
CSE291-14: The Number Field Sieve
https://cseweb.ucsd.edu/classes/wi22/cse291-14

Emmanuel Thomé

January 11, 2022

CSE291-14: The Number Field Sieve 1/58

https://cseweb.ucsd.edu/classes/wi22/cse291-14

Part 2

Combinations of congruences

Combining congruences

CFRAC and QS

QS-era improvements

The golden age of QS and MPQS

Analysis of QS

Plan

Combining congruences

CFRAC and QS

QS-era improvements

The golden age of QS and MPQS

Analysis of QS

Combining congruences
An early idea due to Fermat. We try to factor N. Set r =

⌈√
N

⌉
.

For i = 0, . . ., compute f (i) = (r + i)2 − N.
If f (i) is a square, then we have:

(r + i)2 − N = x2,
(r + i − x)(r + i + x) = N.

Let N = pq. This method factors N in time O(|p−q|
2).

This suceeds if p, q are too close to
√

N. Otherwise hopeless.
Note: tricks to make this work without long integer arithmetic:

f (i + 1) − f (i) = 2(r + i) + 1.
To test whether f (i) = □, look at

(
f (i)

p

)
for many small p’s.

This saves some work, but does not change the outcome much.
Remaining idea: search for squares.

CSE291-14: The Number Field Sieve; Combinations of congruences 3/58

Combining congruences

Given a composite N, what does x2 ≡ y2 mod N give ?

x2 ≡ y2,

(x − y)(x + y) ≡ 0,

(x
y − 1)(x

y + 1) ≡ 0 (we may assume gcd(y , N) = 1).

If N has k distinct prime factors, there are 2k different square roots of 1.
A “random” congruence x2 ≡ y2 reveals a factor with prob
1 − 1

2k−1 .
Note that this cannot work for prime powers.

CSE291-14: The Number Field Sieve; Combinations of congruences 4/58

Kraitchik

From the 1930’s:

Looking at congruences is enough.
If r2 mod N and s2 mod N are not squares, but their product
is, then we succeed.

This is the principle of combination of congruences.

CSE291-14: The Number Field Sieve; Combinations of congruences 5/58

Combination of congruences

462 mod 2041 = 75 = 3 × 52,

472 mod 2041 = 168 = 23 × 3 × 7,

482 mod 2041 = 263 = I am lazy, too hard. . .
492 mod 2041 = 360 = 23 × 32 × 5,

502 mod 2041 = 459 = 33 × 17,

512 mod 2041 = 560 = 24 × 5 × 7, . . .

This leads to

(46 × 47 × 49 × 51︸ ︷︷ ︸
x

)2 ≡ 210345472 ≡ (2532527︸ ︷︷ ︸
y

)2 mod N.

And gcd(x − y , N) = 13.
CSE291-14: The Number Field Sieve; Combinations of congruences 6/58

Dixon random squares algorithm
This was formalized by Dixon in the 1970s. Proven probabilistic.

Smoothness is the important thing!
We are interested in the factorization of r2 mod N only if it is
smooth.

We fix a smoothness bound B.
The set of primes PB is called the factor base.

Algorithm:

Pick r at random. Test divisibility by all primes below B.
If r2 mod N is B-smooth, keep the relation:

r2
i mod N ≡ pei,1

1 × · · · × pei,k
k .

Try to match these. This is a linear algebra problem over F2.
CSE291-14: The Number Field Sieve; Combinations of congruences 7/58

Combination by linear algebra
We have a set R of relations r2

i ≡ pei,1
1 × · · · × pei,k

k .

Consider the matrix M ∈ M#R×#P(Z), M = (ei ,j).

462 mod 2041 = 75 = 3 × 52,

472 mod 2041 = 168 = 23 × 3 × 7,

492 mod 2041 = 360 = 23 × 32 × 5,

512 mod 2041 = 560 = 24 × 5 × 7,

=⇒

0 1 2 0
3 1 0 1
3 2 1 0
4 0 1 1

A vector V = (vi)1≤i≤#R yields VM = (

∑
i viei ,j)j , and:

(
∏

r vi
i)2 ≡

∏
j

p
∑

i vi ei,j
j .

We want V such that coordinates of VM are even: it suffices
to search for nullspace elements over the field F2.

CSE291-14: The Number Field Sieve; Combinations of congruences 8/58

Pitfalls

The random squares method has one main pitfall

r2 mod N is big: as large as N.

Further improvements focused on making the numbers to test for
smoothness somewhat smaller.

CSE291-14: The Number Field Sieve; Combinations of congruences 9/58

Plan

Combining congruences

CFRAC and QS

QS-era improvements

The golden age of QS and MPQS

Analysis of QS

CFRAC

The CFRAC algorithm (Lehmer&Powers, 1931, and
Morrison&Brillhart, 1975) was the first practical algorithm to
factor large numbers, starting with F7 = 2128 + 1.
Idea: use the continued fraction approximation of

√
N.

How continued fractions work is barely relevant, but a by-product
is a host of identities of the form:

U2
n − NV 2

n = Qn,

U2
n ≡ Qn mod N,

with the very sweet property that |Qn| < 2
√

N.

Test the Qn’s for smoothness. They are only as large as 2
√

N.

CSE291-14: The Number Field Sieve; Combinations of congruences 10/58

The quadratic sieve (Pomerance)

In fact, continued fractions are not achieving anything magical.

A simpler supply of small square residues:

Let f (i) =
(⌈√

N
⌉

+ i
)2

− N.

As long as i remains small, f (i) is of the order of
√

N.

Fermat was using the same f , hoping for f (i) to be a square.
Here, we are combining this with the Dixon-like approach.

CSE291-14: The Number Field Sieve; Combinations of congruences 11/58

QS: enter sieving

QS turn the Dixon approach on its head when it comes to
factoring the residues.

Decide beforehand on a sieving space: interval i ∈ [−A, A]. We
will try to factor all residues f (i).

Dixon: for each i , for each p, see if p divides f (i).
QS: for each p, for each i , see if p divides f (i).
QS: for each p, determine indices i such that p divides f (i).

CSE291-14: The Number Field Sieve; Combinations of congruences 12/58

Computing all valuations at once

Fix p. Let r0, r1 be the two roots of the quadratic equation
f (i) ≡ 0 mod p.

{i ∈ [−A, A], f (i) ≡ 0 mod p} = {r0, r0 ± p, . . .}∪{r1, r1 ± p, . . .} .

Algorithm: We maintain an array T [i] indexed by i ∈ [−A, A].
For each p ≤ B, do:

Compute r0, r1
r := r0. While r ≤ A do:

T [r]← T [r] + log p,
r ← r + p.

idem for r1 as well as {ri − kp}.
Do this also for prime powers
For all i such that T [i] = log |f (i)|, we know that f (i) is
smooth.

CSE291-14: The Number Field Sieve; Combinations of congruences 13/58

T [i] = log |f (i)| ⇔ f (i) smooth

Ignore powers for the moment. For each p:

we have characterized the set Sp,i = {i , νp(f (i)) > 0}.
we have added log2 p to T [i] for each i in this set.

Once we have sieved for all p ∈ PB:

T [i] =
∑

p∈PB

{
log2 p if p | f (i),
0 otherwise,

=
∑

p∈PB , p|f (i)
log p,

= log (B-smooth part of f (i) without powers) .

If T [i] = log |f (i)| after sieving, then f (i) is B-smooth and
square-free.

CSE291-14: The Number Field Sieve; Combinations of congruences 14/58

Sieving with powers

Assume that f (i) ≡ 0 has 2 distinct roots mod p (so p ∤ disc(f)).

How many roots mod p2 ?
How many roots mod pk ?
Which log contribution should we add ?

We want to have an accumulated contribution of k log2 p when
pk | f (i), but since f (i) is hit when sieving for p, p2, . . . , pk , we
need only add log2 p each time.

CSE291-14: The Number Field Sieve; Combinations of congruences 15/58

Sieving with powers

Assume that f (i) ≡ 0 has 2 distinct roots mod p (so p ∤ disc(f)).

How many roots mod p2 ?
How many roots mod pk ?
Which log contribution should we add ?

We want to have an accumulated contribution of k log2 p when
pk | f (i), but since f (i) is hit when sieving for p, p2, . . . , pk , we
need only add log2 p each time.

CSE291-14: The Number Field Sieve; Combinations of congruences 15/58

T [i] = log |f (i)| ⇔ f (i) smooth
For each pk (assuming we consider k up to ∞. In fact we don’t):

we have characterized the set Spk ,i = {i , νp(f (i)) ≥ k}.
we have added log2 p to T [i] for each i in this set.

Thus eventually:

T [i] =
∑

p∈PB

 ∑
k s.t. i∈Spk ,i

log p

 ,

=
∑

p∈PB

 ∑
k, νp(f (i))≥k

log p

 ,

=
∑

p∈PB

νp(f (i)) log p,

= log (B-smooth part of f (i)) .

CSE291-14: The Number Field Sieve; Combinations of congruences 16/58

QS: summary

We want to factor N. Let f (x) = (⌈
√

N⌉ + x)2 − N.

Choose bounds A and B. Analysis will tell how.
Create array of low-precision values T , indices i ∈ [−A, A].
For all primes below B:

Find roots of f mod p.
Add log2 p to the appropriate locations.
Do this also for powers.

For all i , compare log2 |f (i)| and T [i].
Deduce the i ’s such that f (i) is B-smooth.
Factor the smooth f (i), possibly with resieving (lecture 1).
Form a big linear system. Find a nullspace element.
Determine a congruence of squares. Attempt to factor N.

CSE291-14: The Number Field Sieve; Combinations of congruences 17/58

QS: the road ahead

In the previous summary of QS:

The decor is basically here so that we can explain many of the
following improvements.
As it turns out, almost every line of the previous description
has been a topic of study.
These lines of study have all led to improvements that, most
often are still part of relevant know-how for NFS.

Some improvements are very local.
Some have a broader consequence.

CSE291-14: The Number Field Sieve; Combinations of congruences 18/58

Plan

Combining congruences

CFRAC and QS

QS-era improvements

The golden age of QS and MPQS

Analysis of QS

QS: all steps deserve a look

We want to factor N. Let f (x) = (⌈
√

N⌉ + x)2 − N.

Choose bounds A and B. Analysis will tell how.
Create array of low-precision values T , indices i ∈ [−A, A].
For all primes below B:

Find roots of f mod p.
Add log2 p to the appropriate locations.
Do this also for powers.

For all i , compare log2 |f (i)| and T [i].
Deduce the i ’s such that f (i) is B-smooth.
Factor the smooth f (i), possibly with resieving (lecture 1).
Form a big linear system. Find a nullspace element.
Determine a congruence of squares. Attempt to factor N.

CSE291-14: The Number Field Sieve; Combinations of congruences 19/58

QS: all steps deserve a look

We want to factor N. Let f (x) = (⌈
√

N⌉ + x)2 − N.

Choose bounds A and B. Analysis will tell how.
Create array of low-precision values T , indices i ∈ [−A, A].
For all primes below B:

Find roots of f mod p.
Add log2 p to the appropriate locations.
Do this also for powers.

For all i , compare log2 |f (i)| and T [i].
Deduce the i ’s such that f (i) is B-smooth.
Factor the smooth f (i), possibly with resieving (lecture 1).
Form a big linear system. Find a nullspace element.
Determine a congruence of squares. Attempt to factor N.

CSE291-14: The Number Field Sieve; Combinations of congruences 20/58

Data type for array cells T [i]

log2 |f (i)| and log2 p are real numbers. What do we store in T [i]?

Straightforward choice: store the integer ⌊log2 |f (i)|⌉, which
certainly fits in 8 bits.
This introduces some fuzziness, because of rounding. We can
probably live with it.
Better choice: adjust the log base so that the full 8-bit range
is used. This is better for accuracy.

Determine the max value of |f (i)| beforehand.
Provide for some tolerance for rounding.

CSE291-14: The Number Field Sieve; Combinations of congruences 21/58

QS: all steps deserve a look

We want to factor N. Let f (x) = (⌈
√

N⌉ + x)2 − N.

Choose bounds A and B. Analysis will tell how.
Create array of low-precision values T , indices i ∈ [−A, A].
For all primes below B:

Find roots of f mod p.
Add logβ p to the appropriate locations.
Do this also for powers.

For all i , compare logβ |f (i)| and T [i].
Deduce the i ’s such that f (i) is B-smooth.
Factor the smooth f (i), possibly with resieving (lecture 1).
Form a big linear system. Find a nullspace element.
Determine a congruence of squares. Attempt to factor N.

CSE291-14: The Number Field Sieve; Combinations of congruences 22/58

log-norm computations and comparisons

When we compare T [i] with logβ |f (i)|, do we actually compute
f (i) and its log? Of course not.

Keeping track of f (i) alone would not be too hard.
Once we take the log, the (rounded) value changes rarely.

In the QS context, this is rather easy to solve. This is an instance
of the log-norm computations issue, that appears also in NFS.

Note that in practice, we prefer to do log-norm computations first:

Fill T [i] with rounded values of logβ |f (i)|.
Subtract the logβ p from array cell.

The benefit is that comparisons are done versus a constant bound.

CSE291-14: The Number Field Sieve; Combinations of congruences 23/58

QS: all steps deserve a look

We want to factor N. Let f (x) = (⌈
√

N⌉ + x)2 − N.

Choose bounds A and B. Analysis will tell how.
Create array of low-precision values T , indices i ∈ [−A, A].
For all primes below B:

Find roots of f mod p.
Add logβ p to the appropriate locations.
Do this also for powers.

For all i , compare logβ |f (i)| and T [i].
Deduce the i ’s such that f (i) is B-smooth.
Factor the smooth f (i), possibly with resieving (lecture 1).
Form a big linear system. Find a nullspace element.
Determine a congruence of squares. Attempt to factor N.

CSE291-14: The Number Field Sieve; Combinations of congruences 24/58

Not all primes are the same

As presented, QS is one very large sieving effort.
The sieving work varies a lot with p.

p small: an immense number of narrowly-spaced table
updates.
p large: rare, far apart table updates.

The proper way to deal with that has been a key topic for decades,
and is still a very current topic with NFS today.

CSE291-14: The Number Field Sieve; Combinations of congruences 25/58

QS: all steps deserve a look

We want to factor N. Let f (x) = (⌈
√

N⌉ + x)2 − N.

Choose bounds A and B. Analysis will tell how.
Create array of low-precision values T , indices i ∈ [−A, A].
For all primes below B:

Find roots of f mod p.
Add logβ p to the appropriate locations.
Do this also for powers.

For all i , compare logβ |f (i)| and T [i].
Deduce the i ’s such that f (i) is B-smooth.
Factor the smooth f (i), possibly with resieving (lecture 1).
Form a big linear system. Find a nullspace element.
Determine a congruence of squares. Attempt to factor N.

CSE291-14: The Number Field Sieve; Combinations of congruences 26/58

Linear algebra

How to deal with the linear systems that appear in factoring
computations is a topic of its own.

Remember that as we only want to make all valuations even, linear
algebra only needs to be done modulo 2.

Tentatively, we’ll cover that mid-February.

CSE291-14: The Number Field Sieve; Combinations of congruences 27/58

QS: all steps deserve a look

We want to factor N. Let f (x) = (⌈
√

N⌉ + x)2 − N.

Choose bounds A and B. Analysis will tell how.
Create array of low-precision values T , indices i ∈ [−A, A].
For all primes below B:

Find roots of f mod p.
Add logβ p to the appropriate locations.
Do this also for powers.

For all i , compare logβ |f (i)| and T [i].
Deduce the i ’s such that f (i) is B-smooth.
Factor the smooth f (i), possibly with resieving (lecture 1).
Form a big linear system. Find a nullspace element.
Determine a congruence of squares. Attempt to factor N.

CSE291-14: The Number Field Sieve; Combinations of congruences 28/58

Congruence of squares
To form a congruence of squares, the task is pretty much trivial in
the QS context.

Multiply the f (i) that participate in the winning combination.
Compute the corresponding factored form

∏
p∈F pνp , which

has all valuation νp even. (We need the νp’s in Z.)
Then we have:(∏

(⌈
√

N⌉ + i)
)2

= ±

 ∏
p∈F

pνp/2

2

.

(it is ok to compute all that modulo N, of course.)
Dealing with the sign is not too hard.

A sign is attached to each relation given by a smooth f (i).
We can insert a sign column in our matrix (+1 → 0; −1 → 1)
so that a winning combination is always positive.

In the NFS context, this step becomes somewhat more complicated
(but remains negligible overall in terms of computation time).

CSE291-14: The Number Field Sieve; Combinations of congruences 29/58

Some improvements of NFS have broader consequences.

CSE291-14: The Number Field Sieve; Combinations of congruences 30/58

QS: all steps deserve a look

We want to factor N. Let f (x) = (⌈
√

N⌉ + x)2 − N.

Choose bounds A and B. Analysis will tell how.
Create array of low-precision values T , indices i ∈ [−A, A].
For all primes below B:

Find roots of f mod p.
Add logβ p to the appropriate locations.
Do this also for powers.

For all i , compare logβ |f (i)| and T [i].
Deduce the i ’s such that f (i) is B-smooth.
Factor the smooth f (i), possibly with resieving (lecture 1).
Form a big linear system. Find a nullspace element.
Determine a congruence of squares. Attempt to factor N.

CSE291-14: The Number Field Sieve; Combinations of congruences 31/58

Special-q

As described, QS uses a huge sieving table.
There are innumerable downsides to this.

Diminishing returns;
Need to have good aim;
Splitting the computation into pieces is possible, but very
irregular;
Addressing a huge array in memory is not very efficient.

CSE291-14: The Number Field Sieve; Combinations of congruences 32/58

Special-q
The special-q idea was introduced in the early 1980s by Davis and
Holridge, in the QS context.

Pick a q that is slightly above B.
Work only with i ’s that are such that q|f (i).
i.e., if f (r) ≡ 0 mod q, work with g(i) = f (qi + r).
Do this for many different q’s.

In effect, this divides the sieving work into many subtasks:
One subtask per q. There are many primes around B.
Each subtask only needs to address A/q indices.
All subtasks cost roughly the same.
There are a few downsides. Possible duplicates, and
abundance of q’s in the relation matrix.

This is a significant overhaul of how the whole algorithm works,
but it pays off significantly. We will see this with NFS.

CSE291-14: The Number Field Sieve; Combinations of congruences 33/58

QS: all steps deserve a look

We want to factor N. Let f (x) = (⌈
√

N⌉ + x)2 − N.

Choose bounds A and B. Analysis will tell how.
Create array of low-precision values T , indices i ∈ [−A, A].
For all primes below B:

Find roots of f mod p.
Add logβ p to the appropriate locations.
Do this also for powers.

For all i , compare logβ |f (i)| and T [i].
Deduce the i ’s such that f (i) is B-smooth.
Factor the smooth f (i), possibly with resieving (lecture 1).
Form a big linear system. Find a nullspace element.
Determine a congruence of squares. Attempt to factor N.

CSE291-14: The Number Field Sieve; Combinations of congruences 34/58

Be tolerant

The comparison of logβ |f (i)| and T [i] leads to an important
choice: do we keep this i or not?
Note that

∣∣∣T [i] − logβ |f (i)|
∣∣∣ measures the size of the non-smooth

cofactor part in f (i).

We know that this cofactor is free of prime factors below B
(except maybe powers).
As a consequence, if the cofactor is less than B2, it has to be
a (large) prime number.

So this is “almost” a relation, and the extra prime is found at no
extra cost.

This was the starting point of the large prime idea.

CSE291-14: The Number Field Sieve; Combinations of congruences 35/58

Large primes

Historical point of view. When the cofactor is a large prime, we
have a “partial” relation.

Set a bound L ≤ B2 on the large primes.
When k partial relations are found, the birthday paradox tells
us that we can form k2

2L combinations with large primes
canceled in pairs.

Note that this point of view is vastly outdated. What remains is
that the cofactor needs further inspection.

CSE291-14: The Number Field Sieve; Combinations of congruences 36/58

QS: all steps deserve a look

We want to factor N. Let f (x) = (⌈
√

N⌉ + x)2 − N.

Choose bounds A and B. Analysis will tell how.
Create array of low-precision values T , indices i ∈ [−A, A].
For all primes below B:

Find roots of f mod p.
Add logβ p to the appropriate locations.
Do this also for powers.

For all i , compare logβ |f (i)| and T [i].
Deduce the i ’s such that f (i) is B-smooth.
Factor the smooth f (i), possibly with resieving (lecture 1).
Form a big linear system. Find a nullspace element.
Determine a congruence of squares. Attempt to factor N.

CSE291-14: The Number Field Sieve; Combinations of congruences 37/58

MPQS (Montgomery)

Probably the most important (and most specific) improvement of
QS was its multiple polynomial variant.

Annoying feature of QS: |f (x)| gets bigger as x grows.

max
−A≤i≤A

|f (i)| = 2A
√

N.

We want to find other functions playing the role of f (x).

CSE291-14: The Number Field Sieve; Combinations of congruences 38/58

MPQS (Montgomery)

What happens if we look at (ux + v)2 for some u, v ?

(ux + v)2 = u2x2 + 2uvx + v2 − uw + uw for any w ,

If we have v2 − uw = N:

1
u (ux + v)2 ≡ ux2 + 2vx + w mod N.

Fix u s.t.
(

N
u

)
= 1. Choose v ≤ u

2 s.t. v2 ≡ N mod u.
Set w accordingly. We have w ≈ −N/u.

−N
y

∼
< ux2 + 2vx + w

∼
< A2u − N

u].

For a given A, smallest values for u ≈ 2
√

N
A . ⇒ Bound 1√

2A
√

N.

CSE291-14: The Number Field Sieve; Combinations of congruences 39/58

MPQS

For a given sieve interval size, we have found a better
polynomial.
More important, we have many such polynomials.
If u is a product of factor base primes, a large number of
polynomials can be used (other option: u = □).
Shorter intervals per polynomial ⇒ smaller residues.
Initialization cost per polynomial: solving v2 ≡ N mod u.
See SIQS for a way to amortize this (e.g. in
Crandall-Pomerance).

MPQS/SIQS (with previous improvements) is the leading
algorithm today for p below 100-120 decimal digits.

Software: msieve and yafu probably have the best QS code around.

CSE291-14: The Number Field Sieve; Combinations of congruences 40/58

https://github.com/bbuhrow/yafu

Plan

Combining congruences

CFRAC and QS

QS-era improvements

The golden age of QS and MPQS

Analysis of QS

MPQS is efficient

MPQS is a great leap forward compared to CFRAC, for two
reasons.

The numbers that are checked for smoothness are
considerably smaller.
Massive distribution is possible. (although special-q’s were a
way to achieve that as well, it was not used that way).

Starting around 1986, and especially around the turn of the 1990s,
many factoring records were broken with QS.

CSE291-14: The Number Field Sieve; Combinations of congruences 41/58

Factoring by electronic mail

Very influential paper by Lenstra and Manasse, 1989.

“how big are the integers we can factor within one month of
elapsed time, if we only want to use computing time that we can

get for free?”

This pretty much defined the way to establish the state of the art
in academic cryptanalysis for the following decades.

Of course, there is a built-in gap with the cryptanalytic power of
nation-state adversaries.

CSE291-14: The Number Field Sieve; Combinations of congruences 42/58

https://dx.doi.org/10.1007/3-540-46885-4_35

Plan

Combining congruences

CFRAC and QS

QS-era improvements

The golden age of QS and MPQS

Analysis of QS

Analysis of QS

The analysis of QS employs techniques from various domains.

The most important things that we try to estimate are:

The size of the numbers f (i) that we try to factor.
The probability that these are B-smooth.
The time it takes to collect enough relations.
The time it takes to solve the linear system.

Most of the analysis techniques (for smoothness probabilities, in
particular) were only nascent in the beginning of the 1980s.

CSE291-14: The Number Field Sieve; Combinations of congruences 43/58

Smoothness: Estimating Ψ(x , y)
There’s one main theorem known as:

Canfield-Erdős-Pomerance (1983),
Construction kit lemma,
whatever credit people give... (Odlyzko / Balasubramanian)

It’s also valid in various contexts.

Canfield-Erdős-Pomerance (CEP) Theorem
Let x , y → +∞ and ϵ > 0 s.t. (log x)ϵ < log y < (log x)1−ϵ.
Let Ψ(x , y) = #{n, 1 ≤ n ≤ x , n is y -smooth}.

1
x Ψ(x , y) ∼ ρ(u) = u−u(1+o(1))

where u = log x
log y , and ρ is the Dickman-de Bruijn function.

CSE291-14: The Number Field Sieve; Combinations of congruences 44/58

The Dickman-De Bruijn function
ρ(u) is the solution of a delay differential equation.

uρ′(u) + ρ(u − 1) = 0.

Note that computing ρ is totally possible.

sage: plot(dickman_rho,x,0,10)
sage: plot(dickman_rho,x,0,10,scale=’semilogy’)

The asymptotic estimation of ρ is a pain, however, and this is what
we use for the analysis of sieving algorithms:

ρ(u) = u−u(1+o(1)).

Note that (1 + o(1)) is quite inaccurate.
CSE291-14: The Number Field Sieve; Combinations of congruences 45/58

ρ(u)

CSE291-14: The Number Field Sieve; Combinations of congruences 46/58

ρ(u) (log scale in y)

log ρ(u) = −(1 + o(1))u log u means
that the relative space taken by the gap
between the two curves is a negligible
proportion eventually.

CSE291-14: The Number Field Sieve; Combinations of congruences 47/58

The L function

The following notation is attributed to R. Schroeppel.

Lx [a, α] = exp
(
α(log x)a(log log x)1−a

)
.

CEP with the L function
A random integer n ≤ Lx [a, α] is Lx [b, β]-smooth with probability:

Lx

[
a − b, −α

β
(a − b)(1 + o(1))

]
.

This formulation is very important for analyzing sieve algorithms.

CSE291-14: The Number Field Sieve; Combinations of congruences 48/58

Calculus with
Lx [a, α] = exp

(
α(log x)a(log log x)1−a)

.

Basic formulae with L

Lx [a, α] × Lx [b, β] =

Lx [a, α + o(1)] if a > b,
Lx [b, β + o(1)] if b > a,
Lx [a, α + β] if a = b.

Lx [a, α] + Lx [b, β] =

Lx [a, α + o(1)] if a > b,
Lx [b, β + o(1)] if b > a,
Lx [a, max(α, β)] if a = b.

Lx [b, β]loglog x Lx [a,α] = Lx [a + b, αβ].

LLx [b,β][a, α] = Lx [ab, αβab1−a + o(1)].

CSE291-14: The Number Field Sieve; Combinations of congruences 49/58

Computation model

Analysis is done in the RAM model: memory access is for free.

Of course, given the leeway in the final asymptotic complexity
estimate, this does not matter much.

CSE291-14: The Number Field Sieve; Combinations of congruences 50/58

Vanilla QS
Let A = LN [a, α] be the bound on i .
Let B = LN [b, β] be the smoothness bound.

The number of collected relations is:

LN [a, α]︸ ︷︷ ︸
exhaust i

×(smoothness prob.).

The cost of collecting relations (with detection by sieving) is:

LN [a, α] × (log log B + (smoothness prob.) × (factoring time)).

The cost of linear algebra (π(B) equations and unknowns) is:

(LN [b, β + o(1)])ω = LN [b, ωβ + o(1)].

Both smoothness probability and factoring time depend on B.
CSE291-14: The Number Field Sieve; Combinations of congruences 51/58

Collecting relations
Assume a < 1. We have

max
−A≤i≤A

|f (i)| = 2A
√

N = LN [1, 1/2 + o(1)].

Smoothness probability is LN [1 − b, − 1
2β (1 − b)(1 + o(1))].

We want enough relations:

LN [a, α] × LN [1 − b, − 1
2β

(1 − b)(1 + o(1))] = LN [b, β + o(1)].

In particular:
we need β > 0, therefore we must have a ≥ 1 − b.
we cannot have b < 1/2: an LHS-RHS match would be
impossible.

So let’s try a = b = 1/2.
CSE291-14: The Number Field Sieve; Combinations of congruences 52/58

With a = b = 1/2

We want enough relations:

LN [1/2, α] × LN [1/2, − 1
4β

(1 + o(1))] = LN [1/2, β + o(1)],

α − 1
4β

(1 + o(1)) = β + o(1),

α = (β + 1
4β

)(1 + o(1)).

Note that this implies in particular α > β.

CSE291-14: The Number Field Sieve; Combinations of congruences 53/58

Still some work to do

There are still a few undecided things.

How much does it cost to factor the smooth values?
Options: resieving, TD, ECM, Batch smoothness detection.
How much does the linear algebra cost?
Options: Gauss, or (later developed) sparse linear algebra.

CSE291-14: The Number Field Sieve; Combinations of congruences 54/58

TD + ω ≥ 2

Assume we do TD for each smooth f (i).

Relation collection: A log log B + π(B)2.
Linear algebra π(B)ω.

Total cost LN [1/2, max(α, 2β, ωβ)(1 + o(1))]. Minimize as follows:

α = ωβ,

β + 1/(4β) = ωβ,

4(ω − 1)β2 = 1,

β = 1
2
√

ω − 1
.

So that the complexity (with TD) is LN [1/2, ω
2
√

ω−1(1 + o(1)).

CSE291-14: The Number Field Sieve; Combinations of congruences 55/58

Factoring does not matter

TD is not a very smart mechanism.
Yet, as long as we use sieving to detect the smooth values f (i),
what algorithm we use to actually factor them does not matter.

However, if even sieving were to be replaced by some exponential
algorithm, the complexity would be different.

The complexity of QS is

LN [1/2,
ω

2
√

ω − 1
(1 + o(1))].

If ω = 2, this becomes LN [1/2, 1 + o(1)].

CSE291-14: The Number Field Sieve; Combinations of congruences 56/58

Impact of improvements

Many improvements were made to MPQS. Some are rather minor,
and some had a major practical impact.
What is their impact on the complexity?
Take MPQS. |f (i)| drops from 2A

√
N to 1√

2A
√

N.
In both cases, this is LN [1, 1/2 + o(1)].

Disappointment
None of the practical improvements to QS (even MPQS) has the
slightest impact on its asymptotic complexity.

CSE291-14: The Number Field Sieve; Combinations of congruences 57/58

Impact of improvements

Many improvements were made to MPQS. Some are rather minor,
and some had a major practical impact.
What is their impact on the complexity?
Take MPQS. |f (i)| drops from 2A

√
N to 1√

2A
√

N.
In both cases, this is LN [1, 1/2 + o(1)].

Disappointment
None of the practical improvements to QS (even MPQS) has the
slightest impact on its asymptotic complexity.

CSE291-14: The Number Field Sieve; Combinations of congruences 57/58

Wrap-up

Combination of congruences.
QS successfully introduces sieving.
Many improvements, some minor, some major.
MPQS, special-Q.
Massive distribution becomes possible (MPQS).
Analysis yields LN [1/2, 1 + o(1)], but unfortunately most
improvements are invisible.

CSE291-14: The Number Field Sieve; Combinations of congruences 58/58

	Combinations of congruences
	Combining congruences
	CFRAC and QS
	QS-era improvements
	The golden age of QS and MPQS
	Analysis of QS

