Cours MPRI 2-12-2 Lecture 5/5: NFS

(lecturer for part 2/3): E. Thomé

Dec. 17th, 2012

Plan

Teaser: factoring with cubic integers

General principle

Another rosy example (skipped)

Doing it seriously

Complexity analysis

The initial idea

Factoring $F_{7}=2^{128}+1$ was one of the early achievements of CFRAC in the 1970's.
Is there another way ?
Pollard noticed:

$$
2 F_{7}=2^{129}+2=m^{3}+2, \text { with } m=2^{43}
$$

Factoring $2 F_{7}$

We have $2 F_{7}=2^{129}+2=m^{3}+2$, with $m=2^{43}$.
Define the number field $K=\mathbb{Q}(\alpha=\sqrt[3]{-2})$.

- K is one of the textbook examples of number fields.
- The algebraic integers in K are $\mathbb{Z}[\alpha]$. These possess unique factorization. (lucky !)

Assume we have many (a, b) 's such that:

- The integer $a-b m$ is smooth (w.r.t some bound B). \Rightarrow write $a-b m$ as a product of primes (and possibly -1).
- The algebraic integer $a-b \alpha$ too.
\Rightarrow write $a-b \alpha$ as a product of algebraic integers (and possibly units).

Collect sufficiently many, and combine to make all valuations even!

Obstructions ?

Even in the simple example of $2 F_{7}$, we have possible complications.
$\operatorname{Norm}\left(2 \alpha^{2}-3 \alpha+1\right)=51=3 \times 17$,

$$
\begin{aligned}
\left(2 \alpha^{2}-3 \alpha+1\right) & =(\alpha-1) \times\left(2 \alpha^{2}+\alpha-1\right) \times \text { unit } \\
& =(\alpha-1) \times\left(2 \alpha^{2}+\alpha-1\right) \times\left(-\alpha^{2}+\alpha-1\right)
\end{aligned}
$$

The units which appear have to be taken into account.

- Not too frightening for $\mathbb{Q}(\sqrt[3]{2})$, but problematic for bigger fields.
- Units are only one of the obstructions encountered.

Plan

Teaser: factoring with cubic integers

General principle

Another rosy example (skipped)

Doing it seriously

Complexity analysis

NFS as a factoring algorithm

NFS is among the algorithms which search for solutions to:

$$
X^{2} \equiv Y^{2} \quad \bmod N
$$

as a means to factor N.

- For $N=p q$, such a congruence reveals a non-trivial factor $\operatorname{gcd}(X-Y, N)$ with probability $1 / 2$.
- Several congruences of squares are needed.
- NFS will never factor $p^{2} q$ as $p \times p q$. Always $p^{2} \times q$. (but anyway, detecting prime powers is trivial).

Strategy (1)

Goal: let squares modulo N appear as images of squares in something else via ring morphisms from two different strutures.

NFS: © these ring morphisms come from number fields

- usually, we take one of these number fields to be \mathbb{Q}.

NFS as a framework also embraces NFS-DL and FFS. (although we care less about squares in that case).

Strategy (2)

$$
\varphi(\text { a square somewhere })=\text { a square in } \mathbb{Z} / N \mathbb{Z} .
$$

Fabricating a square in this "somewhere":

- Focus on smooth objects which can be written in factored form.
- Restrict to those which factor over a factor base (set of prescribed size).
- Gather sufficiently many.
- Combine in order to build a square (all exponents even).
- Recover the square root of this square.

NFS takes long routes to achieve this.

Which "somewhere" do we choose?

Consider:

- a number field $K=\mathbb{Q}(\alpha)$ defined by $f(\alpha)=0$, for f irreducible over \mathbb{Q} and $\operatorname{deg} f=d$;
- extra constraint: $\exists m \in \mathbb{Z}, f(m) \equiv 0 \bmod N$.

This provides a ring morphism: $\left\{\begin{aligned} \mathbb{Z}[\alpha] & \rightarrow \mathbb{Z} / N \mathbb{Z}, \\ \alpha & \mapsto m \bmod N .\end{aligned}\right.$
The pair (f, m) is well suited to factoring N.
Broader NFS terminology refers to (f, g), with $g=x-m$.

The GNFS setup

For factoring "general" N, GNFS uses:

- a number field $K=\mathbb{Q}(\alpha)$ defined by $f(\alpha)=0$, for f irreducible over \mathbb{Q} and $\operatorname{deg} f=d$;
- Another irreducible polynomial g such that f and g have a common root $m \bmod N$ (example: $g=x-m)$.
g defines the rational side, f defines the algebraic side.

Restating with the resultant

The following restatement can be useful.
f and g share a root modulo $N \Leftrightarrow \operatorname{Res}_{x}(f, g)=0 \bmod N$.

Choosing f and g is referred to as the polynomial selection step.

Structures

- f defines $K=\mathbb{Q}(\alpha)$ (and the ring $\mathbb{Z}[\alpha] \subset K$).
- g defines \mathbb{Q}, but in a fancy way (and the ring $\mathbb{Z}[m] \subset \mathbb{Q}$).

Ring morphisms (because m is a root of both modulo N):
$\varphi_{f}:\left\{\begin{aligned} \mathbb{Z}[\alpha] & \rightarrow \mathbb{Z} / N \mathbb{Z}, \\ T(\alpha) & \mapsto T(m) \bmod N, \quad \varphi_{g}:\left\{\begin{array}{rl}\mathbb{Z}[m] & \rightarrow \mathbb{Z} / N \mathbb{Z}, \\ t & \mapsto t \bmod N .\end{array} . . \begin{array}{rl} & \mapsto\end{array}\right) .\end{aligned}\right.$
These morphism are arrows inside a commutative diagram.

Note: having $\operatorname{deg} g>1$ is also allowed (but making up examples is harder).

The diagram

This diagram commutes.

Relations in NFS

$$
\begin{gathered}
\psi^{(1)}: x \mapsto m \swarrow \quad \underset{\mathbb{Z}[x]}{\mathbb{Z}[m]} \quad \mathbb{Z}(2): x \mapsto \alpha \\
\varphi_{g}: t \mapsto t \bmod N \underbrace{}_{\mathbb{Z} / N \mathbb{Z}} \quad \swarrow \varphi_{f}: \alpha \mapsto m \bmod N
\end{gathered}
$$

Take for example $a-b x$ in $\mathbb{Z}[x]$. Suppose for a moment that:

- the integer $a-b m$ is smooth: product of factor base primes;
- the algebraic integer $a-b \alpha$ is also a product.
- factors occuring on both sides belong to a small set (factor base).

NFS collects many such "good pairs" (a, b).

Collecting relations

Suppose factor bases are: $\bullet\left\{p_{1}, \ldots, p_{99}\right\}$ (rational),

- $\left\{\pi_{1}, \ldots, \pi_{99}\right\}$ (algebraic).

Good pairs could lead to:

$$
\begin{aligned}
& a_{1}-b_{1} m=p_{2} \times p_{4}^{3} \times p_{12} \times p_{22}, \\
& a_{2}-b_{2} m=p_{1} \times p_{3} \times p_{5}^{2} \times p_{47}, \\
& a_{3}-b_{3} m=p_{2} \times p_{7} \times p_{12}, \\
& a_{4}-b_{4} m=p_{1}^{6} \times p_{4} \times p_{7} \times p_{22},
\end{aligned}
$$

Collecting relations

Suppose factor bases are: $-\left\{p_{1}, \ldots, p_{99}\right\}$ (rational),

- $\left\{\pi_{1}, \ldots, \pi_{99}\right\}$ (algebraic).

Good pairs could lead to:
and at the same time:
$a_{1}-b_{1} m=p_{2} \times p_{4}^{3} \times p_{12} \times p_{22}, a_{1}-b_{1} \alpha=\pi_{1} \times \pi_{3}^{2} \times \pi_{6}^{2} \times \pi_{35}$,
$a_{2}-b_{2} m=p_{1} \times p_{3} \times p_{5}^{2} \times p_{47}, \quad a_{2}-b_{2} \alpha=\pi_{2} \times \pi_{8}^{2} \times \pi_{29}$,
$a_{3}-b_{3} m=p_{2} \times p_{7} \times p_{12}, \quad a_{3}-b_{3} \alpha=\pi_{1}^{3} \times \pi_{3} \times \pi_{23} \times \pi_{35}$,
$a_{4}-b_{4} m=p_{1}^{6} \times p_{4} \times p_{7} \times p_{22}, \quad a_{4}-b_{4} \alpha=\pi_{2}^{4} \times \pi_{3} \times \pi_{23}$,

Mission

Our plan is to have something which is a square on both sides. NFS intends to achieve this by combining relations.

Combining relations

$$
\begin{array}{l|l}
a_{1}-b_{1} m=p_{2} \times p_{4}^{3} \times p_{12} \times p_{22}, \\
a_{2}-b_{2} m=p_{1} \times p_{3} \times p_{5}^{2} \times p_{47}, & a_{1}-b_{1} \alpha=\pi_{1} \times \pi_{3}^{2} \times \pi_{6}^{2} \times \pi_{35} \\
a_{3}-b_{3} m=p_{2} \times p_{7} \times p_{12}, & a_{2}=\pi_{2} \times \pi_{8}^{2} \times \pi_{29} \\
a_{4}-b_{4} m=b_{1}^{6} \times p_{4} \times p_{7} \times p_{22}, & a_{3}-b_{4} \alpha=\pi_{2}^{3} \times \pi_{3} \times \pi_{23} \times \pi_{35} \times \pi_{23}
\end{array}
$$

- Find a combination which makes all exponents even.
- Evaluating $\left(a_{1}-b_{1} x\right)\left(a_{3}-b_{3} x\right)\left(a_{4}-b_{4} x\right)$ at both m and α leads to a square on both sides.
- Apply φ_{g} and φ_{f} : we get a congruence of squares in $\mathbb{Z} / N \mathbb{Z}$.

Combining relations

$$
\begin{array}{l|l}
a_{1}-b_{1} m=p_{2} \times p_{4}^{3} \times p_{12} \times p_{22}, & a_{1}-b_{1} \alpha=\pi_{1} \times \pi_{3}^{2} \times \pi_{6}^{2} \times \pi_{35}, \\
a_{2}-b_{2} m=p_{1} \times p_{3} \times p_{5}^{2} \times p_{47}, & a_{2}-b_{2} \alpha=\pi_{2} \times \pi_{8}^{2} \times \pi_{29}, \\
a_{3}-b_{3} m=p_{2} \times p_{7} \times p_{12}, & a_{3}-b_{3} \alpha=\pi_{1}^{3} \times \pi_{3} \times \pi_{23} \times \pi_{35}, \\
a_{4}-b_{4} m=p_{1}^{6} \times p_{4} \times p_{7} \times p_{22}, & a_{4}-b_{4} \alpha=\pi_{2}^{4} \times \pi_{3} \times \pi_{23},
\end{array}
$$

- Find a combination which makes all exponents even.
- Evaluating $\left(a_{1}-b_{1} x\right)\left(a_{3}-b_{3} x\right)\left(a_{4}-b_{4} x\right)$ at both m and α leads to a square on both sides.
- Apply φ_{g} and φ_{f} : we get a congruence of squares in $\mathbb{Z} / N \mathbb{Z}$.

Caveat

This is too rosy. $\mathbb{Z}[\alpha]$ not a UFD. Complications ahead.

Plan

Teaser: factoring with cubic integers

General principle

Another rosy example (skipped)

Doing it seriously

Complexity analysis

Exemple de factorisation par NFS

On s'intéresse à $N=16259=16384-125=16384-128+3$. On pose:

$$
f(x)=x^{2}-x+3, m=128, g(x)=x-m
$$

On a ainsi: $f(m)=N$ et $g(m)=0$. Soit α une racine de f dans $\mathbb{C}\left(\alpha=\frac{1}{2}(1+\sqrt{-11})\right)$.

Nombres premiers dans $\mathbb{Z}[\alpha]$

Coup de chance, $\mathbb{Z}[\alpha]$ est un anneau euclidien.
Certains nombres premiers dans \mathbb{Z} se factorisent dans $\mathbb{Z}[\alpha]$. Les nombres premiers de $\mathbb{Z}[\alpha]$ sont:

$$
\begin{array}{c|c}
2, & 17, \\
3=\alpha \times(1-\alpha), & 19, \\
5=(1+\alpha) \times(2-\alpha), & 23=(4+\alpha) \times(5-\alpha), \\
7, & 29, \\
11=-(1-2 \alpha)^{2}, & 31=(4-3 \alpha) \times(1+3 \alpha), \\
13, & 37=(2+3 \alpha) \times(5-3 \alpha),
\end{array}
$$

Note: comme $\alpha^{2}-\alpha+3=0$, on a $\bar{\alpha}=1-\alpha$.

Factoriser des deux côtés

$$
\varphi_{g}: t \rightarrow t \bmod N \underbrace{\mathbb{Z}[m]}_{\mathbb{Z} / N \mathbb{Z}} \varphi_{f}: \alpha \rightarrow m \bmod N
$$

- On part de $a-b x \in \mathbb{Z}[x]$.
- On espère avoir $a-b m$ et $a-b \alpha$ simultanément friables.
- Par résolution d'un système linéaire, on fabrique un carré de chaque côté.

Relations

On veut des nombres premiers inférieurs à $B=40$.

$$
\begin{array}{ll}
1-1 m=-127=-127, & 4-5 m=-636=-2^{2} \times 3 \times 53, \\
1-2 m=-255=-3 \times 5 \times 17, & 5-1 m=-123=-3 \times 41, \\
1-3 m=-383=-383, & 5-2 m=-251=-251, \\
1-4 m=-511=-7 \times 73, & 5-3 m=-379=-379, \\
1-5 m=-639=-3^{2} \times 71, & 5-4 m=-507=-3 \times 13^{2}, \\
2-1 m=-126=-2 \times 3^{2} \times 7, & 6-1 m=-122=-2 \times 61, \\
2-3 m=-382=-2 \times 191, & 6-5 m=-634=-2 \times 317, \\
2-5 m=-638=-2 \times 11 \times 29, & 7-1 m=-121=-11^{2}, \\
3-1 m=-125=-5^{3}, & 7-2 m=-249=-3 \times 83, \\
3-2 m=-253=-11 \times 23, & 7-3 m=-377=-13 \times 29, \\
3-4 m=-509=-509, & 7-4 m=-505=-5 \times 101, \\
3-5 m=-637=-7^{2} \times 13, & 7-5 m=-633=-3 \times 211, \\
4-1 m=-124=-2^{2} \times 31, & 8-1 m=-120=-2^{3} \times 3 \times 5, \\
4-3 m=-380=-2^{2} \times 5 \times 19, & 8-3 m=-376=-2^{3} \times 47,
\end{array}
$$

On ne garde que ce qui est bon

$$
\begin{array}{ll}
1-2 m=-255=-3 \times 5 \times 17, & 10-3 m=-374=-2 \times 11 \times 17, \\
2-1 m=-126=-2 \times 3^{2} \times 7, & 11-1 m=-117=-3^{2} \times 13, \\
2-5 m=-638=-2 \times 11 \times 29, & 11-2 m=-245=-5 \times 7^{2}, \\
3-1 m=-125=-5^{3}, & 11-5 m=-629=-17 \times 37, \\
3-2 m=-253=-11 \times 23, & 12-1 m=-116=-2^{2} \times 29, \\
3-5 m=-637=-7^{2} \times 13, & 13-1 m=-115=-5 \times 23, \\
4-1 m=-124=-2^{2} \times 31, & 13-2 m=-243=-3^{5}, \\
4-3 m=-380=-2^{2} \times 5 \times 19, & 13-5 m=-627=-3 \times 11 \times 19, \\
5-4 m=-507=-3 \times 13^{2}, & 14-1 m=-114=-2 \times 3 \times 19, \\
7-1 m=-121=-11^{2}, & 14-3 m=-370=-2 \times 5 \times 37, \\
7-3 m=-377=-13 \times 29, & 16-1 m=-112=-2^{4} \times 7, \\
8-1 m=-120=-2^{3} \times 3 \times 5, & 16-3 m=-368=-2^{4} \times 23, \\
9-1 m=-119=-7 \times 17, & 16-5 m=-624=-2^{4} \times 3 \times 13, \\
9-2 m=-247=-13 \times 19, & 17-1 m=-111=-3 \times 37,
\end{array}
$$

Côté algébrique

On fait pareil.
Pour factoriser $a-b \alpha$, on commence par calculer la norme:

$$
N(a-b \alpha)=(a-b \alpha)(a-b \bar{\alpha})=b^{\operatorname{deg} f} f(a / b)
$$

En fonction de la factorisation de la norme, on détermine les facteurs présents.

$$
\begin{aligned}
1-\alpha & =(1-\alpha), & 3-2 \alpha & =-(\alpha) \times(1+\alpha), \\
1-2 \alpha & =(1-2 \alpha), & 3-4 \alpha & =-(\alpha)^{2} \times(2-\alpha), \\
1-3 \alpha & =(2-\alpha)^{2}, & 3-5 \alpha & =-(\alpha) \times(4+\alpha), \\
1-4 \alpha & =(1-\alpha)^{2} \times(1+\alpha), & 4-\alpha & =(1-\alpha) \times(1+\alpha), \\
1-5 \alpha & =(1-5 \alpha), & 4-3 \alpha & =(4-3 \alpha), \\
2-\alpha & =(2-\alpha), & 4-5 \alpha & =(4-5 \alpha), \\
2-3 \alpha & =-(1+\alpha)^{2}, & 5-\alpha & =(5-\alpha), \\
2-5 \alpha & =(1-\alpha) \times(5-\alpha), & 5-2 \alpha & =-(1-\alpha)^{3}, \\
3-\alpha & =-(\alpha)^{2}, & 5-3 \alpha & =(5-3 \alpha),
\end{aligned}
$$

Friabilité simultanée

$$
\begin{array}{rl}
1+3 m=5 \times 7 \times 11 & 1+3 \alpha=(3 \alpha+1) \\
1-2 m=-3 \times 5 \times 17 & 1-2 \alpha=-(2 \alpha-1) \\
2+1 m=2 \times 5 \times 13 & 2+1 \alpha=-(-\alpha+1)^{2} \\
2-1 m=-2 \times 3^{2} \times 7 & 2-1 \alpha=(-\alpha+2), \\
2-5 m=-2 \times 11 \times 29 & 2-5 \alpha=(-\alpha+1) \times(-\alpha+5), \\
3+2 m=7 \times 37 & 3+2 \alpha=-(\alpha)^{3}, \\
3-1 m=-5^{3} & 3-1 \alpha=-(\alpha)^{2}, \\
3-2 m=-11 \times 23 & 3-2 \alpha=-(\alpha) \times(\alpha+1), \\
3-5 m=-7^{2} \times 13 & 3-5 \alpha=-(\alpha) \times(\alpha+4), \\
4+5 m=2^{2} \times 7 \times 23 & 4+5 \alpha=-(-\alpha+1) \times(-3 \alpha+5), \\
4+1 m=2^{2} \times 3 \times 11 & 4+1 \alpha=(\alpha+4), \\
4-1 m=-2^{2} \times 31 & 4-1 \alpha=(-\alpha+1) \times(\alpha+1) \\
4-3 m=-2^{2} \times 5 \times 19 & 4-3 \alpha=(-3 \alpha+4) \\
5+1 m=7 \times 19 & 5+1 \alpha=(-\alpha+1) \times(2 \alpha-1) \\
7-1 m=-11^{2} & 7-1 \alpha=-(-\alpha+1)^{2} \times(-\alpha+2)
\end{array}
$$

Trouver un carré

Soit:

$$
\begin{aligned}
p(x) & =(2 x+3) \times(-3 x+7) \times(\alpha+8) \times(-2 x+9) \\
& \times(-\alpha+14) \times(-\alpha+16) \times(-\alpha+17) \times(-4 x+19) .
\end{aligned}
$$

On a

$$
\begin{aligned}
p(m) & =2^{8} \times 3^{2} \times 7^{2} \times 13^{2} \times 17^{2} \times 19^{2} \times 29^{2} \times 37^{2}, \\
p(\alpha) & =(\alpha)^{4} \times(-\alpha+1)^{8} \times(\alpha+1)^{2} \times(-\alpha+2)^{6} \\
& \times(2 \alpha-1)^{2} \times(-3 \alpha+5)^{2} .
\end{aligned}
$$

Beaucoup mieux:

$$
p(x)=(7-x) \times(17+4 x)
$$

Mais dans ce cas, on aurait $p(m)=-\square$.

This is all cheating

The example above is too easy (on purpose, of course).

- The number N comes with an "obvious" f;
- f is chosen so that $\mathbb{Z}[\alpha]$ is the maximal order ;
- f is monic;
- the unit group of K is $\{ \pm 1\}$;
- the class group of K is trivial ;
- $\mathbb{Z}[\alpha]$ is even a euclidean ring (although not even a UFD in general !);

How does it work in real life (but still for f monic, for clarity) ?

Plan

Teaser: factoring with cubic integers

General principle

Another rosy example (skipped)

Doing it seriously

Complexity analysis

NFS

Major obstruction: $\mathbb{Z}[\alpha]$ not a UFD.
Outline of the algorithm:

- Do the setup. Choose a factor base bound B;
- Relation search

Pick pairs a, b for coprime integers a and b;

- Expect $a-b m$ to be a smooth integer ;
- Expect also the ideal $(a-b \alpha)$ to be smooth ;
- Do some combination work, recover an equality of squares.

Purpose of the next slides: How the identity of squares appears ;

- Analysis.

Living in number fields

The subring $\mathbb{Z}[\alpha]$ lacks some desired properties.

- The "most \mathbb{Z}-like" ring in K is the ring of integers \mathcal{O}_{K}.
- \mathcal{O}_{K} is unfortunately hard to compute in general, but can be approximated.
- Even \mathcal{O}_{K} lacks unique factorization.
- Instead, try to factor ideals into prime ideals.
- This also implies that \mathcal{O}_{K} is not principal.

Living in number fields

The subring $\mathbb{Z}[\alpha]$ lacks some desired properties.

- The "most \mathbb{Z}-like" ring in K is the ring of integers \mathcal{O}_{K}.
- \mathcal{O}_{K} is unfortunately hard to compute in general, but can be approximated.
- Even \mathcal{O}_{K} lacks unique factorization.
- Instead, try to factor ideals into prime ideals.
- This also implies that \mathcal{O}_{K} is not principal.

Prime ideals in \mathcal{O}_{K} are commonly written e.g. $\mathfrak{p}, \mathfrak{q}, \mathfrak{a}, \mathfrak{b}$.

- Most ideals can be written in a simple form:

$$
\mathfrak{p}=\langle p, \alpha-r\rangle .
$$

- Computing the norm is a first step towards factoring, since:

$$
\operatorname{Norm}(\mathfrak{a b})=\operatorname{Norm}(\mathfrak{a}) \operatorname{Norm}(\mathfrak{b})
$$

Fetching smooth data

Finding a, b such that $a-b m$ is smooth: easily stated.

Finding a, b such that $(a-b \alpha) \mathcal{O}_{K}$ is a smooth ideal:

- When $I=\mathfrak{p}_{1}^{e_{1}} \cdots \mathfrak{p}_{k}^{e_{k}}$, we have Norm $I=\prod_{i}\left(\operatorname{Norm} \mathfrak{p}_{i}\right)^{e_{i}}$.
- Look at
$\operatorname{Norm}\left((a-b \alpha) \mathcal{O}_{K}\right)=\operatorname{Norm}_{K / \mathbb{Q}}(a-b \alpha)=b^{\operatorname{deg} f} f(a / b)(\in \mathbb{Z})$.
- If this norm is smooth, then $(a-b \alpha) \mathcal{O}_{K}$ is a smooth ideal.
- Note: because $a-b \alpha$ has degree 1 in α, ideals \mathfrak{p} are "simple".

Each pair a, b meeting these conditions yields a relation.
For each relation, we focus on valuations at primes / prime ideals.

Searching for relations

To search for relations, NFS uses sieving.
Old technique: line sieving.

- Decide on a search space for (a, b) values.
- For each prime p, mark (coprime) (a, b) 's s.t. $p \mid a-b m$.
- Only a subset of the search space survives.
- For each prime ideal \mathfrak{p}, mark $\mathfrak{p} \mid a-b \alpha$.

$$
\begin{gathered}
\mathfrak{p}=\langle p, \alpha-r\rangle \mid a-b \alpha, \\
\mathfrak{\Downarrow} \\
a-b r \equiv 0 \bmod p .
\end{gathered}
$$

- Pairs which survive both sieves yield relations.

All large prime variants allowed.

Lattice sieving

Newer technique: divide the computation into smaller ranges of interest based on a divisibility condition, e.g. $\mathfrak{q} \mid(a-b \alpha)$.

- The set of pairs (a, b) meeting the condition is a \mathbb{Z}-lattice.
- Pick a short basis, and take small combinations of the vectors (e.g. $i \vec{u}+j \vec{v}$, for small i, j).
- In (i, j) coordinates, sieve as before.

Lattice sieving is superior because:

- It is more cache-friendly,
- It can be optimized well,
- It allows stable yields.

All large prime variants still allowed.

Linear system

Build a matrix where each row corresponds to an a, b pair.

- First set of columns: valuations $(\bmod 2)$ of $a-b m$ at primes $p<B$.
- Second set of columns: valuations $(\bmod 2)$ of $(a-b \alpha) \mathcal{O}_{K}$ at unramified prime ideals \mathfrak{p} of norm $<B$ (and residue class degree 1).
- For simplicity, we completely forget about ramified ideals, and more generally, all "special ideals" (whose norm is not coprime to disc K).
- Remaining problem: knowing $\nu_{p}\left(\operatorname{Norm}_{K / \mathbb{Q}}(a-b \alpha)\right)=v$, determine $\nu_{\mathfrak{p}}((a-b \alpha))$ for prime ideals above \mathfrak{p}.

Prop. For a, b coprime, exactly one ideal \mathfrak{p} above p has $\nu_{\mathfrak{p}}((a-b \alpha))=v$. This \mathfrak{p} is the unique ideal $(p, \alpha-r)$ for which $a-b r \equiv 0 \bmod p$.

Linear system

Consider for example the pair $a=61, b=9$, for the NFS setup given by $f=x^{3}-39$ and $m=1006$. We have:

- $a-b m=61-9 \times 1006=-1 \times 17 \times 23^{2}$;
- $\operatorname{Norm}_{K / \mathbb{Q}}(a-b \alpha)=61^{3}-39 \times 9^{3}=2 \times 5^{2} \times 11 \times 19^{2}$.

This yields the valuation vector:

Nullspace of the relation matrix

The left nullspace yields polynomials $R(x)$ such that:

- $R(m)= \pm \square$ (because for all $p, \nu_{p}(R(m))$ is even) ;
- $(R(\alpha))$ is a product of special ideals times the square of an ideal J (for all non-special $\mathfrak{p}, \nu_{\mathfrak{p}}((R(\alpha)))$ is even).

This, however, is not enough:

- We haven't kept track of the sign of $R(m)$;
- ($R(\alpha))$ is not exactly the square of an ideal ;
- Even if it were, while $(R(\alpha))$ is a principal ideal by construction, its square root has no reason for being principal ;
- Even assuming we have $(R(\alpha))=\left(\gamma^{2}\right)$, this defines γ only up to a unit. The equation to solve is $R(\alpha)=\gamma^{2} \epsilon$, and units are intractable.
- We have no guarantee that $\gamma \in \mathbb{Z}[\alpha]$.

We know how to handle all this.

Plan

Teaser: factoring with cubic integers

General principle

Another rosy example (skipped)

Doing it seriously

Complexity analysis

Simplifications for analysis

Some important improvements have no effect on the overall complexity.

- Polynomial selection.
- Large primes, cofactorization.
- Linear algebra optimizations.

OTOH, sieving does serve to eliminate the per-pair factoring.

Key figures for complexity analysis

There's one main theorem known as:

- Canfield-Erdős-Pomerance,
- Construction kit lemma,
- whatever credit people give... (Odlyzko / Balasubramanian)

It's also valid in various contexts.

Canfield-Erdős-Pomerance (CEP) Theorem

Let $x, y \rightarrow+\infty$ and $\epsilon>0$ s.t. $(\log x)^{\epsilon}<\log y<(\log x)^{1-\epsilon}$.

$$
\frac{1}{x} \#\{n, 1 \leq n \leq x, n \text { is } y \text {-smooth }\} \sim \rho(u)=u^{-u(1+o(1))}
$$

where $u=\frac{\log x}{\log y}$, and ρ is the Dickman-de Bruijn function.
A gross estimate for analytic number theorists, but sufficient for us.

The L function

We introduce:

$$
L_{x}[a, \alpha]=\exp \left(\alpha(\log x)^{a}(\log \log x)^{1-a}\right) .
$$

CEP with the L function

A random integer $n \leq L_{x}[a, \alpha]$ is $L_{x}[b, \beta]$-smooth with probability:

$$
\pi=L_{x}\left[a-b,-\frac{\alpha}{\beta}(a-b)(1+o(1))\right] .
$$

This formulation is very important for analyzing sieve algorithms.

Calculus with L

Basic formulae with L

$$
\begin{aligned}
& L_{x}[a, \alpha] \times L_{x}[b, \beta]= \begin{cases}L_{x}[a, \alpha+o(1)] & \text { if } a>b, \\
L_{x}[b, \beta+o(1)] & \text { if } b>a, \\
L_{x}[a, \alpha+\beta] & \text { if } a=b .\end{cases} \\
& L_{x}[a, \alpha]+L_{x}[b, \beta]= \begin{cases}L_{x}[a, \alpha+o(1)] & \text { if } a>b, \\
L_{x}[b, \beta+o(1)] & \text { if } b>a, \\
L_{x}[a, \max (\alpha, \beta)] & \text { if } a=b .\end{cases} \\
& L_{L_{x}[b, \beta]}[a, \alpha]=L_{x}\left[a b, \alpha \beta^{a} b^{1-a}+o(1)\right] . \\
& L_{x}[b, \beta]^{\log _{\log x} L_{x}[a, \alpha]}=L_{x}[a+b, \alpha \beta] .
\end{aligned}
$$

Analysis (1)

- Let $d=\log _{\log N} L_{N}[\Delta, \delta]$ be the number field degree. The "trivial" polynomial selection yields:

$$
m \approx f_{i} \approx N^{1 / d+1}=L_{N}\left[1-\Delta, \frac{1}{d}\right]
$$

- Let $S=L_{N}[s, \sigma]$ be the bound on the (a, b) pairs. Then $\operatorname{Res}(a-b x, f)$ and $\operatorname{Res}(a-b x, g)$ are bounded by:

$$
\begin{aligned}
S^{d} \times\|f\| & =L_{N}[s+\Delta, \sigma \delta] \times L_{N}\left[1-\Delta, \frac{1}{\delta}\right] \\
S \times m & =L_{N}[s, \sigma] \times L_{N}\left[1-\Delta, \frac{1}{\delta}\right]
\end{aligned}
$$

Analysis (1)

- Let $d=\log _{\log N} L_{N}[\Delta, \delta]$ be the number field degree. The "trivial" polynomial selection yields:

$$
m \approx f_{i} \approx N^{1 / d+1}=L_{N}\left[1-\Delta, \frac{1}{d}\right]
$$

- Let $S=L_{N}[s, \sigma]$ be the bound on the (a, b) pairs. Then $\operatorname{Res}(a-b x, f)$ and $\operatorname{Res}(a-b x, g)$ are bounded by:

$$
\begin{aligned}
S^{d} \times\|f\| & =L_{N}[s+\Delta, \sigma \delta] \times L_{N}\left[1-\Delta, \frac{1}{\delta}\right] \\
S \times m & =L_{N}[s, \sigma] \times L_{N}\left[1-\Delta, \frac{1}{\delta}\right] .
\end{aligned}
$$

Minimize the norms (fix Δ)

Set $1-\Delta=s+\Delta$, i.e. $\Delta=\frac{1-s}{2}$, whence $1-\Delta=s+\Delta=\frac{1+s}{2}$.

Analysis (1)

- Let $d=\log _{\log N} L_{N}[\Delta, \delta]$ be the number field degree. The "trivial" polynomial selection yields:

$$
m \approx f_{i} \approx N^{1 / d+1}=L_{N}\left[1-\Delta, \frac{1}{d}\right]
$$

- Let $S=L_{N}[s, \sigma]$ be the bound on the (a, b) pairs. Then $\operatorname{Res}(a-b x, f)$ and $\operatorname{Res}(a-b x, g)$ are bounded by:

$$
\begin{aligned}
S^{d} \times\|f\| & =L_{N}\left[\frac{1+s}{2}, \sigma \delta+\frac{1}{\delta}\right] \\
S \times m & =L_{N}\left[\frac{1+s}{2}, \frac{1}{\delta}(1+o(1))\right]
\end{aligned}
$$

Minimize the norms (fix Δ)

Set $1-\Delta=s+\Delta$, i.e. $\Delta=\frac{1-s}{2}$, whence $1-\Delta=s+\Delta=\frac{1+s}{2}$.

Analysis (2)

Let $B=L_{N}[b, \beta]$ be the smoothness bound.

- Number of primes / prime ideals: $\widetilde{O}(B)=L_{N}[b, \beta+o(1)]$.
- Smoothness probability:

$$
\pi=L_{N}\left[\frac{1+s}{2}-b,-\left(\frac{1+s}{2}-b\right) \frac{1}{\beta}\left(\sigma \delta+\frac{2}{\delta}\right)+o(1)\right]
$$

Analysis (2)

Let $B=L_{N}[b, \beta]$ be the smoothness bound.

- Number of primes / prime ideals: $\widetilde{O}(B)=L_{N}[b, \beta+o(1)]$.
- Smoothness probability:

$$
\pi=L_{N}\left[\frac{1+s}{2}-b,-\left(\frac{1+s}{2}-b\right) \frac{1}{\beta}\left(\sigma \delta+\frac{2}{\delta}\right)+o(1)\right]
$$

Optimize the probability so as to fix δ

$$
\begin{aligned}
\sigma \delta+\frac{2}{\delta} \text { minimal } & \Rightarrow \delta=\sqrt{2 / \sigma} \\
& \Rightarrow \pi=L_{N}\left[\frac{1+s}{2}-b,-\left(\frac{1+s}{2}-b\right) \frac{1}{\beta} 2 \sqrt{2 \sigma}\right]
\end{aligned}
$$

Analysis (3)

Let $B=L_{N}[b, \beta]$ be the smoothness bound.

- Number of primes / prime ideals: $\widetilde{O}(B)=L_{N}[b, \beta+o(1)]$.
- Smoothness probability:

$$
\pi=L_{N}\left[\frac{1+s}{2}-b,-\left(\frac{1+s}{2}-b\right) \frac{1}{\beta} 2 \sqrt{2 \sigma}+o(1)\right]
$$

Analysis (3)

Let $B=L_{N}[b, \beta]$ be the smoothness bound.

- Number of primes / prime ideals: $\widetilde{O}(B)=L_{N}[b, \beta+o(1)]$.
- Smoothness probability:

$$
\pi=L_{N}\left[\frac{1+s}{2}-b,-\left(\frac{1+s}{2}-b\right) \frac{1}{\beta} 2 \sqrt{2 \sigma}+o(1)\right]
$$

- Number of relations obtained: $S^{2} \pi$.
- Number of relations needed: $\widetilde{O}(B)$.
- Total cost of sieving: $O\left(S^{2}\right)$.
- Cost of linear algebra: $O\left(B^{2}\right)$.

Equate sieving and linear algebra

$$
S \approx B \Rightarrow b=s, \beta=\sigma
$$

Analysis (4)

Let $B=L_{N}[b, \beta]$ be the smoothness bound.

- Number of primes / prime ideals: $\widetilde{O}(B)=L_{N}[b, \beta+o(1)]$.
- Smoothness probability:

$$
\pi=L_{N}\left[\frac{1-b}{2},-\left(\frac{1-b}{2}\right) 2 \sqrt{2 / \beta}+o(1)\right] .
$$

- Number of relations obtained: $\widetilde{O}\left(B^{2} \pi\right)$.
- Number of relations needed: $\widetilde{O}(B)$.

Analysis (4)

Let $B=L_{N}[b, \beta]$ be the smoothness bound.

- Number of primes / prime ideals: $\widetilde{O}(B)=L_{N}[b, \beta+o(1)]$.
- Smoothness probability:

$$
\pi=L_{N}\left[\frac{1-b}{2},-\left(\frac{1-b}{2}\right) 2 \sqrt{2 / \beta}+o(1)\right]
$$

- Number of relations obtained: $\widetilde{O}\left(B^{2} \pi\right)$.
- Number of relations needed: $\widetilde{O}(B)$.

Just enough relations

$B^{2} \pi \approx B$, thus $1 / \pi \approx B$. Two consequences.

$$
\begin{aligned}
(1-b) / 2=b & \Rightarrow b=1 / 3 \\
& \Rightarrow \pi=L_{N}\left[\frac{1}{3},-\frac{1}{3} 2^{3 / 2} \sqrt{1 / \beta}+o(1)\right]
\end{aligned}
$$

Analysis (4)

Let $B=L_{N}[b, \beta]$ be the smoothness bound.

- Number of primes / prime ideals: $\widetilde{O}(B)=L_{N}[b, \beta+o(1)]$.
- Smoothness probability:

$$
\pi=L_{N}\left[\frac{1}{3},-\frac{1}{3} 2^{3 / 2} \sqrt{1 / \beta}+o(1)\right]
$$

Just enough relations

$B^{2} \pi \approx B$, thus $1 / \pi \approx B$. Two consequences ; $b=1 / 3$, and:

$$
\begin{aligned}
\beta & =\frac{1}{3} 2^{3 / 2} \sqrt{1 / \beta} \\
(\beta / 2)^{3 / 2} & =\frac{1}{3} \\
\beta & =2 \sqrt[3]{9}=\sqrt[3]{8 / 9}
\end{aligned}
$$

Complexity of NFS

For factoring an integer N, GNFS takes time:
$L_{N}\left[1 / 3,(64 / 9)^{1 / 3}\right]=\exp \left((1+o(1))(64 / 9)^{1 / 3}(\log N)^{1 / 3}(\log \log N)^{2 / 3}\right)$.
This is sub-exponential.
Note: some special numbers allow for a faster variant NFS, with complexity
$L_{N}\left[1 / 3,(32 / 9)^{1 / 3}\right]=\exp \left((1+o(1))(32 / 9)^{1 / 3}(\log N)^{1 / 3}(\log \log N)^{2 / 3}\right)$.

Remarks related to analysis

- The two norms are $L_{N}\left[2 / 3, \frac{1}{\delta}\right]$ and $L_{N}\left[2 / 3, \frac{1}{\delta}+\sigma \delta\right]$. The algebraic norm is intrisically larger in the GNFS case.
- The 4 steps of the analysis may be done in various orders, but lead to the same thing.

The SNFS case

SNFS numbers are those for which a polynomial f exists which leads to smaller norms than the GNFS.
Example: assuming the right degree, coeffs $\ll L_{N}[2 / 3, \sqrt[3]{3}]$.

Typical example: Cunnigham numbers

Assume $N=2^{1039}-1$. A good choice is: $0 g=x-2^{173}$.

- $f=2 x^{6}-1$.

Notes:

- In some cases, f is rather tiny.
- The rational norm may well become the largest one.
- Exceptional Galois groups are no longer exceptional. (e.g. above: D_{6}, not \mathfrak{S}_{6}).

Records with NFS

Current record for GNFS: RSA-768 (2010).
Current record for SNFS: 1024 bits (2007).
NFS variants exist for the discrete logarithm problem.

- In finite fields of small characteristic and large degree.
- In finite fields of large characteristic and small degree.
- In "balanced" finite fields.
- Also for some classes of algebraic curves or large genus.

