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Plan

Teaser: factoring with cubic integers
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The initial idea

Factoring F7 = 2128 1 1 was one of the early achievements of
CFRAC in the 1970's.
Is there another way ?

Pollard noticed:

2F =220 4 2 = m® + 2, with m=2%.
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Factoring 2F;

We have 2F7 = 2120 4+ 2 = m® + 2, with m = 2%,
Define the number field K = Q(a = v/—-2).
© K is one of the textbook examples of number fields.

© The algebraic integers in K are Z[«]. These possess unique
factorization. (lucky !)

Assume we have many (a, b)'s such that:

© The integer a — bm is smooth (w.r.t some bound B).
= write a — bm as a product of primes (and possibly —1).

© The algebraic integer a — ba too.
= write a — ba as a product of algebraic integers (and
possibly units).

Collect sufficiently many, and combine to make all valuations even!
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Obstructions ?

Even in the simple example of 2F7, we have possible complications.

Norm(202 — 3a + 1) = 51 = 3 x 17,
(202 —3a+1) = (o — 1) x (2a® + o — 1) x unit,

=(a—1)x(20*+a—1)x (—a® +a—1).

The units which appear have to be taken into account.

e Not too frightening for Q(+/2), but problematic for bigger
fields.

© Units are only one of the obstructions encountered.
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Plan

General principle
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NFS as a factoring algorithm

NFS is among the algorithms which search for solutions to:
X?>=Y? mod N,

as a means to factor M.
® For N = pq, such a congruence reveals a non-trivial factor
gcd(X — Y, N) with probability 1/2.
© Several congruences of squares are needed.

e NFS will never factor p?q as p x pq. Always p? x gq.
(but anyway, detecting prime powers is trivial).
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Strategy (1)

Goal: let squares modulo N appear as images of squares in
something else via ring morphisms from two different strutures.

NFS: @ these ring morphisms come from number fields

© usually, we take one of these number fields to be Q.

NFS as a framework also embraces NFS-DL and FFS.
(although we care less about squares in that case).
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Strategy (2)

©(a square somewhere) = a square in Z/NZ.

Fabricating a square in this “somewhere":

© Focus on smooth objects which can be written in factored
form.

© Restrict to those which factor over a factor base (set of
prescribed size).

© Gather sufficiently many.
© Combine in order to build a square (all exponents even).

© Recover the square root of this square.

NFS takes long routes to achieve this.
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Which “somewhere” do we choose?

Consider:

© a number field K = Q(«) defined by f(a) =0,
for f irreducible over Q and degf = d ;

© extra constraint: 3m € Z, f(m) =0 mod N.

Zlo) — Z/NZ,

Thi . . hism:
is provides a ring morphism { a — m mod N.

The pair (f, m) is well suited to factoring N.
Broader NFS terminology refers to (f, g), with g = x — m.
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The GNFS setup

For factoring “general” N, GNFS uses:

© a number field K = Q(«) defined by f(a) =0,
for f irreducible over Q and degf = d ;

© Another irreducible polynomial g such that f and g have a
common root m mod N (example: g = x — m).

g defines the rational side, f defines the algebraic side.

Restating with the resultant

The following restatement can be useful.

f and g share a root modulo N < Res,(f,g) =0 mod N.

Choosing f and g is referred to as the polynomial selection step.

Cours MPRI 2-12-2 11/49



Structures

e f defines K = Q(a) (and the ring Z[a] C K).
© g defines Q, but in a fancy way (and the ring Z[m] C Q).

Ring morphisms (because m is a root of both modulo N):

) Zla) — Z/NzZ, | zim) — Z/nz,
7Y T(a) — T(m)mod N, ¥ t — tmodN.

These morphism are arrows inside a commutative diagram.

Note: having degg > 1 is also allowed (but making up examples is
harder).
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The diagram

Z[x]

XHV X»ﬁa

Z[m] Z[o]

pgit—t modh /@f:ou—>m mod N

Z/NZ,

This diagram commutes.
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Relations in NFS

Z[x]
¢(1):Xb—>m/ \],b(2)ZX'—>Oé
Z[m Zle]
pg:t—t mod NN, pr:ar—m mod N
Z/NZ.

Take for example a — bx in Z[x]. Suppose for a moment that:

© the integer a — bm is smooth: product of factor base primes;

© the algebraic integer a — ba is also a product.

® factors occuring on both sides belong to a small set (factor
base).

NFS collects many such “good pairs” (a, b).
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Collecting relations

Suppose factor bases are: ® {p1,...,pog} (rational),
® {m,...,mo9} (algebraic).

Good pairs could lead to:

a1 — bim = py x p3 X p12 X p2o,

a — bom = py X p3 X pz X paz,

az — bsm = pa X p7 X p12,

a4 — bam = p? x ps x p7 X p22,
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Collecting relations

Suppose factor bases are: ® {p1,...,pog} (rational),
© {7‘(1,...,71’99} (algebraic).
Good pairs could lead to: and at the same time:

3 _ 2 2
ay — bim = pyr X p; X p12 X pa,|a1 — bia = m X w3 X wE X 735,
2 _ 2
ay — bom = p1 X p3 X p5 X pa7, |@2 — bpa = M2 X TG X Moo,

a3 — bsm = pr X p7 X p12, a3 — bzar = T} X T3 X T3 X T35,

6 4
ag — bgm = p; X pg X p7 X p22, |as — bgov =y X W3 X o3,

Mission

Our plan is to have something which is a square on both sides.
NFS intends to achieve this by combining relations.
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Combining relations

a1 — bim = py x p3 X p12 X p2o,
a — bom = p1 X p3 X pz X pa7,
az — bsm = p2 X p7 X p12,

ag — bam = pd x ps x p7 X poo,

al—bloz:m><7r§><7r§><7r357

ag—bza:T('zXﬂ'gXTrzg,

a3—b304—7r% X T3 X 723 X T35,
a4—b40<:7r§L X T3 X T3,

© Find a combination which makes all exponents even.

© Evaluating (a1 — b1x)(a3 — bsx)(as — bax) at both m and «
leads to a square on both sides.

© Apply ¢z and pf: we get a congruence of squares in Z/NZ.
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Combining relations

3 _ 2 2
ay — bim = py X p; X p12 X pajar — bia = m X w3 X 7§ X 735,

2 _ 2
az — bom = p1 X p3 X p5 X paz, [a2 — bpa = T X Tg X Mg,

a3 — bsm = po X p7 X p12, a3 — bsa = m} X T3 X T3 X T35,

6 4
ag — bam = p; X py X p7 X p22, |ag — bgax =y X W3 X 23,
© Find a combination which makes all exponents even.

© Evaluating (a1 — b1x)(a3 — bsx)(as — bax) at both m and «
leads to a square on both sides.

© Apply ¢z and pf: we get a congruence of squares in Z/NZ.

This is too rosy. Z[a] not a UFD. Complications ahead.
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Plan

Another rosy example (skipped)
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Exemple de factorisation par NFS

On s'intéresse a N = 16259 = 16384 — 125 = 16384 — 128 + 3.
On pose:

f(x) =x?>—x+3, m=128, g(x)=x —m.

On a ainsi: f(m) = N et g(m) = 0.
Soit a une racine de f dans C (o = (1 + /—11)).

Z|x]

X—)V X—)a

Z[m] Zlo]

pgit—t modN\\ /gof:a—>m mod N

Z/NZ,
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Nombres premiers dans Z[a]

Coup de chance, Z[«] est un anneau euclidien.
Certains nombres premiers dans Z se factorisent dans Z[a/].
Les nombres premiers de Z[a] sont:

2, 17,
3=ax(l-a), 19,
b=(1+a)x(2—a),| 23={A+a)x(5—a),
7, 20,
11=—(1-2a)?, |31=(4-3a)x(1+3a),
13, 37 = (24 3a) x (5 — 3a),

2

Note: comme a* —a+3=0,onaa=1-«.
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Factoriser des deux cotés

Z[x]
X —m X —
Z[m]/ \Z[a]

pgit—t modN\\ /gpf:oz—>m mod N

Z/NZ,

© On part de a — bx € Z[x].
© On espére avoir a — bm et a — ba simultanément friables.

© Par résolution d'un systeme linéaire, on fabrique un carré de
chaque coté.
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Relations

On veut des nombres premiers inférieurs a3 B = 40.

1—1m=—-127 = -127, 4 —-5m=—636=—22 x 3 x 53,
1-2m=-255=-3x5x17, 5—1m=—123=—3x 41,
1—-3m=—-383 = —383, 5—2m = —251 = —251,
1—4m= —-511= -7 x73, 5—3m= —379 = —379,
1—5m=—639 =—32 x 71, 5 4m= —507 = —3 x 132,
2-1m=-126=-2x3*x7, 6-1m=—122= -2 x 61,
2—3m=-382=—2x 191, 6 —5m=—634=—2 x 317,
2-5m=-638=-2x11x29, 7_1m=_121= 112,
3—1m=—-125= 5% 7—2m= —249 = —3 x 83,
3—-2m=-253 = —11 x 23, 7—3m=—-377=—13 x 29,

3 —4m = —509 = —5009, 7 —4m = —505 = —5 x 101,
3—5m=—637=—7%x13, 7—5m=—633 = -3 x 211,
4—1m= —124 = —2% x 31, 8—1m=—120=—2% x 3 x5,

4—-3m=-380=-22x5x19, 8—3m=—376=—-23x47,
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On ne garde que ce qui est bon

1—2m=-255=-3x5x 17,

2—1m=-126 = -2x32x7,
2—5m=—638=—2x 11 x 29,
3—1m=—125= —53
3—2m= —253 = —11 x 23,

3—5m=—637=—7%x 13,
4—1m=—124 = —22 x 31,

4—3m=—-380=—-22x5x 19,
5—4m = —507 = —3 x 132,
7—1m=—121 = —112,
7—3m=—377 = —13 x 29,
8—1m=—120=—2%3x3 x5,
9—1m=-119=—7 x 17,

9—-2m = —247 = —-13 x 19,
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10 —-3m=-374 = -2 x 11 x 17,
11— 1m=—117 = —32 x 13,

11 —2m = —245 = —5 x 7°,

11 — 5m = —629 = —17 x 37,
12— 1m= —116 = —22 x 29,
13— 1m= —115 = —5 x 23,

13 —2m = —243 = —3°,

13 —5m = —627 = —3 x 11 x 19,
14 —1m=—114 = —2 x 3 x 19,
14 —3m= —370 = —2 x 5 x 37,
16 —1m=—-112=-2*x 7,

16 — 3m = —368 = —2* x 23,

16 — 5m = —624 = —2* x 3 x 13,
17— 1m= —111 = —3 x 37,
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Coté algébrique

On fait pareil.
Pour factoriser a — ba, on commence par calculer la norme:

N(a— ba) = (a— ba)(a — ba) = b8 f(a/b).

En fonction de la factorisation de la norme, on détermine les
facteurs présents.

l-a=(1-aq), 3—2a=—(a)x (1+a),
1—20=(1-2a), 3—da=—(af x(2—a),
1-3a=(2-a), 3—5a=—(a) x (4 + ),
1—4a=(1-0a)*x(1+a), 4—a=(1-a)x(l+a),
1—5a=(1-5a), 4 —3a = (4-3a),
2—a=(2-0a), 4 —5a = (4 —5a),
2-3a=—(1+a)? 5—a=(5-a),
2-5a=(1-a)x(5—a), 520 =—(1-a)
3—a=—(a)? 5—3a=(5-3a),
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Friabilité simultanée

1+43m=5x7x11
1-2m=-3x5x%x17
24+1m=2x5x13
2-1Im=-2x3?x7
2—-5m=-2x11x29
3+2m=7x37
3—1m=-53
3—2m=—11x23
3—5m=-7>x13
445m=2%x7x23
44+1m=2>x3x11
4—1m=-2>x31
4—3m=-22x5x19
54+1Im=7x19
7—1m=-11°
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1+3a=0CBa+1),
1-2a=—-(2a-1),
2+ la
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Trouver un carré

Soit:

p(x) =(2x+3) x (=3x+7) x (« +8) x (—2x +9)

X (—a+14) x (—a+16) x (—a + 17) x (—4x + 19).

p(m) = 28 x 3% x 7% x 132 x 17 x 19% x 292 x 372,
p(a) = (@)* x (—a+1)° x (a+ 1) x (~a +2)°
X (20 — 1) x (=3a + 5)°.
Beaucoup mieux:
p(x) = (7 — x) x (17 + 4x).

Mais dans ce cas, on aurait p(m) = —[1.
Cours MPRI 2-12-2
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This is all cheating

The example above is too easy (on purpose, of course).

The number N comes with an “obvious” f ;

f is chosen so that Z[a] is the maximal order ;
f is monic ;

the unit group of K is {£1} ;

the class group of K is trivial ;

Z|a] is even a euclidean ring (although not even a UFD in
general !);

How does it work in real life (but still for f monic, for clarity) ?
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Plan

Doing it seriously
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NFS

Major obstruction: Z[«] not a UFD.
Outline of the algorithm:

© Do the setup. Choose a factor base bound B ;

P Relation search

Pick pairs a, b for coprime integers a and b ;
© Expect a — bm to be a smooth integer ;

© Expect also the ideal (a — ba) to be smooth ;
© Do some combination work, recover an equality of squares.
Purpose of the next slides: ® How the identity of squares appears ;

© Analysis.

Cours MPRI 2-12-2 28/49



Living in number fields

The subring Z[«] lacks some desired properties.

© The "most Z-like" ring in K is the ring of integers Ok.

© Oy is unfortunately hard to compute in general, but can be
approximated.

© Even Ok lacks unique factorization.

© Instead, try to factor ideals into prime ideals.
© This also implies that Ok is not principal.
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Living in number fields

The subring Z[«] lacks some desired properties.

© The "most Z-like" ring in K is the ring of integers Ok.

© Oy is unfortunately hard to compute in general, but can be
approximated.

© Even Ok lacks unique factorization.

© Instead, try to factor ideals into prime ideals.
© This also implies that Ok is not principal.

Prime ideals in Ok are commonly written e.g. p,q, a, b.
© Most ideals can be written in a simple form:
p=(p,a—r).
© Computing the norm is a first step towards factoring, since:
Norm(ab) = Norm(a) Norm(b).
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Fetching smooth data

Finding a, b such that a — bm is smooth: easily stated.

Finding a, b such that (a — ba))Ok is a smooth ideal:

© When | = pf' - p3¥, we have Norm / = [];(Norm p;)®.
© Look at

Norm((a— ba)Ok) = Norm g(a— ba) = b%E f(a/b) (€ Z).
© If this norm is smooth, then (a — ba)Ok is a smooth ideal.

© Note: because a — ba has degree 1 in «, ideals p are “simple”.

Each pair a, b meeting these conditions yields a relation.

For each relation, we focus on valuations at primes / prime ideals.
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Searching for relations

To search for relations, NFS uses sieving.

Old technique: line sieving.

© Decide on a search space for (a, b) values.
® For each prime p, mark (coprime) (a, b)'s s.t. p|a— bm.
© Only a subset of the search space survives.

© For each prime ideal p, mark p | a — ba.

p:<p7a_r>‘a_ba7

0

a—br=0 mod p.

@ Pairs which survive both sieves yield relations.

All large prime variants allowed.

Cours MPRI 2-12-2 31/49



Lattice sieving

Newer technique: divide the computation into smaller ranges of
interest based on a divisibility condition, e.g. q | (a — ba).

© The set of pairs (a, b) meeting the condition is a Z-lattice.

© Pick a short basis, and take small combinations of the vectors
(e.g. it + jv, for small i,j).

© In (/,j) coordinates, sieve as before.

Lattice sieving is superior because:

© It is more cache-friendly,
@ It can be optimized well,

@ It allows stable yields.

All large prime variants still allowed.
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Linear system

Build a matrix where each row corresponds to an a, b pair.

© First set of columns: valuations (mod2) of a — bm at primes
p < B.
© Second set of columns: valuations (mod2) of (a — ba)Ok at
unramified prime ideals p of norm < B (and residue class
degree 1).
© For simplicity, we completely forget about ramified ideals, and
more generally, all “special ideals” (whose norm is not coprime
to disc K).
© Remaining problem: knowing v,(Normy /g(a — ba)) = v,
determine v, ((a — ba)) for prime ideals above p.

Prop. For a, b coprime, exactly one ideal p above p has
vp((a— b)) = v. This p is the unique ideal (p, @ — r) for which
a—br=0 mod p.
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Linear system

Consider for example the pair a = 61, b =9, for the NFS setup
given by f = x> — 39 and m = 1006. We have:

© a— bm=061—-9x1006=—1x 17 x 23?2 ;
© Normy g(a— ba) =613 —39 x 93 =2 x 5% x 11 x 192,

This yields the valuation vector:
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Nullspace of the relation matrix

The left nullspace yields polynomials R(x) such that:
© R(m) = £0 (because for all p, v,(R(m)) is even) ;

© (R(«)) is a product of special ideals times the square of an
ideal J (for all non-special p, v,((R(c))) is even).
This, however, is not enough:

© We haven't kept track of the sign of R(m) ;

© (R(«)) is not exactly the square of an ideal ;

© Even if it were, while (R(«)) is a principal ideal by
construction, its square root has no reason for being principal ;

© Even assuming we have (R(a)) = (72), this defines y only up
to a unit. The equation to solve is R(a) = %€, and units are
intractable.

© We have no guarantee that v € Z[a].

We know how to handle all this.
Cours MPRI 2-12-2
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Plan

Complexity analysis
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Simplifications for analysis

Some important improvements have no effect on the overall
complexity.

© Polynomial selection.

© Large primes, cofactorization.

© Linear algebra optimizations.

OTOH, sieving does serve to eliminate the per-pair factoring.
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Key figures for complexity analysis

There's one main theorem known as:

© Canfield-Erdés-Pomerance,
@ Construction kit lemma,
© whatever credit people give... (Odlyzko / Balasubramanian)

It's also valid in various contexts.

Canfield-Erd6s-Pomerance (CEP) Theorem

Let x,y — +o0 and € > 0 s.t. (logx)¢ < logy < (logx)!~.
1
~#{n, 1< n<x, nis y-smooth} ~ p(u) = u~“(-e1)
X

where u = :%g—;, and p is the Dickman-de Bruijn function.

A gross estimate for analytic number theorists, but sufficient for us.
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The L function

We introduce:

Ly[a,a] = exp (a(log x)?(log log x)lfa) .

CEP with the L function

A random integer n < Ly[a, a] is Ly[b, B]-smooth with probability:

S [a —b—F(a—b)1+ 0(1))] .
This formulation is very important for analyzing sieve algorithms.
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Calculus with L

Basic formulae with L

Ly[a,a+o(1)] ifa> b,

Li[a,a] x Le[b, 8] = 4 Lu[b,B+o0(1)] ifb> a,
Lyla,ac+ (] if a=b.

Ly[a,a+ o(1)] if a> b,
Ly[a,a] + Li[b, 8] = { Lx[b, 8+ o(1)] if b> a,
Ly[a,max(a, B)] if a=b.

LLX[bﬁ][a, Oé] = Lx[ab, Oéﬁabl_a Sl 0(1)]
Ly[b, B]'8eex X130l = [ [a + b, af].
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Analysis (1)

© Let d = logj,g iy Ln[A, 0] be the number field degree.
The “trivial” polynomial selection yields:

1

ar

® Let S = Ly[s, o] be the bound on the (a, b) pairs.
Then Res(a — bx, f) and Res(a — bx, g) are bounded by:

1

5

m%f,-%Nl/dH:LN[l—A,

S |f| = Ly[s + A, 00] x Ly[1 — A,

Sxm=Luls,0] x Ly[l = A, %].
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Analysis (1)

© Let d = logj,g iy Ln[A, 0] be the number field degree.
The “trivial” polynomial selection yields:

1

ar

® Let S = Ly[s, o] be the bound on the (a, b) pairs.
Then Res(a — bx, f) and Res(a — bx, g) are bounded by:

1

5]7

m%f,-%Nl/dH:LN[l—A,

S9 % || = Lufs + A, 0] x Ly[l — A,

Sxm=Luls,0] x Ly[l = A, %].

Minimize the norms (fix A)
Setl1-A=s+A ie A=175 whencel—A=s+A=21s
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Analysis (1)

© Let d = logj,g iy Ln[A, 0] be the number field degree.
The “trivial” polynomial selection yields:
1
) g]
® Let S = Ly[s, o] be the bound on the (a, b) pairs.
Then Res(a — bx, f) and Res(a — bx, g) are bounded by:

mzfile/dH:LN[l—A

1—|—s 1
A= Ll i+ 2
Sxm= LN[l s (15(1 +o(1))].

Minimize the norms (fix A)
Setl-A=s+Aie. A=52 whencel —-A=s+A=23°
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Analysis (2)

Let B = Ly[b, 5] be the smoothness bound.
© Number of primes / prime ideals: O(B) = Ly[b, 8 + o(1)].
© Smoothness probability:

1+s 1+s
— b —
2 ’ (2

= Lpn| —b);(aé—l—z)—i—o(l)].

o
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Analysis (2)

Let B = Ly[b, 5] be the smoothness bound.

© Number of primes / prime ideals: O(B) = Ly[b, 5 + o(1)].
© Smoothness probability:

1+s 1+s
— b —
2 ’ (2

Optimize the probability so as to fix d

05+§ minimal = 6 = /2/0,

1+ 1 1
==Ly 25 b,—(%—b)ﬁwza].

m=Ly[ —b);(aé—l—;)—i—o(l)].
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Analysis (3)

Let B = Ly[b, 5] be the smoothness bound.

© Number of primes / prime ideals: O(B) = Ly[b, 5 + o(1)].
© Smoothness probability:

1+s 1+s 1
o b - b)52@+ o(1)].

T = Ly|

Cours MPRI 2-12-2 43/49



Analysis (3)

Let B = Ly[b, 5] be the smoothness bound.

© Number of primes / prime ideals: O(B) = Ly[b, 5 + o(1)].
© Smoothness probability:

1+s 1+s
b ("2
2 ’ (2

T = Ly|

m?%w+dm.

© Number of relations obtained: S2r.
© Number of relations needed: O(B).
© Total cost of sieving: O(S?).

© Cost of linear algebra: O(B?).

Equate sieving and linear algebra

S~B=b=s, f=0.
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Analysis (4)

Let B = Ly[b, 5] be the smoothness bound.
© Number of primes / prime ideals: O(B) = Ly[b, 5 + o(1)].
© Smoothness probability:
2 (502 /2/8 + o)
© Number of relations obtained:N(N)(Bzw).
© Number of relations needed: O(B).

TI'ZLN[
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Analysis (4)

Let B = Ly[b, 5] be the smoothness bound.
© Number of primes / prime ideals: O(B) = Ly[b, 8 + o(1)].
© Smoothness probability:
2 (502 /2/8 + o)
© Number of relations obtained:N(N)(BQW).
© Number of relations needed: O(B).

Just enough relations

B?m ~ B, thus 1/m ~ B. Two consequences.

TI'ZLN[

(1-b)/2=b=b=1/3,
== LN[%’ _%23/2\/175+ o(1)l;
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Analysis (4)

Let B = Ly[b, 5] be the smoothness bound.
© Number of primes / prime ideals: O(B) = Ly[b, 8 + o(1)].
© Smoothness probability:

- LN[%, —%23/2\@+ o(1)].

Just enough relations

B?m ~ B, thus 1/m ~ B. Two consequences ; b = 1/3, and:

1
B=32%/1/B,

1
(B/2)*? = 3,

B =2¥9 = 8/9.
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Complexity of NFS

For factoring an integer N, GNFS takes time:
Ln[1/3,(64/9)"/%] = exp ((1 + 0(1))(64/9)"/*(log N)'/*(log log N)*/* ) .

This is sub-exponential.
Note: some special numbers allow for a faster variant NFS, with
complexity

Ln[1/3,(32/9)"/%] = exp (1 + 0(1))(32/9)"/*(log N)"/*(log log N)*/* ) .
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Remarks related to analysis

@ The two norms are Ly[2/3, %] and Ly[2/3, 3 + od].
The algebraic norm is intrisically larger in the GNFS case.

© The 4 steps of the analysis may be done in various orders, but
lead to the same thing.
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The SNFS case

SNFS numbers are those for which a polynomial f exists which
leads to smaller norms than the GNFS.

Example: assuming the right degree, coeffs < Ly[2/3,V/3].

Typical example: Cunnigham numbers

Assume N = 21039 _ 1 A good choice is: ® g = x — 2173,
e f=2x5-1.

Notes:

@ In some cases, f is rather tiny.
© The rational norm may well become the largest one.

© Exceptional Galois groups are no longer exceptional.
(e.g. above: Dg, not S).
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Records with NFS

Current record for GNFS: RSA-768 (2010).
Current record for SNFS: 1024 bits (2007).

NFS variants exist for the discrete logarithm problem.

© In finite fields of small characteristic and large degree.
© In finite fields of large characteristic and small degree.
@ In "balanced” finite fields.

@ Also for some classes of algebraic curves or large genus.
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