
CSE291-14: The Number Field Sieve
https://cseweb.ucsd.edu/classes/wi22/cse291-14

Emmanuel Thomé

January 6, 2022

CSE291-14: The Number Field Sieve 1/45

https://cseweb.ucsd.edu/classes/wi22/cse291-14

Part 1c

Old factoring algorithms

Factoring with simple sieving

The product tree approach

Recap from last time

We know how to test primality.
We learned how to find primes in an interval with sieving.
When we do so, the size of the sieve array matters.
We may use a segmented version of the sieve of Eratosthenes
in order to alleviate the memory concerns. With
segmentation, random access is possible: we can search for
primes in a range [a, b] without enumerating all primes up to
a. Enumeration up to

√
b is enough.

CSE291-14: The Number Field Sieve; Old factoring algorithms 3/45

Plan

Factoring with simple sieving

The product tree approach

More information with sieving

Instead of storing a zero in the array, one can keep further
information.
Depending on the information stored, one can get more or less data
on the factorization of the integers, at a cost of higher memory:

Initialize with zero, and add one at each sieving step. Gives
the number of distinct prime factors. Requires B log2 log2 B
bits of memory.
With only 2 bits per position, one can get the numbers that
contain exactly two distinct primes.

CSE291-14: The Number Field Sieve; Old factoring algorithms 4/45

Sieving for factoring integers

Can we recover the full factorization of integers with sieving?
The exact goal needs to be stated.

Factorization with elementary sieving
Assume all primes below B are known.
In a sieve region R = [A, 2A] (for example):

Goal 1: for each N ∈ R, find its prime factors below B.
Goal 2: find all N ∈ R whose prime factors are all below B.
These are called smooth numbers.
Goal 3: like goal 2, but list the prime factors of smooth
numbers, too.

Whether our goal is 1, 2, or 3, we have an array with a value tied
to each n ∈ R.

CSE291-14: The Number Field Sieve; Old factoring algorithms 5/45

Finding smooth parts with sieving

To achieve goal 1:

Initialize the array cell indexed by n with the integer n itself.
Whenever this index is identified as a multiple of a prime
below B, divide it (perhaps several times), and store the
information about the divided values.
Eventually, information at index n gives the prime divisors of n
below B, as well as the cofactor

This is expensive.

Memory: O(#R · log2 n)
(which is also the size of the output).

Arithmetic cost is large as well, with many divisions.

CSE291-14: The Number Field Sieve; Old factoring algorithms 6/45

Identifying smooth integers with sieving

To achieve goal 2:

Initialize the array cell indexed by n with an approximation of
log n.
When sieving, subtract log p at the sieved position.
In the end, positions with a small remaining value are likely to
be smooth.
Some caveats: rounding, prime powers.

This is a very simple, yet very important mechanism.
Cost: O(#R) approximated values, and O(#R · log log B)
additions/subtractions.
Improvements discussed at length, especially when R is large.

CSE291-14: The Number Field Sieve; Old factoring algorithms 7/45

Factoring smooth integers with sieving

To achieve goal 3, one option is to do as in goal 1, and filter the
results.
Better:

Do detection first (as in goal 2).
In a second step, do re-sieving, but keep information only for
the indices that we know are smooth.

This is very worthwhile when smooth numbers are rare.
This re-sieving technique will appear (much) later on in the NFS
context as well.

CSE291-14: The Number Field Sieve; Old factoring algorithms 8/45

Plan

Factoring with simple sieving

The product tree approach

Batch smoothness detection

Fact. The Sieve of Eratosthenes relies on two properties:

The set of numbers to test for primality (or for smoothness)
has a structure: arithmetic progression.
The set of primes we consider has a structure: all the primes
up to a bound.

What can we do with less or no structure? Such situations exist:

Coppersmith’s variant of NFS with several number fields:
tested numbers have no structure
Large-prime separation: primes in an interval, and some prime
are forbidden

CSE291-14: The Number Field Sieve; Old factoring algorithms 9/45

Shopping list

Main tool. Asymptotically fast integer arithmetic. Using
FFT-based techniques, integers of n bits can be multiplied, divided
in almost linear time. Same for GCD.

Notation. M(n) is the cost of multiplying two integers of n bits.
Division costs O(M(n)) and GCD costs O(M(n) log n).

Note: asymptotically fast multiplication algorithms are readily
available in software. The GNU multiprecision library (GMP), for
example, has an implementation of the Schönhage-Strassen.

The multiplication of two integers of one billion bits each takes
about. . . (your guess).

CSE291-14: The Number Field Sieve; Old factoring algorithms 10/45

Batch’ed trial division

Input.

A set of integers x1, . . . , xk ;
A factor base F , i.e. a set of primes p1, . . . , pℓ;

Output. The xi that are F-smooth.

Idea. Compute the GCD of xi with
∏

pj .
If these GCD are computed sequentially, we get a quadratic
complexity.
Rationale. Try to do operations between integers of the same size.

CSE291-14: The Number Field Sieve; Old factoring algorithms 11/45

First step: ∏ pj

The approach is pretty bold.

Multiply all pj ’s together!
Multiply all xi ’s together!

Collect winnings.

P =
∏

pj a big number. The product of all primes below 2B is a
2B+0.53-bit integer.
Fortunately, fast integer arithmetic is not only useful in theory, it is
also useful in practice!

CSE291-14: The Number Field Sieve; Old factoring algorithms 12/45

Strategies to compute P = ∏ pj

Naive. Even with fast multiplication,
∏

pj costs a quadratic
bit-complexity.

Subproduct-tree.
Assume the number ℓ of pj is a power of 2, and build a binary tree,
from leaves that are the primes. Do a multiplication at each node.

Same number of multiplications;
All of them are balanced (the two operands have the same
size).

Complexity. If all primes have b bits, total cost is O(M(ℓb) log ℓ).

CSE291-14: The Number Field Sieve; Old factoring algorithms 13/45

First step: ∏ pj

∏
0≤j<ℓ pj

∏
0≤j<ℓ/2 pj

∏
0≤j<ℓ/4 pj

.

∏
ℓ/4≤j<ℓ/2 pj

.

∏
ℓ/2≤j<ℓ pj

∏
ℓ/2≤j<3ℓ/4 pj

.

∏
3ℓ/4≤j<ℓ pj

.

M(bℓ/2)

2M(bℓ/4)

4M(bℓ/8)

. . .

Although quasi-linear, multiplication is still supra-linear:
4M(bℓ/8) ≤ 2M(bℓ/4) ≤ M(bℓ/2).
Consequence. If M is close to linear, same cost at each level.

CSE291-14: The Number Field Sieve; Old factoring algorithms 14/45

Do the same for xi

∏
0≤i<k xi

∏
0≤i<k/2 xi

∏
0≤i<k/4 xi

.

∏
k/4≤i<k/2 xi

.

∏
k/2≤i<k xi

∏
k/2≤i<3k/4 xi

.

∏
3k/4≤i<k xi

.

Rem. If the xi have B bits, cost of this construction is
O(M(Bk) log k).
Important. Keep the whole tree in memory (and lose a log factor
in space complexity).

CSE291-14: The Number Field Sieve; Old factoring algorithms 15/45

The tree of the xi stays in memory

Let X (r)
i denotes the i-th node at depth r from the root.

X (0)
0

X (1)
0

X (2)
0 X (2)

1

X (1)
1

X (2)
2 X (2)

3

Bk bits

2 × (Bk/2) bits

4 × (Bk/4) bits

We have a single large integer on top, and a large collection of
small integers at the bottom.

CSE291-14: The Number Field Sieve; Old factoring algorithms 16/45

Descend the remainder tree
Let P =

∏
pj that has been computed.

Remember that we want the GCD of P with the leaves xi .
Idea. Compute P mod xi before taking these GCD. For that, we
descend P along the remainder tree of the xi ’s.

Let R(r)
i = P mod X (r)

i . Since X (r−1)
i = X (r)

2i X (r)
2i+1, we have

R(r)
2i = R(r−1)

i mod X (r)
2i and R(r)

2i+1 = R(r−1)
i mod X (r)

2i+1.

R(0)
0 = P mod X (0)

0

R(1)
0 = R(0)

0 mod X (1)
0

R(2)
0 R(2)

1

R(1)
0 = R(0)

1 mod X (1)
1

R(2)
2 R(2)

3CSE291-14: The Number Field Sieve; Old factoring algorithms 17/45

Descend the remainder tree

At level r , this will cost 2r divisions of an integer of size Bk/2r−1

and one of size Bk/2r . Close to O(M(Bk)).
Again, the total cost is O(M(Bk) log k) plus O(M(Bk, bℓ)) for the
first step.

Conclusion. We can compute all the GCD of
∏

pj and the xi in a
time that is quasi-linear in the input size.

Is it practical? YES!!! Several fun stories related to that. (try to
search “GCD all the keys” or something similar).

Left as exercise. Handle powers, deduce the full factorization.
Everything follows more or less easily, in the same complexity.
Main reference: D. J. Bernstein.
Sage scripts avalaible at https://facthacks.cr.yp.to/

CSE291-14: The Number Field Sieve; Old factoring algorithms 18/45

https://facthacks.cr.yp.to/

Wrap up

Prime testing is not a difficulty for the usage range that we
target.
Sieving is unsurprisingly a very basic building block that will
resurface. Remember resieving.
Batch smoothness detection is a very interesting tool. It’s not
only fun, but also useful in NFS context.

CSE291-14: The Number Field Sieve; Old factoring algorithms 19/45

CSE291-14: The Number Field Sieve
https://cseweb.ucsd.edu/classes/wi22/cse291-14

Emmanuel Thomé

January 6, 2022

CSE291-14: The Number Field Sieve 20/45

https://cseweb.ucsd.edu/classes/wi22/cse291-14

Part 1d

Old factoring algorithms

Pollard ρ

p − 1 and p + 1

ECM

Mundane factoring needs within NFS
Enumerating primes gives a method to factor a number.
This is called trial division (TD).

TD works only to some extent
The required time to trial-divide N by all prime numbers below B
with sieving is roughly Õ(B log N)

Many other integer factorization algorithms can be used, with the
common characteristic:

Runtime is polynomial in log N.
runtime

success probability is (at most) exponential in log B.
Within NFS, these algorithms are used to obtain auxiliary
factorization of many intermediate numbers.

Pollard rho.
p − 1, p + 1, the Elliptic Curve Method (ECM);

CSE291-14: The Number Field Sieve; Old factoring algorithms 22/45

Second goal: combinations of congruences

A second class of algorithms is given by those whose complexity
depends only on N (albeit super-polynomially).
These algorithms are the precursors of the lineage that culminates
with NFS.

Fermat factoring.
Dixon random squares method.
CFRAC: the continued fraction method.
QS: the quadratic sieve.

CSE291-14: The Number Field Sieve; Old factoring algorithms 23/45

Plan

Pollard ρ

p − 1 and p + 1

ECM

Pollard ρ

Idea. Pick k random elements xi modulo N. If two of them are
equal modulo p, then gcd(xi − xj , N) is likely to give p.
Trick. The number of GCD to test is quadratic. To avoid that,
use a pseudo-random sequence xi+1 = f (xi) and cycle detection.

x0 x1 . . . xi = xj

Analysis. Birthday paradox says that the first collision occurs after
O(√p) elements. More rigourous: use properties of the functional
graph of f . AofA can find constant in O().

CSE291-14: The Number Field Sieve; Old factoring algorithms 24/45

Pollard ρ

Implementation.

Use f (x) = x2 + c. This gives enough randomness (quantified
with expander graph theory).
Use Floyd cycle detection: run two sequences in parallel, one
going twice as fast as the other. Lose at most a factor of 2.

The overall complexity is O(√p) operation modulo N to extract a
factor p.
In the worst case, where N is RSA, this gives O(N1/4).

CSE291-14: The Number Field Sieve; Old factoring algorithms 25/45

Pollard-Strassen

Pollard ρ is heuristic.
In a nearby (asymptotic) complexity ballpark, the Pollard-Strassen
is slightly more expensive, but proven and not heuristic.

CSE291-14: The Number Field Sieve; Old factoring algorithms 26/45

Pollard-Strassen
We are after a prime factor p < B of N. Let C =

⌈√
B

⌉
.

Compute P =
C−1∏
i=0

(X − i) ∈Z/NZ[X]. Keep product tree.

This costs M(C) log C operations.

Compute Q =
C−1∏
i=0

(X + Ci) = (−C)CP(−X/C).

This costs O(C) operations.
Multi-evaluate Q at the roots of P.

This costs M(C) log C operations.
Any evaluation that has a non-trivial gcd with N narrows
down a potential factor to a range of size C .

PS is not useful in practice, but is a fun application of
asymptotically fast algorithms!

CSE291-14: The Number Field Sieve; Old factoring algorithms 27/45

Plan

Pollard ρ

p − 1 and p + 1

ECM

p − 1 and p + 1

Another family of algorithms.

One aspect in common with ρ.
“Something” happens mod p −→ detect it mod N.

The gist of it is how “something” is defined.
Some algebra is involved.

CSE291-14: The Number Field Sieve; Old factoring algorithms 28/45

Pollard p − 1 method

Idea: assume p | N and a is prime to p. Then

(p | ap−1 − 1 and p | N) ⇒ p | gcd(ap−1 − 1, N).

Same if some R is known s.t. p − 1 | R and we compute

gcd((aR mod N) − 1, N).

How do we find R ? Only reasonable hope is that p − 1 | B! for
some (small) B. In other words, p − 1 is B-smooth.

Algorithm: R =
∏

pα≤B pα = lcm(2, . . . , B).

Our “something” is the event aR ≡ 1 mod p.

CSE291-14: The Number Field Sieve; Old factoring algorithms 29/45

p − 1 is one-shot

p − 1 succeeds if N is divisible by some p with p − 1 smooth.

If, for a given N, p − 1 failed to find a factor, you need to find
another algorithm to factor it.

If we fix B and consider many integers Ni with one known
factor ≈ 2x , p − 1 will return a factor for a fixed fraction of the
input† and will fail for the rest.

† ψ(2x ,B)
2x (see lecture about smoothness)

CSE291-14: The Number Field Sieve; Old factoring algorithms 30/45

The p + 1 method (Williams, Guy, . . .)

Idea. Work in an extension of degree 2 of Fp.
The multiplicative group is of order p2 − 1 = (p − 1)(p + 1), and
the subgroup T2(p) of elements of norm 1 is of order p + 1.
Difficulties.

We do not know p; can not be sure to work in a genuine field
extension.
How do we work with elements of norm 1 anyway?

CSE291-14: The Number Field Sieve; Old factoring algorithms 31/45

p + 1: working around difficulties

Implicit representation of T2(p)
Fact: if θ is a root of x2 − Ax + 1 mod p, then:

the other root is 1/θ.
if D = A2 − 4 is a non-square, θ is an element of norm 1 in
Fp(

√
D) ≈ Fp2 (i.e., an element of T2(p)).

if D is a square, θ is simply an element of Fp. We’ll be
redoing p − 1 inadvertently.

In effect, we’re choosing (the shape of) θ first, and D afterwards.

We don’t know if
√

D defines Fp2 or not.

In either case, if p −
(

D
p

)
is B-smooth, then θB! ≡ 1 mod p.

How do we compute with θn?

CSE291-14: The Number Field Sieve; Old factoring algorithms 32/45

p + 1: computing θn

We only need to care about vn = θn + θ−n ∈ Fp. We have:

v0 = 2, v1 = A, vm+n= vmvn − vm−n.

We use a Montgomery ladder to compute {vn, vn+1}.

{vn, vn+1} → {v2n, v2n+1} .

v2n = v2
n − v0,

v2n+1 = vnvn+1 − v1.

{vn, vn+1} → {v2n+1, v2n+2} .

v2n+1 = vnvn+1 − v1,

v2n+2 = v2
n+1 − v0.

Very similar to standard binary powering

Requires log2 n mult and log2 n squares modulo N. (compared to
4.5 log2 n operations with naive representation of Fp(

√
D)).

CSE291-14: The Number Field Sieve; Old factoring algorithms 33/45

p + 1: summary

As the p − 1 method, this is a one-shot method.
It is not a lot more expensive than the p − 1 method.
However, it brings something new only 50% of the time.
Can this be generalized:

Yes, but generalizations with field extensions don’t work as
well.

See Factoring with cyclotomic polynomials.
Work in algebraic tori which are varieties of dimension ϕ(d).

The “good” generalization is ECM. Curves are varieties of
dimension 1.

CSE291-14: The Number Field Sieve; Old factoring algorithms 34/45

Handling close misses

The p − 1 and p + 1 algorithms succeed if
p ± 1 = small × small × · · · × small.
What happens if p ± 1 = small × small × · · · × medium ?
Assuming there is only one extra factor of medium size, it can be
caught with the Stage 2 algorithms.

CSE291-14: The Number Field Sieve; Old factoring algorithms 35/45

Second phase: the classical one
Let b = aR mod N and gcd(b, N) = 1.
Hyp. p − 1 = Qs with Q | R and s prime, B1 < s ≤ B2.

Test: is gcd(bs − 1, N) > 1 for some s.

Let sj denote the j-th prime. In practice all sj+1 − sj are small
(Cramer’s conjecture: sj+1 − sj ≤ (log B2)2).

Precompute cδ ≡ bδ mod N for all possible δ (small);
Compute next value with one multiplication:

bsj+1 = bsj csj+1−sj mod N.

Cost: O((log B2)2) + O(log s1) + (π(B2) − π(B1)) multiplications
+(π(B2) − π(B1)) gcd’s. When B2 ≫ B1, π(B2) dominates.

Rem. We need to enumerate all primes < B2; use a table of size
O(B2) or a low-memory (segmented) Eratosthenes sieve.

CSE291-14: The Number Field Sieve; Old factoring algorithms 36/45

Second phase: faster

Select w ≈
√

B2, v1 = ⌈B1/w⌉, v2 = ⌈B2/w⌉.

Write our prime s as s = vw − u, with 0 ≤ u < w , v1 ≤ v ≤ v2.
One has gcd(bs − 1, N) > 1 iff gcd(bwv − bu, N) > 1.

1. Precompute bu mod N for all 0 ≤ u < w .
2. Precompute all (bw)v for all v1 ≤ v ≤ v2.
3. For all u and all v evaluate gcd(bvw − bu, N).

Number of multiplications is
w + (v2 − v1) + O(log2 w) = O(

√
B2), memory is also O(

√
B2).

Number of gcd is still π(B2) − π(B1).

CSE291-14: The Number Field Sieve; Old factoring algorithms 37/45

Second phase: faster

Algorithm: Compute h(X) =
∏

0≤u<w (X − bu) ∈Z/NZ[X]
Evaluate all h((bw)v) for all v1 ≤ v ≤ v2.
Evaluate all gcd(h(bwv), N).

Analysis, using product trees:

Step 1: O((log w)M(w)) operations (product tree).

Step 2: O((log w)M(log N)) for bw ; v2 − v1 for (bw)v ; multi-point
evaluation on w points takes O((log w)M(w)).

Rem. Evaluating h(X) along a geometric progression of length w
takes O(w log w) operations (see Montgomery-Silverman).

Total cost: O((log w)M(w)) = O(B0.5+o(1)
2).

CSE291-14: The Number Field Sieve; Old factoring algorithms 38/45

Plan

Pollard ρ

p − 1 and p + 1

ECM

The ECM algorithm

The starting observation is that Pollard p − 1 is nice, but of limited
use.

Pollard p − 1 implicitly uses F∗
p. And there is only one F∗

p per
p.
The p + 1 algorithm uses another group which therefore
increases the factoring chances.
But it basically stops here.

What ECM achieves is that it works works with a structure defined
modulo p (and therefore computable implicitly with arithmetic
modulo N), which has many different instances.
This is done with Elliptic curves.

CSE291-14: The Number Field Sieve; Old factoring algorithms 39/45

The ECM algorithm

ECM: the Elliptic Curve factoring Method. ECM = a variant of
p ± 1 which is Not a one-shot algorithm.

An elliptic curve: set of solutions of certain algebraic systems.

y2 = x3 + ax + b (with constants a, b).
By2 = x3 + Ax2 + x (with constants A, B).
x2 + y2 = 1 + dx2y2 (with constant d).
x2 + y2 = 1 and ax2 + z2 = 1 (with constant a).

All are different ways to define isomorphic mathematical objects.

CSE291-14: The Number Field Sieve; Old factoring algorithms 40/45

Elliptic curves over Fp

Given an equation that defines an elliptic curve E :
E (Fp) = {points with coordinates in Fp} ∪ {∞}.

Elements of E (Fp) can be represented easily.
E (Fp) forms a finite group with easily computable group law.
p + 1 − 2√p ≤ #E (Fp) ≤ p + 1 + 2√p.
If we work modulo N, we also work in E (Fp) implicitly.
A match in E (Fp) can be detected with arithmetic modulo N
by gcd.

The common notation is to write the group law on elliptic curves
additively.

∞ is the neutral element.
P + Q is the group law.
[n]P is done by double-and-add (a.k.a. square-and-multiply,
additively).

CSE291-14: The Number Field Sieve; Old factoring algorithms 41/45

ECM: adapting p − 1

ECM works in the same way as p − 1 and p + 1.

Pick a curve and a point P on it.
Important: do it in one go, e.g.

x , y , a ∈R Z/NZ, then let b = y2 − x3 − ax .

Hope for #E (Fp) to be B1-smooth for a divisor p of N.
Compute [B1!]P. Test (gcd) if something happened mod p.
Stage 2 works, too.
If no factor found, start over with a new curve.

CSE291-14: The Number Field Sieve; Old factoring algorithms 42/45

Arithmetic

ECM is de facto the home of most improvements on these
(p − 1)-like factoring methods.

Arithmetic: a lot of time is spent in computations modulo N.
It is worthwhile to use trade-offs (such as Montgomery
multiplication), and size-specific code.
Some ways to choose an elliptic curves and a point on them
are better than others (we can force some small factors in
#E (Fp)).
For fixed B1, there are ways to compute [B1!]P slightly more
efficiently than by square-and-multiply (Lucas chains, PRAC).

CSE291-14: The Number Field Sieve; Old factoring algorithms 43/45

ECM performance

ECM finds a factor ≈ p of an n-bit integer N in time:

exp
(√

2(log p)1/2(log log p)1/2(1 + o(1))
)

× M(n).

This is called a sub-exponential complexity (w.r.t log p).
ECM is very efficient for p ≈ 1030...40, record of p ≈ 1083.
ECM can be distributed massively.
Reference implementation: GMP-ECM (Paul Zimmermann).

Note: we’ll see this funny kind of complexity again!

CSE291-14: The Number Field Sieve; Old factoring algorithms 44/45

https://members.loria.fr/PZimmermann/records/ecmnet.html

ECM: fun and profit

Factoring enthusiasts like big ECM hits.
Yearly top ten table here.
It’s the beginning of January, the best time of the year to enter
that table (at least temporarily).

A few core-years and/or luck to make it to the table (60
digits).
A few dozen core-years to find a 70 digit factor.

CSE291-14: The Number Field Sieve; Old factoring algorithms 45/45

https://members.loria.fr/PZimmermann/records/ecmnet.html

	Old factoring algorithms
	Factoring with simple sieving
	The product tree approach

	Old factoring algorithms
	Pollard rho
	p-1 and p+1
	ECM

