Cours MPRI 2-12-2

Lecture 3/5: Sparse linear algebra
(lecturer for part 2/3): E. Thomé

Nov. 19th, 2012

Plan

Introduction

Lanczos' algorithm

Wiedemann

Block algorithms

Sparse linear algebra feats

Sparse linear algebra

Let M be an $N \times N$ matrix over a finite field K. We want to find:

$$
w \in K^{N} \text { s.t. } M w=0 .
$$

- Factoring or DL: M is sparse: $O\left(\log ^{2} N\right)$ non-zeroes per row.
- Factoring: $K=\mathbb{F}_{2} ; \operatorname{DL}$ over $\mathbb{F}_{q}: K=\mathbb{F}_{\ell}$ with $\ell \mid(q-1)$.
- Space complexity for storing $M: O\left(N \log ^{2} N\right)$.

Linear system solving:

- Gauss: time $O\left(N^{3}\right)$, space $O\left(N^{2}\right)$.
- Recursive, using matrix multiply: time $O\left(N^{\omega}\right)$, space $O\left(N^{2}\right)$:
- Strassen $w=\log _{2} 7=2.81$,
- Coppersmith-Winograd $w=2.38$.
- Conjecturally $w=2$, but the algorithm is yet to be stated. (Cohn-Kleinberg-Szegedy-Umans, 2005).
- None of the options above exploit sparsity.

Sparse linear algebra

For matrices arising from crypto contexts, fill-in cannot be tolerated.

Some figures from RSA-768

- 192796550 rows/columns ;
- 27797115920 non-zero coefficients.
- 105 gigabytes as a sparse matrix.
- >4000 terabytes as a dense bit matrix.

The matrix cannot be modified in the course of the computation. We may only use black-box algorithms. No access to M itself.

Can we do something with black boxes ?

An example in numerical analysis.

- Take a random vector v.
- Iterate $v \leftarrow M v /\|M v\|$.
- If M has a dominant eigenvalue $\lambda, \frac{\|M v\|}{\|v\|} \rightarrow|\lambda|$.

If we can do such things, no doubt we can do more.

We present two important black-box algorithms: © Lanczos ;

- Wiedemann.

Comparison with numerical world

Exact linear algebra differs much from linear algebra over \mathbb{C}.

- No notion of approximate solution.
- No notion of convergence.

The matrices are not the same either:

(some PDE example)

(a factoring matrix)

Krylov subspace

black-box algorithms are good at computing $M^{k} v$.

Krylov subspace $\mathcal{K}_{M, v}$

We define $\mathcal{K}_{M, v}=\left\langle v, M v, \ldots, M^{k} v, \ldots\right\rangle$.

- $\mathcal{K}_{M, V}$ is a subspace of K^{N}.
- Computing generating vectors is easily done with a loop.
- output v;
- $v \leftarrow M v$;
- repeat.
- Lanczos: mimick Gram-Schmidt process on $\mathcal{K}_{M, v}$.
- Wiedemann: try to find the min. poly. of M on $\mathcal{K}_{M, v}$.

Introduction
 Lanczos' algorithm

Wiedemann

Block algorithms

Sparse linear algebra feats

Lanczos

Here $K=\mathbb{F}_{q}$, with q large: "almost characteristic zero".

- Will try to keep close to Gram-Schmidt orthogonalization.
- Build a symmetric matrix: let $A={ }^{t} M M$ (A is never computed, but known as a black box !)
- (pseudo-) scalar product associated to $A:(u, v)_{A} \stackrel{\text { def }}{=} u A v$.
- Note over a finite field, there are isotropic vectors (exercise: find one!)

Gram-Schmidt orthogonalization process:

- build an orthogonal basis from an arbitrary one.
- defined in characteristic zero for a real scalar product, but let's see.

GSO in positive characteristic

We take the method for its merits.

- It builds a sequence of vectors with $\left(e_{i}, e_{j}\right)_{A}=0$ if $i \neq j$.
- We believe for a moment that nothing fails.
- We'll see what might fail and why.

Apply GSO to the basis $\left(A^{i} b\right)_{i}$ of $\mathcal{K}_{A, b}$.

$$
e_{0} \leftarrow b
$$

$$
e_{j+1} \leftarrow A^{j+1} b-\sum_{i \leq j} \frac{\left(A^{j+1} b, e_{i}\right)_{A}}{\left(e_{i}, e_{i}\right)_{A}} e_{i}=A^{j+1} b-\sum_{i \leq j} \frac{{ }^{t} b A^{j+2} e_{i}}{{ }^{t} e_{i} A e_{i}} e_{i}
$$

Two key facts

- $\left(e_{i}, e_{j}\right)_{A}=0$ if $i \neq j$.
- $\left\langle e_{0}, \ldots, e_{j}\right\rangle=S_{j}=\left\langle b, \ldots, A^{j} b\right\rangle$.

GSO on Krylov subspaces

$$
e_{0} \leftarrow b
$$

$$
e_{j+1} \leftarrow A^{j+1} b-\sum_{i \leq j} \frac{\left(A^{j+1} b, e_{i}\right)_{A}}{\left(e_{i}, e_{i}\right)_{A}} e_{i}=A^{j+1} b-\sum_{i \leq j} \frac{{ }^{t} b A^{j+2} e_{i}}{{ }^{t} e_{i} A e_{i}} e_{i}
$$

Two key facts

- $\left(e_{i}, e_{j}\right)_{A}=0$ if $i \neq j$.
- $\left\langle e_{0}, \ldots, e_{j}\right\rangle=S_{j}=\left\langle b, \ldots, A^{j} b\right\rangle$.

Important: we may replace $A^{j+1} b$ by $A e_{j}$.

- Explanation: $A^{j+1} b=A e_{j}+$ something in $A S_{j-1}$.
- $A S_{j-1} \subset S_{j}$, so contribution will be canceled.

Lanczos (cont'd)

$$
e_{j+1} \leftarrow A^{j+1} b-\sum_{i \leq j} \frac{\left(A e_{j}, e_{i}\right)_{A}}{\left(e_{i}, e_{i}\right)_{A}} e_{i}=A e_{j}-\sum_{i \leq j} \frac{{ }^{t} e_{j} A^{2} e_{i}}{{ }^{t} e_{i} A e_{i}} e_{i}
$$

Getting rid of many terms

For $i \leq j-2$, we have:

$$
A e_{i} \in S_{j-1} \subset e_{j}^{\perp} \Rightarrow\left(e_{j}, A e_{i}\right)_{A}=\left(A e_{j}, e_{i}\right)_{A}=0
$$

We may restrict to $i \in\{j-1, j\}$.

$$
\begin{aligned}
e_{j+1} & \leftarrow A e_{j}-\frac{\left(A e_{j}, e_{j}\right)_{A}}{\left(e_{j}, e_{j}\right)_{A}} e_{j}-\frac{\left(A e_{j}, e_{j-1}\right)_{A}}{\left(e_{j-1}, e_{j-1}\right)_{A}} e_{j-1}, \\
& \leftarrow A e_{j}-\frac{{ }^{t} e_{j} A^{2} e_{j}}{{ }^{t} e_{j} A e_{j}} e_{j}-\frac{{ }^{t} e_{j} A^{2} e_{j-1}}{{ }^{t} e_{j-1} A e_{j-1}} e_{j-1}
\end{aligned}
$$

Lanczos over \mathbb{F}_{p} : failure cases

Algorithm. compute the sequence e_{j}, maintaining $O(1)$ vectors.
Two possible reasons for stopping:

- We may reach an isotropic (a.k.a. self-orthogonal) vector: $\left(e_{i}, e_{i}\right)_{A}=0$.
- We have $\left(e_{i}, e_{i}\right)_{A}={ }^{t} e_{i} A e_{i}={ }^{t}\left(M e_{i}\right) M e_{i}=0$.
- Me might be isotropic for the "standard" bilinear form, but heuristically $\operatorname{Prob} \approx \frac{1}{q}$ only.
- Eventually, we reach $e_{i}=0$ at the end. This means success.
- This implies that $\left\langle e_{0}, \ldots, e_{i-1}\right\rangle=\left\langle b, A e_{0}, \ldots, A e_{i-1}\right\rangle$.
- Let z be a solution to $A z=b$ (z is not known). Let $w=\sum_{j<i} \frac{\left(e_{j}, z\right)}{\left(e_{j}, e_{j}\right)} e_{j}=\sum_{j<i} \frac{t_{e_{j}} b}{t_{e} A_{j} e_{j}} e_{j}$.
- By construction, $\forall j,\left(e_{j}, w-z\right)=0$. Thus $w-z \in \operatorname{Ker} M($ and $A w=b)$ with proba $\approx \frac{1}{q}$.
- If we started with $b=A z$ (z known), this gives $w-z \in \operatorname{Ker} M$.

Lanczos: remarks

Note: As is, the Lanczos algorithm does not work over \mathbb{F}_{2} because for $q=2$, a failure probability of $\frac{1}{q}$ at each step is a lot.

Complexity: - N products $A \cdot v$,

- hence $2 N$ products M (or ${ }^{t} M$) times v.

Important (mis-)features:

- Needs fast operations for ${ }^{t} M$ and M. Often implies storing twice for best efficiency.
- Must keep track of several vectors.

Introduction
 Lanczos' algorithm

Wiedemann

Block algorithms

Sparse linear algebra feats

The Wiedemann algorithm is a different Krylov method.

- It does not originate from numerical analysis;
- it does not require a symmetric matrix.

Suppose that we know the minimal polynomial μ_{M} of M.

- Write $\mu_{M}=X^{\lambda} \nu_{M}$ for some $k \geq 1$ (M assumed singular).
- Let z be a random vector.
- Compute $w=\nu_{M}(M) z$. We have $\operatorname{Prob}(w=0) \approx \frac{1}{q}$.
- For some $i \in \llbracket 1 \ldots k \rrbracket$, we have $M^{i} w=0$ and $M^{i-1} w \neq 0$.

Problem: compute μ_{M}.
Working with I, M, M^{2}, \ldots is prohibitively expensive. Avoid!

Wiedemann

Let x, y be arbitrary random vectors in K^{N}. Let:

$$
a_{i}={ }^{t} x M^{i} y \in K
$$

Properties of the sequence $\left(a_{i}\right)_{i}$

- $\left(a_{i}\right)_{i}$ is linearly recurrent;
- its generator divides $\hat{\mu}_{M}$.

Equivalently, the power series $A(T)=\sum a_{i} T^{i}$ is a rational fraction. Its denominator divides $\hat{\mu}_{M}$. In other words, $\hat{\mu}_{M}(T) A(T) \in K[T]$.

Most important: © $O(N)$ terms suffice to compute the generator ;

- The generator does not differ much from $\hat{\mu}_{M}$.

Rational reconstruction

Finding f, g such that $A(T)=\frac{f(T)}{g(T)}$ is called rational reconstruction.

Thm. 2 N terms are enough.
Proof: We know a rational form $A=f_{0} / g_{0}$ exists with $\operatorname{deg} g_{0} \leq N$, $\operatorname{deg} f_{0}<N$. Assume we obtain $A g_{1}=f_{1}+O\left(X^{2 N}\right)$, with same degree bounds. Then $f_{0} g_{1}-f_{1} g_{0} \in O\left(X^{2 N}\right)$ implies equality.
Two ways to go:

- (truncated) EEA with inputs $X^{2 N}$ and $A \bmod X^{2 N}$.
- Berlekamp-Massey algorithm (from coding theory).

Truncated EEA for rational reconstruction

The steps of the extended Euclidean algorithm yield:

$$
X^{2 N} u_{i}+\left(A \bmod X^{2 N}\right) v_{i}=r_{i}
$$

Prop. $\operatorname{deg} v_{i}+\operatorname{deg} r_{i-1}=2 N$.
Thus $\exists i_{0}, \quad \operatorname{deg} v_{i_{0}} \leq N<\operatorname{deg} v_{i_{0}+1}$,
which implies: $\quad \operatorname{deg} r_{i 0}<N$.

Complexity:

- $O\left(N^{2}\right)$,
- or $O(\mathrm{M}(N) \log N)=O\left(N \log ^{2} N\right)$ with asymptotically fast algorithms.

Berlekamp-Massey algorithm

Over a field, essentially the same algorithm.
The algorithm works with candidate generators ϕ_{0} and ϕ_{1}.
At step i, we have $\operatorname{deg}\left(\phi_{k} \cdot A\right)=\left(\operatorname{deg}<\operatorname{deg} \phi_{k}\right)+O\left(X^{i}\right)$.

- Use the lowest-degree candidate ϕ_{k} to cancel $\left[X^{i}\right] \phi_{1-k} A$: Do $\phi_{1-k} \leftarrow \phi_{1-k}-\lambda \phi_{k}$.
- Do $\phi_{k} \leftarrow X \phi_{k}$.

On average, deg ϕ_{i} advances by only $\frac{1}{2}$. Output: a generator of degree N. We use $2 N$ coefficients of A.
Complexity:

- $O\left(N^{2}\right)$,
- or $O(\mathrm{M}(N) \log N)=O\left(N \log ^{2} N\right)$ with asymptotically fast algorithms.

Wiedemann: end

Last step of the Wiedemann algorithm: compute $\nu_{M}(M) y$.
Total complexity:

- $2 N$ products M times v for computing $2 N$ terms of A.
- $O\left(N^{2}\right)$ or $O\left(N \log ^{2} N\right)$ for EEA/BM.
- N products M times v for the evaluation.

Failure probability:

- Can be computed exactly depending on the invariant factors of M. (see Wiedemann (1986), Kaltofen-Eberly-Villard (many), T. (2003)).
- Bottom line: Prob(failure) $=O\left(\frac{1}{q}\right)$.

Plan

Introduction

Lanczos' algorithm

Wiedemann

Block algorithms

Sparse linear algebra feats

Block algorithms

- Neither plain Wiedemann nor plain Lanczos work over \mathbb{F}_{2}.
- Furthermore, working with bit vectors is wasteful.

Idea: Replace K by a vector space K^{n}, for e.g. $n=64$.

- Goal 1: bring probability of failure from $\frac{1}{2}$ to 2^{-64}.
- Goal 2: achieve better computational efficiency.

Bit arithmetic with unsigned longs

Assume we take the unsigned long type to hold bits.

- 0 for bit 0
- 1 for bit 1

Then we have: © Addition: $\mathrm{x}^{\wedge} \mathrm{y}$.

- Multiplication: x \& y.
- Multiplication by non-zero: x.

In the context of black box linear algebra, we may:

- Add bits.
- Multiply bits by non-zero coefficients of the matrix.

Block algorithms: do this, but pack 64 bits in an unsigned long. Same cost for main computation: xor.

Switching to block black box linear algebra

The black box operation becomes:

$$
\text { matrix } \times \text { block of vectors } \rightarrow \text { block of vectors. }
$$

- We make better use of the unsigned long type.
- The proper block width is prescribed by the hardware.
- One may e.g. use SSE-2 types and instructions, block width 128.
- Narrower block sizes may also be considered.
- Note: Wider block sizes means larger vectors! The wider is not always the better.

Big question. Which algorithms can take advantage of this ?

Block algorithms

- Block Lanczos is a construction of orthogonal sub-spaces.
- At each step, we must ensure that some rank does not drop.
- Complexity: $2 N /(n-0.76)$ matrix-times-vector products.
- Collective operations at each step.
- Block Wiedemann computes $A \in K^{n \times n}[[X]]$.
- Only $\frac{2 N}{n}+O(1)$ terms of A need be computed.
- Evaluation: $\frac{N}{n}$ products.
- EEA does not work. BM works, but somewhat harder.
- Can be distributed across k sites if $n=64 k$.

Plan

Block algorithms

Block Lanczos (Montgomery)

Block Wiedemann (Coppersmith)

Block Lanczos algorithm

- BL: one of the rare algorithms I know which is uglier than BW.
- Presenting plain Lanczos correctly not always easy, so BL...

Let n be a block width (e.g. $n=64$).
Starting point of BL: © Start with an $N \times N$ matrix M.

- Want to solve $M v=0$ (of $M v=b$).
- Let $A=M^{T} M$.

Definition: orthogonal subspaces

Let W and W^{\prime} be two $N \times n$ matrices defining two n-dimensional subspace \mathcal{W} and \mathcal{W}^{\prime} of \mathbb{F}_{2}^{N}.
\mathcal{W} and \mathcal{W}^{\prime} are A-orthogonal $\left(\mathcal{W} \perp_{A} \mathcal{W}^{\prime}\right)$ if $W^{\top} A W^{\prime}=0$.

Principle of BL

Let V_{0} be a random initial $N \times n$ matrix.
V_{0} defines a subspace \mathcal{V}_{0}, but \mathcal{V}_{0} is not our focus.

First goal: build an interesting subspace $\mathcal{W}_{0} \subset \mathcal{V}_{0}$

We want a matrix W_{0} such that $W_{0}^{\top} A W_{0}$ has full rank.

- Let $n_{0}=\operatorname{rank}\left(V_{0}^{T} A V_{0}\right)$.
- Let W_{0} be an $N \times n_{0}$ matrix such that rank $\left(W_{0}^{T} A W_{0}\right)=n_{0}$. (this is easy: extract n_{0} linearly indep. cols of $V_{0}^{T} A V_{0}$).
- Let $\mathcal{W}_{0}=\left\langle W_{0}\right\rangle$ be the spanned subspace.

Next step

We want to grow \mathcal{W}_{0} into a sequence of subspaces \mathcal{W}_{i} which:

- are related to eachother.
- are mutually A-orthogonal.
- have dimension most often equal to n.

Starting point: $A W_{0}$ defines a new n_{0}-dimensional subspace
" $A \mathcal{W}_{0}$ ".
Let V_{1} be naively $A W_{0}$. We may build W_{1} such that:

- $\mathcal{W}_{1} \perp_{A} \mathcal{W}_{0}$:

$$
W_{1} \leftarrow V_{1}-W_{0}\left(W_{0}^{T} A W_{0}\right)^{-1} W_{0}^{T} A V_{1}
$$

- $\left\langle W_{1}\right\rangle \subset A \mathcal{W}_{0}$, and $W_{1}^{T} A W_{1}$ full rank (same as for W_{0}). and so on and so forth.

Problem with BL

- The procedure we have given does build a nice sequence of spaces, until it collapses.
- $\operatorname{rank}\left(W_{i}\right)$ decreases slowly to 0 .

$$
\begin{gathered}
V_{0} \longrightarrow \mathcal{W}_{0}, \text { dimension } n_{0} \leq n \\
\\
n-n_{0} \text { vectors dropped } \\
V_{1}=A W_{0} \longrightarrow \mathcal{W}_{1}, \text { dimension } n_{1} \leq n_{0} \\
\\
n_{0}-n_{1} \text { vectors dropped } \\
V_{2}=A W_{1} \longrightarrow \mathcal{W}_{2}, \text { dimension } n_{2} \leq n_{1} \\
n_{1}-n_{2} \text { vectors dropped }
\end{gathered}
$$

Problem with BL

- The procedure we have given does build a nice sequence of spaces, until it collapses.
- $\operatorname{rank}\left(W_{i}\right)$ decreases slowly to 0 .

$$
\begin{gathered}
V_{0} \longrightarrow \mathcal{W}_{0}, \text { dimension } n_{0} \leq n \\
\\
n-n_{0} \text { vectors dropped } \\
V_{1}=A W_{0} \longrightarrow \mathcal{W}_{1}, \text { dimension } n_{1} \leq n_{0} \\
\\
n_{0}-n_{1} \text { vectors dropped } \\
V_{2}=A W_{1} \longrightarrow \mathcal{W}_{2}, \text { dimension } n_{2} \leq n_{1} \\
n_{1}-n_{2} \text { vectors dropped }
\end{gathered}
$$

Key difference between BL and Lanczos

Main difference

In BL, in order to prevent the dimension collapse, we reinject in V_{1} the vectors of V_{0} which have been discarded when building W_{0}.

- $\left\langle V_{1}\right\rangle$ is thus an n-dimensional subspace, like $\left\langle V_{0}\right\rangle$.
- The subspace \mathcal{W}_{1} extracted thus has dimension $n_{1} \leq n$.

The rest is all ugly technicalities.

- How exactly reinjecting is formulated.
- How we orthogonalize V_{k} w.r.t. previous subspaces.
- How we shorten the sequence of orthogonalizing computations.

BL and bookkeeping

- The BL iterations needs to keep several vector blocks.
- $V_{i+1}, V_{i}, W_{i-1}, W_{i-2}, W_{i-3}$.
- Even an extra vector block if solving inhomogeneous system.
- Each iteration shuffles the vector columns: W_{i+1} is an extraction from V_{i+1}.
- Both multiplications by M and M^{T} (since $A=M^{T} M$).
- Scalar products, multiplication by $n \times n$ matrices, ...

Homogeneous BL (T. 2003 ??)

A natural idea.

- The sequence eventually reaches the point where $W_{i}^{T} A W_{i}=0$, from which we can extract vectors of $\operatorname{Ker} M$.
- This saves one vector block for bookkeeping, and some scalar products.

Number of iterations of BL

The dimension of W_{i} is the rank of $V_{i}^{\top} A V_{i}$.

Theorem

Let $n-\operatorname{rank}(X)$ be the rank defect of an $n \times n$ matrix M.

$$
\mathrm{E}(\text { rank } \operatorname{defect}(M), M \text { symmetric })=0.76,
$$

Thus BL runs until $\left\langle\mathcal{W}_{0}, \mathcal{W}_{1}, \ldots \mathcal{W}_{k}\right\rangle=\mathbb{F}_{2}^{N}$, which means:

$$
k \approx \frac{N}{n-0.76}
$$

Plan

Block algorithms
Block Lanczos (Montgomery)
Block Wiedemann (Coppersmith)

Block Wiedemann

BW is a direct translation of Wiedemann to using vector blocks.
Issues:

- properly define the notion of linear generator.
- show that using vector blocks reduces the number of needed iterations.

The expected benefits are clear:

- Better use of arithmetic power of CPUs (block operations).
- Hopefully better success probability.

BW workplan

Let n be a block width.

- Initial setup. Choose starting blocks of vectors x and y.
- Sequence computation. Want L first terms of the sequence:

$$
a_{i}=x^{T} M^{k} y\left(a_{i} \text { are } n \times n\right. \text { matrices !). }
$$

- Computing one term after another, this boils down to our black box $v \mapsto M v$.
- This computation can be split into several independent parts (which all know M).
- Compute some sort of minimal polynomial.
- Build solution as:

$$
v=\sum_{k=0}^{\operatorname{deg} f} M^{k} y f_{k}
$$

- Again, this uses the black box.
- Can be split into many independent parts (which all know M).

BW operations

For the sequence computation, the only operations are:

- Matrix times vector product $v_{i} \leftarrow M v_{i-1}$.
- Dot product $a_{i} \leftarrow x^{T} v_{i}$. (x typically taken very simple).

Required bookkeeping: only v_{i} and v_{i-1}.

Most important thing

Col. j or the matrices $\left(a_{i}\right)_{i}$ only depends on col. j of y.

- If y is split into several parts, this leads to several parts of the sequence which may be computed independently.
- Those different parts of the sequence need no synchronization or communication.
- Possibly on different clusters, sites, or countries.
- Block width $n=64 n^{\prime}$: n^{\prime} independent computations.

BW complexity

For a block size n, BW on an N-dimensional matrix M :

- $\frac{2 N}{n}$ matrix times vector products for sequence computation.
- $\frac{N}{n}$ extra matrix times vector products for the last step.
- Linear generator computation: $n N^{2}$ naively, asymptotically fast algorithm in $\approx n N(n+\log N)$.

Comparison with BL

On the back of the envelope, BW is slower than BL, but:

- Less bookkeeping,
- Only products by M, not by M^{T},
- Much better distribution opportunities.

Plan

Introduction

Lanczos' algorithm

Wiedemann

Block algorithms

Sparse linear algebra feats

What are the algorithms good for ?

- Plain Lanczos. OK for \mathbb{F}_{p}.
- Quite easy to implement.
- Has been used for DL computations.
- Plain Wiedemann. OK for \mathbb{F}_{p}.
- Reconstruction step add some implementation work.
- On the other hand, recurrence is easier.
- Block Lanczos. Good for \mathbb{F}_{2}.
- Need a large cluster.
- Needs fast, parallel $M \times v$.
- Block Wiedemann. Good for \mathbb{F}_{2}.
- Can accomodate several clusters.
- Implementation is challenging.

2012: Wiedemann on GPU

DL record $\mathbb{F}_{2^{619}}$. Matrix step relatively easy.

- 635,000 rows and columns.
- About 100 non-zeroes per row.
- Field of definition: a 217-bit prime.

Wiedemann recurrence done on a Nvidia GeForce GTX580 GPU.

- About 30 ms for each $M \times v$.
- Fault-tolerant software, because GTX580 is a mess.
- Orders of magnitude faster than CPU implementation.

1999: Block Lanczos for RSA-155

RSA-155: an important milestone for factoring (512 bits). Matrix step (1999):

- (by then) a large matrix: 6.7 M rows/cols, $62 \mathrm{nz} /$ row.
- Solved on supercomputer Cray C916 (10 days).

Stumbling block: relying on a Cray-class supercomputer is cumbersome.

2009: Block Wiedemann for RSA-768

RSA-768: latest record in integer factorization.
Block Wiedemann algorithm used for matrix step.

- Requiring several mid-range computer resources is much more manageable than supercomputers.
- Used grids of computers in France, Switzerland, Japan.
- Approx. 3 months of computation.
- Novel approach, using varying clusters.

Linalg stats

(a)	(b)	(c)	(d)	(e)	(f)	(g)	(h)	(i)	(j)	(k)	(l)
Lausanne	56	$2 \times$ AMD 2427	2.2	12	16	ib20g	12	144	4.3	4.8	40%
Tokyo	110	$2 \times$ Pentium-D	3.0	2	5	eth1g	110	220	5.8	7.8	$\%$
Grenoble	34	$2 \times$ Xeon E5420	2.5	8	8	ib20g	24	144	3.7		30%
Lille	46	$2 \times$ Xeon E5440	2.8	8	8	mx10g	36	144	3.1	3.3	31%
							32	256	3.8		38%
							24	144	4.4		33%
Nancy	92	$2 \times$ Xeon L5420	2.5	8	16	ib20g	64	256	2.2	2.4	41%
							36	144	3.0	3.2	31%
							24	144	3.5	4.2	30%
							18	144		5.0	31%
						16	64		6.5	19%	
Orsay	120	$2 \times$ AMD 250	2.4	2	2	mx10g	98	196	2.8	3.9	32%
Rennes	96	$2 \times$ Xeon 5148	2.3	4	4	mx10g	64	256	2.5	2.7	37%
						49	196	2.9	3.5	33%	
Rennes	64	$2 \times$ Xeon L5420	2.5	8	32	eth1g	49	196	6.2		67%
							24	144	8.4		67%
							18	144	10.0		68%
						8	64		18.0	56%	

Table 1: Different per-iteration timings on various clusters. (a) Cluster location ; (b) Total cluster size (number of nodes) ; (c) Cluster CPU type ; (d) Node CPU frequency ; (e) Cores per node ; (f) RAM per node (GB) ; (g) Cluster interconnect ; (h) Job size (number Cours MPRb\$-qヶ孔les) ; (i) Number of cores used per job ; (j) Time per iteration in seconds (stage 1) ;

