b + \frac{1}{4b}] + L_N[1/2, 2b] + L_N[1/2, \omega b].$$

We need to optimize $L_N[1/2, b + \frac{1}{4b}] + L_N[1/2, \omega b]$ (since $\omega \ge 2$). Unless summands are equal, one is o() of the others. Thus b_{opt} given by $b_{\text{opt}} + \frac{1}{4b_{\text{opt}}} = \omega b_{\text{opt}}$.

• Set
$$\omega = 3$$
. Then $b_{opt} = \frac{1}{2\sqrt{2}}$, and $QS = L_N[1/2, \frac{3}{2\sqrt{2}}]$.

• If we can do $\omega = 2$, $b_{opt} = \frac{1}{2}$, and $QS = L_N[1/2, 1]$.

Notice that the cost for factoring relations has vanished. Therefore, the complexity of linear algebra plays a role.

Plan

About QS

Sieving

MPQS

Sieving tricks

Yield optimization

MPQS (Montgomery)

Annoying feature of QS: |f(x)| gets bigger as x grows. max = $2S\sqrt{N}$.

Quest: find other functions playing the role of f(x). What happens if we look at $(ax + b)^2$ for some a, b?

$$(ax + b)^2 = a^2x^2 + 2axb + b^2$$

MPQS (Montgomery)

Annoying feature of QS: |f(x)| gets bigger as x grows. max = $2S\sqrt{N}$.

Quest: find other functions playing the role of f(x). What happens if we look at $(ax + b)^2$ for some a, b?

$$(ax + b)^2 = a^2x^2 + 2axb + b^2 - ac + ac$$
 for any c,

If we have $b^2 - ac = N$:

$$\frac{1}{a}(ax+b)^2 \equiv ax^2 + 2bx + c \mod N.$$

Fix a s.t. $\left(\frac{N}{a}\right) = 1$. Choose $b \le \frac{a}{2}$ s.t. $b^2 \equiv N \mod a$. Set c < 0 accordingly.

$$|ax^2+2bx+c| \stackrel{\sim}{\in} \left[\frac{N}{a}, S^2a-\frac{N}{a}\right]$$

For a given *S*, smallest values for $a \approx \frac{2\sqrt{N}}{S}$. \Rightarrow Bound $\frac{1}{\sqrt{2}}S\sqrt{N}$.

- For a given sieve interval size, we have found a better polynomial.
- More important, we have many such polynomials.
- Provided a is a product of factor base primes, a large number of polynomials can be used (other option: a = □).
- Shorter intervals per polynomial \Rightarrow smaller residues.
- Initialization cost per polynomial: solving $b^2 \equiv N \mod a$. See SIQS for a way to amortize this (e.g. in CrPo).

MPQS (with improvements to be discussed) is the leading algorithm today for p below 100-120 decimal digits.

Plan

About QS

Sieving

MPQS

Sieving tricks

Yield optimization

Sieving can be made less accurate but faster:

- For the array T[], log values can be stored as 8-bit integers.
- One may skip some primes or prime powers (pays little).
 - ${\ensuremath{\bullet}}$ very small primes (many sieve updates, small contribution, \pm leveled).
 - large powers (contribution is only log p for one sieve value over p^k).
 - Unwise to skip large p: large contribution, important for accuracy.
- "qualification" test: $T[i] \ge \log f(i) \kappa$, with $e^{\kappa} = \text{cofactor bound.}$
 - If $e^{\kappa} \leq B$, for each such *i*, cofactor $q \in \mathcal{P}_B$: we have a relation.
 - If e^κ ≤ B², for each such *i*, *q* prime, possibly ≤ B.
 We have a complete factorization, but not a relation. Too bad.

Idea (dates back to CFRAC):

- Fix a "large prime bound" L.
- As long as the cofator is ≤ L, keep the "partial relations" as well, since we get them for free (almost).
- The cofactor q is called a large prime.

Two partial relations with the same large prime q can be combined:

 $f(i) = \text{smooth} \times q,$ $f(i') = \text{smooth} \times q,$ $f(i)f(i') = \text{smooth} \times \Box.$

K partial relations \Rightarrow how many recombined relations ? Birthday paradox.

Thm. *K* independent, uniformly random picks from a set of size *L* yield an expecte total number of $\frac{K^2}{2L}$ matches. Proof: cheat a little, or use generating functions, or do otherwise. Keeping partial relations seems a waste at first. Eventually this pays off.

Note: recombined relations are heavier.

Experimentally, sieving is efficient. This leads to PPMPQS:

- Not too harmful to loosen the qualification and allow cofactors $> B^2$.
- Such (not necessarily prime) cofactors need to be factored.
- Allowing two large primes, we obtain "partial-partial" relations.
- Old terminology: "full" (FF) relation: no large prime ;
 - "partial" (FP) relation: one large prime ;
 - "partial-partial" (PP) relation: two large primes.

Modern statements of this method refer only to partial relations, and consider also more large primes.

Matching multiple large primes – the old way

Consider a graph where:

- vertices are large primes ;
- edges are relations ;
- an edge (relation R) connects two vertices (q₁, q₂) iff R involves q₁, q₂.
- Add a special vertex 1 to which all FP relations are connected.

A cycle in this large prime graph yields:

Hunting cycles: union-find algorithm (easy).

Cours MPRI 2-12-2

Consider arbitrarily many large primes – no real distinction with \mathcal{P}_B primes anyway.

We thus have a very large set of partial relations, which go through several passes.

- Duplicate removal.
- Singleton removal: when only one relation involves a given prime.
- Merges: when prime q appears in only k relations:
 - Replace k relations with q by k 1 without q.
 - Try to do this the smart way.
- Use hash tables and a lot of RAM everywhere.

- Some sieve reports are promising.
- We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology). Several «strategies»:

- Some sieve reports are promising.
- We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology). Several «strategies»:

• Trial-divide up to some bound.

- Some sieve reports are promising.
- We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology). Several «strategies»:

- Trial-divide up to some bound.
- «Resieve» up to some bound, but record primes.

- Some sieve reports are promising.
- We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology). Several «strategies»:

- Trial-divide up to some bound.
- Resieve» up to some bound, but record primes.
- Use small-*p*-sensible algorithms: $p \pm 1$, ECM.

- Some sieve reports are promising.
- We need to factor them before we decide to keep or discard.

This is called the cofactorization step (more NFS terminology). Several «strategies»:

- Trial-divide up to some bound.
- Resieve» up to some bound, but record primes.
- Use small-*p*-sensible algorithms: $p \pm 1$, ECM.
- Maybe even run (MP)QS recursively ?

On top of that, early abort, e.g.: if trial division yields too little, forget about this relation.

((((P)P)MP)/SI)QS is a living algorithm for factoring.

- relatively easy to understand / implement.
- complexity for factoring N depends only on N.
- for N of moderate size, MPQS is the way to go today.
- publicly available implementation: msieve.

Note: none of the sieving tricks affect the complexity: $L_N[1/2, 1 + o(1)]$ (assuming $\omega = 2$).

Plan

About QS

Sieving

MPQS

Sieving tricks

Yield optimization

We often have some freedom \bullet factor N

• or factor kN for small k.

Knuth: «this is a rather curious way to proceed (if not downright stupid)» (TAOCP2, 4.5.4).

- CFRAC: CFE of \sqrt{N} gives congruences $p_n^2 Nq_n^2 = v_n$.
- (MP)QS: Values of a quadratic polynomial of discriminant N.

Key idea

If we use kN instead, maybe some small p divide more often ?

Plan • Characterize p's which divide the residue.

• Get a heuristic measure to maximize # divisors.

Yield optimization has been studied for CFRAC, MPQS, and NFS.

- For CFRAC and NFS: some technicalities.
- Easier for MPQS, useful to get the idea.

Nowadays, the grandchild of the CFRAC « choice of multiplier » is part of NFS's « polynomial selection » step.

If X is a random integer:

• Prob
$$(
u_\ell(X) \ge 1) = rac{1}{\ell}$$
;

• Prob
$$(
u_\ell(X) \geq 2) = rac{1}{\ell^2}$$
 ;

• Prob
$$(\nu_{\ell}(X) \ge 3) = \frac{1}{\ell^3}$$
.

🧶 etc.

Total:

$$E[
u_{\ell}(X)] = rac{1}{\ell} \cdot rac{1}{1 - rac{1}{\ell}} = rac{1}{\ell - 1}.$$

Residues for MPQS are:

$$f(x) = ax^{2} + 2bx + c = \frac{1}{a} \left[(ax + b)^{2} - (b^{2} - ac) \right] = \frac{1}{a} \left[(ax + b)^{2} - N \right]$$

Assume $\ell \nmid a$ ($\ell \mid a$ more boring).

#{Classes of sieve updates mod ℓ } = #{ $\sqrt{N} \mod \ell$ }.

Residues for MPQS are:

$$f(x) = ax^{2} + 2bx + c = \frac{1}{a} \left[(ax + b)^{2} - (b^{2} - ac) \right] = \frac{1}{a} \left[(ax + b)^{2} - N \right]$$

Assume $\ell \nmid a$ ($\ell \mid a$ more boring).

#{Classes of sieve updates mod ℓ } = #{ $\sqrt{N} \mod \ell$ }.

Let $r_{\ell} = \#$ square roots of $N \mod \ell$. On average, after sieving: $\log |f(x)| - T[x] = \log |f(x)| - \sum r_{\ell} \frac{\log \ell}{\ell - 1}$. For a random integer y of the same size: $\log |y| - \sum \frac{\log \ell}{\ell - 1}$. Discrepancy function: $\sum (1 - r_{\ell}) \frac{\log \ell}{\ell - 1}$. Residues for MPQS are:

$$f(x) = ax^{2} + 2bx + c = \frac{1}{a} \left[(ax + b)^{2} - (b^{2} - ac) \right] = \frac{1}{a} \left[(ax + b)^{2} - kN \right].$$

Assume $\ell \nmid a$ ($\ell \mid a$ more boring).

#{Classes of sieve updates mod ℓ } = #{ $\sqrt{kN} \mod \ell$ }.

Let $r_{\ell} = \#$ square roots of $kN \mod \ell$. On average, after sieving: $\log |f(x)| - T[x] = \log |f(x)| - \sum r_{\ell} \frac{\log \ell}{\ell - 1}$. For a random integer y of the same size: $\log |y| - \sum \frac{\log \ell}{\ell - 1}$. Discrepancy function: $\alpha(k) = \sum (1 - r_{\ell}) \frac{\log \ell}{\ell - 1}$. Choosing an adequate multiplier k:

- may increase the amount of sieve contributions from small primes.
- drawback: f(x) grows with k.

The key idea remains: having many roots modulo small primes is good.

Yield optimization (Pomerance-Wagstaff)

CFRAC looks at $Q_n = p_n^2 - kNq_n^2$, with k a square-free integer. Which necessary condition should an odd prime ℓ satisfy, in order to have $\ell \mid Q_n$?

Yield optimization (Pomerance-Wagstaff)

CFRAC looks at $Q_n = p_n^2 - kNq_n^2$, with k a square-free integer.

Which necessary condition should an odd prime ℓ satisfy, in order to have $\ell \mid Q_n$? Answer: $\left(\frac{kN}{\ell}\right) = 1$.

Can choose $k \pm$ freely (as long as $k = L_N[1/2, o(1)])$.

Theorem: average ℓ -valuation in CFRAC

The average ℓ -valuation of X (for ℓ odd prime) is

•
$$\frac{1}{\ell-1}$$
 if X is a random integer ;
• If $X = Q_n$:
$$\begin{cases} 0 & \text{if } \left(\frac{kN}{\ell}\right) = -1, \\ \frac{1}{\ell+1} & \text{if } \left(\frac{kN}{\ell}\right) = 0, \\ \frac{2}{\ell+1} \cdot \frac{\ell}{\ell-1} & \text{if } \left(\frac{kN}{\ell}\right) = 1 \end{cases}$$
 (assuming p_n, q_n random co

 ℓ -valuation: proof _____ (harder) _____

If $X = Q_n = p_n^2 - kNq_n^2$ and $\left(\frac{k}{\ell}\right) = 0$. Assumption: (p_n, q_n) are random coprime integers. Modulo ℓ : (p_n, q_n) maps to something uniformly random in ...

ℓ -valuation: proof _____ (harder) _____

If
$$X = Q_n = p_n^2 - kNq_n^2$$
 and $\left(\frac{k}{\ell}\right) = 0$.

Assumption: (p_n, q_n) are random coprime integers.

Modulo ℓ : (p_n, q_n) maps to something uniformly random in $\mathbb{P}^1(\mathbb{F}_{\ell})$.

• Prob
$$(\nu_{\ell}(X) \ge 1) = \frac{1}{\ell+1}$$
;
• Prob $(\nu_{\ell}(X) \ge 2) = 0$ (because $gcd(p_n, q_n) = 1$).

Total:

$$E[\nu_\ell(X)] = \frac{1}{\ell+1}.$$

ℓ-valuation: proof ______(harder) _____

If
$$X = Q_n = p_n^2 - kNq_n^2$$
 and $\left(\frac{k}{\ell}\right) = 1$.

Amongst $\ell + 1$ choices for $(p_n : q_n) \in \mathbb{P}^1(\mathbb{F}_\ell)$, exactly two lead to $\ell \mid Q_n$.

• Prob
$$(\nu_{\ell}(X) \ge 1) = \frac{2}{\ell+1}$$
;
• Prob $(\nu_{\ell}(X) \ge 2) = \frac{2}{\ell^2 + \ell}$ (two roots in $\mathbb{P}^1(\mathbb{Z}/\ell^2\mathbb{Z})$);
• Prob $(\nu_{\ell}(X) \ge 3) = \frac{2}{\ell^3 + \ell^2}$;
• etc

Total:

$$E[
u_{\ell}(X)] = rac{2}{\ell+1} \cdot rac{1}{1-rac{1}{\ell}} = rac{2\ell}{\ell^2-1}.$$

CFRAC: yield optimization (harder)

Let $f(k, \ell)$ be the expected average ℓ -valuation of $p_n^2 - kNq_n^2$ as above.

We choose values of k for which F(k) is large, where:

$$F(k) = \sum_{\ell < B} \left(f(k,\ell) - rac{1}{\ell-1}
ight) \log_2 \ell.$$

Idea: when e.g. $F(k) \approx 3$, we expect $Q_n \approx X$ to be smooth almost as often as a random integer $\approx \frac{X}{2^3}$.

Yield optimization is **important in practice**, and also important today with NFS.

- CFRAC/QS/MPQS/NFS all build relations.
- We are faced with a linear system to be solved.
- The system is always sparse

Next lecture: sparse linear algebra algorithms. Goal: solve a sparse $n \times n$ system in $\tilde{O}(n^2)$. (sparse: at most $(\log n)^{O(1)}$ non-zero coefficients per row).

Exercise 1

Give the space complexity for sieving over an interval of length S with primes up to B, if one keeps track of all sieved primes for each location.