
Cours MPRI 2-12-2
Lecture 3/5: Sparse linear algebra

(lecturer for part 2/3): E. Thomé
/* */ C,A,
/* */ R,a,
/* */ M,E,

L,i=
5,e,

d[5],Q[999 ]={0};main(N ){for
(;i--;e=scanf("%" "d",d+i));for(A =*d;
++i<A ;++Q[ i*i% A],R= i[Q]?
R:i); for(;i --;) for(M =A;M
--;N +=!M*Q [E%A ],e+= Q[(A
+E*E- R*L* L%A) %A]) for(
E=i,L=M,a=4;a;C= i*E+R*M*L,L=(M*E +i*L)

%A,E=C%A+a --[d]);printf ("%d"
"\n",
(e+N*
N)/2

/* cc caramel.c; echo f3 f2 f1 f0 p | ./a.out */ -A);}

CARAMEL
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Sparse linear algebra
Let M be an N × N matrix over a finite field K . We want to find:

w ∈ KN s.t. Mw = 0.

Factoring or DL: M is sparse: O(log2 N) non-zeroes per row.
Factoring: K = F2 ; DL over Fq: K = F` with ` | (q − 1).
Space complexity for storing M: O(N log2 N).

Linear system solving:
Gauss: time O(N3), space O(N2).
Recursive, using matrix multiply: time O(Nω), space O(N2):

Strassen w = log2 7 = 2.81,
Coppersmith-Winograd w = 2.38.
Conjecturally w = 2, but the algorithm is yet to be stated.
(Cohn-Kleinberg-Szegedy-Umans, 2005).

None of the options above exploit sparsity.
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Sparse linear algebra
For matrices arising from crypto contexts, fill-in cannot be
tolerated.

Some figures from RSA-768

192 796 550 rows/columns ;
27 797 115 920 non-zero coefficients.
105 gigabytes as a sparse matrix.
>4000 terabytes as a dense bit matrix.

The matrix cannot be modified in the course of the computation.
We may only use black-box algorithms. No access to M itself.

v M M × v
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Can we do something with black boxes ?

An example in numerical analysis.

Take a random vector v .
Iterate v ← Mv/||Mv ||.
If M has a dominant eigenvalue λ, ||Mv ||

||v || → |λ|.

If we can do such things, no doubt we can do more.

We present two important black-box algorithms: Lanczos ;
Wiedemann.
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Comparison with numerical world
Exact linear algebra differs much from linear algebra over C.

No notion of approximate solution.
No notion of convergence.

The matrices are not the same either:

(some PDE example) (a factoring matrix)
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Krylov subspace

black-box algorithms are good at computing Mkv .

Krylov subspace KM,v

We define KM,v =
〈
v ,Mv , . . . ,Mkv , . . .

〉
.

KM,v is a subspace of KN .
Computing generating vectors is easily done with a loop.

output v ;
v ← Mv ;
repeat.

Lanczos: mimick Gram-Schmidt process on KM,v .
Wiedemann: try to find the min. poly. of M on KM,v .
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Lanczos

Here K = Fq, with q large: “almost characteristic zero”.

Will try to keep close to Gram-Schmidt orthogonalization.
Build a symmetric matrix: let A = tMM
(A is never computed, but known as a black box !)

(pseudo-) scalar product associated to A: (u, v)A
def
= tuAv .

Note over a finite field, there are isotropic vectors (exercise:
find one !)

Gram-Schmidt orthogonalization process:

build an orthogonal basis from an arbitrary one.
defined in characteristic zero for a real scalar product, but
let’s see.
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GSO in positive characteristic
We take the method for its merits.

It builds a sequence of vectors with (ei , ej)A = 0 if i 6= j .
We believe for a moment that nothing fails.
We’ll see what might fail and why.

Apply GSO to the basis
(
Aib

)
i of KA,b.

e0 ← b,

ej+1 ← Aj+1b −
∑
i≤j

(Aj+1b, ei)A
(ei , ei)A

ei = Aj+1b −
∑
i≤j

tbAj+2ei
teiAei

ei .

Two key facts

(ei , ej)A = 0 if i 6= j .
〈e0, . . . , ej〉 = Sj =

〈
b, . . . ,Ajb

〉
.
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GSO on Krylov subspaces

e0 ← b,

ej+1 ← Aj+1b −
∑
i≤j

(Aj+1b, ei)A
(ei , ei)A

ei = Aj+1b −
∑
i≤j

tbAj+2ei
teiAei

ei .

Two key facts

(ei , ej)A = 0 if i 6= j .
〈e0, . . . , ej〉 = Sj =

〈
b, . . . ,Ajb

〉
.

Important: we may replace Aj+1b by Aej .
Explanation: Aj+1b = Aej + something in ASj−1.
ASj−1 ⊂ Sj , so contribution will be canceled.
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Lanczos (cont’d)

ej+1 ← Aj+1b −
∑
i≤j

(Aej , ei)A
(ei , ei)A

ei = Aej −
∑
i≤j

tejA2ei
teiAei

ei ,

Getting rid of many terms

For i ≤ j − 2, we have:

Aei ∈ Sj−1 ⊂ e⊥j ⇒ (ej ,Aei)A = (Aej , ei)A = 0.

We may restrict to i ∈ {j − 1, j}.

ej+1 ← Aej −
(Aej , ej)A
(ej , ej)A

ej −
(Aej , ej−1)A
(ej−1, ej−1)A

ej−1,

← Aej −
tejA2ej
tejAej

ej −
tejA2ej−1

tej−1Aej−1
ej−1
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Lanczos over Fp: failure cases

Algorithm. compute the sequence ej , maintaining O(1) vectors.
Two possible reasons for stopping:

We may reach an isotropic (a.k.a. self-orthogonal) vector:
(ei , ei)A = 0.

We have (ei , ei)A = teiAei =
t(Mei)Mei = 0.

Mei might be isotropic for the “standard” bilinear form, but
heuristically Prob ≈ 1

q only.
Eventually, we reach ei = 0 at the end. This means success.

This implies that 〈e0, . . . , ei−1〉 = 〈b,Ae0, . . . ,Aei−1〉.
Let z be a solution to Az = b (z is not known). Let
w =

∑
j<i

(ej ,z)
(ej ,ej )

ej =
∑

j<i
t ej b

t ej Aej
ej .

By construction, ∀j , (ej ,w − z) = 0.
Thus w − z ∈ KerM (and Aw = b) with proba ≈ 1

q .
If we started with b = Az (z known), this gives w − z ∈ KerM.

Cours MPRI 2-12-2 13/45



Lanczos: remarks

Note: As is, the Lanczos algorithm does not work over F2
because for q = 2, a failure probability of 1

q at each step is a lot.

Complexity: N products A · v ,
hence 2N products M (or tM) times v .

Important (mis-)features:

Needs fast operations for tM and M.
Often implies storing twice for best efficiency.
Must keep track of several vectors.
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Wiedemann

The Wiedemann algorithm is a different Krylov method.

It does not originate from numerical analysis ;
it does not require a symmetric matrix.

Suppose that we know the minimal polynomial µM of M.

Write µM = XλνM for some k ≥ 1 (M assumed singular).
Let z be a random vector.
Compute w = νM(M)z . We have Prob(w = 0) ≈ 1

q .
For some i ∈ [[1 . . . k]], we have M iw = 0 and M i−1w 6= 0.

Problem: compute µM .
Working with I,M,M2, . . . is prohibitively expensive. Avoid !
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Wiedemann
Let x , y be arbitrary random vectors in KN . Let:

ai =
txM iy ∈ K .

Properties of the sequence (ai)i

(ai)i is linearly recurrent ;
its generator divides µ̂M .

Equivalently, the power series A(T ) =
∑

aiT i is a rational
fraction. Its denominator divides µ̂M . In other words,
µ̂M(T )A(T ) ∈ K [T ].

Most important: O(N) terms suffice to compute the generator ;
The generator does not differ much from µ̂M .
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Rational reconstruction

Finding f , g such that A(T ) = f (T )
g(T ) is called rational

reconstruction.
Thm. 2N terms are enough.
Proof: We know a rational form A = f0/g0 exists with
deg g0 ≤ N, deg f0 < N. Assume we obtain Ag1 = f1 + O(X 2N),
with same degree bounds. Then f0g1 − f1g0 ∈ O(X 2N) implies
equality.
Two ways to go:

(truncated) EEA with inputs X 2N and A mod X 2N .
Berlekamp-Massey algorithm (from coding theory).
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Truncated EEA for rational reconstruction

The steps of the extended Euclidean algorithm yield:

X 2Nui + (A mod X 2N)vi = ri .

Prop. deg vi + deg ri−1 = 2N.

Thus ∃i0, deg vi0 ≤ N < deg vi0+1,

which implies: deg ri0 < N.

Complexity:

O(N2),
or O(M(N) logN) = O(N log2 N) with asymptotically fast
algorithms.
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Berlekamp-Massey algorithm

Over a field, essentially the same algorithm.
The algorithm works with candidate generators φ0 and φ1.
At step i , we have deg(φk · A) = (deg < deg φk) + O(X i).

Use the lowest-degree candidate φk to cancel [X i ]φ1−kA:
Do φ1−k ← φ1−k − λφk .
Do φk ← Xφk .

On average, deg φi advances by only 1
2 . Output: a generator of

degree N. We use 2N coefficients of A.
Complexity:

O(N2),
or O(M(N) logN) = O(N log2 N) with asymptotically fast
algorithms.

Cours MPRI 2-12-2 20/45



Wiedemann: end

Last step of the Wiedemann algorithm: compute νM(M)y .
Total complexity:

2N products M times v for computing 2N terms of A.
O(N2) or O(N log2 N) for EEA/BM.
N products M times v for the evaluation.

Failure probability:

Can be computed exactly depending on the invariant factors
of M.
(see Wiedemann (1986), Kaltofen-Eberly-Villard (many), T.
(2003)).
Bottom line: Prob(failure) = O( 1

q ).
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Block algorithms

Neither plain Wiedemann nor plain Lanczos work over F2.
Furthermore, working with bit vectors is wasteful.

Idea: Replace K by a vector space Kn, for e.g. n = 64.

Goal 1: bring probability of failure from 1
2 to 2−64.

Goal 2: achieve better computational efficiency.
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Bit arithmetic with unsigned longs

Assume we take the unsigned long type to hold bits.

0 for bit 0
1 for bit 1

Then we have: Addition: x ˆ y.
Multiplication: x & y.
Multiplication by non-zero: x.

In the context of black box linear algebra, we may:

Add bits.
Multiply bits by non-zero coefficients of the matrix.

Block algorithms: do this, but pack 64 bits in an unsigned long.
Same cost for main computation: xor.
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Switching to block black box linear algebra

The black box operation becomes:

matrix× block of vectors→ block of vectors.

We make better use of the unsigned long type.
The proper block width is prescribed by the hardware.

One may e.g. use SSE-2 types and instructions, block width
128.
Narrower block sizes may also be considered.

Note: Wider block sizes means larger vectors ! The wider is
not always the better.

Big question. Which algorithms can take advantage of this ?
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Block algorithms

Block Lanczos is a construction of orthogonal sub-spaces.
At each step, we must ensure that some rank does not drop.
Complexity: 2N/(n − 0.76) matrix-times-vector products.
Collective operations at each step.

Block Wiedemann computes A ∈ Kn×n[[X ]].
Only 2N

n + O(1) terms of A need be computed.
Evaluation: N

n products.
EEA does not work. BM works, but somewhat harder.
Can be distributed across k sites if n = 64k.
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Block Lanczos algorithm
(harder)

BL: one of the rare algorithms I know which is uglier than BW.
Presenting plain Lanczos correctly not always easy, so BL. . .

Let n be a block width (e.g. n = 64).

Starting point of BL: Start with an N × N matrix M.
Want to solve Mv = 0 (of Mv = b).
Let A = MT M.

Definition: orthogonal subspaces

Let W and W ′ be two N × n matrices defining two n-dimensional
subspace W and W ′ of FN

2 .
W and W ′ are A-orthogonal (W⊥AW ′) if W T AW ′ = 0.
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Principle of BL
(harder)

Let V0 be a random initial N × n matrix.
V0 defines a subspace V0, but V0 is not our focus.

First goal: build an interesting subspace W0 ⊂ V0

We want a matrix W0 such that W T
0 AW0 has full rank.

Let n0 = rank
(
V T

0 AV0
)
.

Let W0 be an N × n0 matrix such that rank
(
W T

0 AW0
)
= n0.

(this is easy: extract n0 linearly indep. cols of V T
0 AV0).

Let W0 = 〈W0〉 be the spanned subspace.
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Next step
(harder)

We want to grow W0 into a sequence of subspaces Wi which:

are related to eachother.
are mutually A-orthogonal.
have dimension most often equal to n.

Starting point: AW0 defines a new n0-dimensional subspace
“AW0”.
Let V1 be naively AW0. We may build W1 such that:

W1⊥AW0:

W1 ← V1 −W0
(
W T

0 AW0
)−1

W T
0 AV1.

〈W1〉 ⊂ AW0, and W T
1 AW1 full rank (same as for W0).

and so on and so forth.
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Problem with BL
(harder)

The procedure we have given does build a nice sequence of
spaces, until it collapses.
rank(Wi) decreases slowly to 0.

V0
W0, dimension n0 ≤ n
n − n0 vectors dropped

V1 = AW0
W1, dimension n1 ≤ n0
n0 − n1 vectors dropped

V2 = AW1
W2, dimension n2 ≤ n1
n1 − n2 vectors dropped
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Key difference between BL and Lanczos
(harder)

Main difference
In BL, in order to prevent the dimension collapse, we reinject in V1
the vectors of V0 which have been discarded when building W0.

〈V1〉 is thus an n-dimensional subspace, like 〈V0〉.
The subspace W1 extracted thus has dimension n1 ≤ n.

The rest is all ugly technicalities.

How exactly reinjecting is formulated.
How we orthogonalize Vk w.r.t. previous subspaces.
How we shorten the sequence of orthogonalizing
computations.
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BL and bookkeeping
(harder)

The BL iterations needs to keep several vector blocks.
Vi+1, Vi , Wi−1, Wi−2, Wi−3.
Even an extra vector block if solving inhomogeneous system.

Each iteration shuffles the vector columns: Wi+1 is an
extraction from Vi+1.
Both multiplications by M and MT (since A = MT M).
Scalar products, multiplication by n × n matrices, . . .

Homogeneous BL (T. 2003 ??)

A natural idea.

The sequence eventually reaches the point where
W T

i AWi = 0, from which we can extract vectors of KerM.
This saves one vector block for bookkeeping, and some scalar
products.
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Number of iterations of BL
(harder)

The dimension of Wi is the rank of V T
i AVi .

Theorem
Let n − rank(X ) be the rank defect of an n × n matrix M.

E (rank defect(M), M symmetric) = 0.76,
E (rank defect(M, M general)) = 0.85.

Thus BL runs until 〈W0,W1, . . .Wk〉 = FN
2 , which means:

k ≈ N
n − 0.76 .
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Block Wiedemann
(harder)

BW is a direct translation of Wiedemann to using vector blocks.
Issues:

properly define the notion of linear generator.
show that using vector blocks reduces the number of needed
iterations.

The expected benefits are clear:

Better use of arithmetic power of CPUs (block operations).
Hopefully better success probability.
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BW workplan
(harder)

Let n be a block width.

Initial setup. Choose starting blocks of vectors x and y .
Sequence computation. Want L first terms of the sequence:

ai = xT Mky (ai are n × n matrices !).
Computing one term after another, this boils down to our
black box v 7→ Mv .
This computation can be split into several independent parts
(which all know M).

Compute some sort of minimal polynomial.
Build solution as:

v =
deg f∑
k=0

Mkyfk .

Again, this uses the black box.
Can be split into many independent parts (which all know M).
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BW operations
(harder)

For the sequence computation, the only operations are:
Matrix times vector product vi ← Mvi−1.
Dot product ai ← xT vi . (x typically taken very simple).

Required bookkeeping: only vi and vi−1.

Most important thing

Col. j or the matrices (ai)i only depends on col. j of y .

If y is split into several parts, this leads to several parts of the
sequence which may be computed independently.
Those different parts of the sequence need no synchronization
or communication.
Possibly on different clusters, sites, or countries.
Block width n = 64n′: n′ independent computations.
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BW complexity
(harder)

For a block size n, BW on an N-dimensional matrix M:
2N
n matrix times vector products for sequence computation.

N
n extra matrix times vector products for the last step.
Linear generator computation: nN2 naively, asymptotically
fast algorithm in ≈ nN(n + logN).

Comparison with BL

On the back of the envelope, BW is slower than BL, but:

Less bookkeeping,
Only products by M, not by MT ,
Much better distribution opportunities.
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What are the algorithms good for ?

Plain Lanczos. OK for Fp.
Quite easy to implement.
Has been used for DL computations.

Plain Wiedemann. OK for Fp.
Reconstruction step add some implementation work.
On the other hand, recurrence is easier.

Block Lanczos. Good for F2.
Need a large cluster.
Needs fast, parallel M × v .

Block Wiedemann. Good for F2.
Can accomodate several clusters.
Implementation is challenging.
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2012: Wiedemann on GPU

DL record F2619 . Matrix step relatively easy.

635,000 rows and columns.
About 100 non-zeroes per row.
Field of definition: a 217-bit prime.

Wiedemann recurrence done on a Nvidia GeForce GTX580 GPU.

About 30ms for each M × v .
Fault-tolerant software, because GTX580 is a mess.
Orders of magnitude faster than CPU implementation.
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1999: Block Lanczos for RSA-155

RSA-155: an important milestone for factoring (512 bits).
Matrix step (1999):

(by then) a large matrix: 6.7M rows/cols, 62 nz/row.
Solved on supercomputer Cray C916 (10 days).

Stumbling block: relying on a Cray-class supercomputer is
cumbersome.
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2009: Block Wiedemann for RSA-768

RSA-768: latest record in integer factorization.
Block Wiedemann algorithm used for matrix step.

Requiring several mid-range computer resources is much more
manageable than supercomputers.
Used grids of computers in France, Switzerland, Japan.
Approx. 3 months of computation.
Novel approach, using varying clusters.
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