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Part 3b

Algebraic Number Theory background

Number fields, algebraic numbers

Algebraic integers, ring of integers

Ideals

Factoring into prime ideals

Units and the class group



Textbooks
Numerous textbooks available on algebraic number theory.

A good read:
P. Samuel, Algebraic theory of numbers, Hermann,
1970 (multiple editions).

Not advisable for a first read:
S. Lang, Algebraic Number Theory, Springer, GTM
110, 1994.

E. Weiss, Algebraic Number Theory, Dover, Mc-Graw
Hill, 1963 (multiple editions).

G. Janusz, algebraic number fields, AMS, GSM 7,
1996.
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Plan

Number fields, algebraic numbers

Algebraic integers, ring of integers

Ideals

Factoring into prime ideals

Units and the class group



Goals

Our goals here:

define the basic vocabulary: algebraic numbers, number fields.
give a few examples.
introduce the very few bits of Galois theory that we need in
order to define the norm of an element.

Note: we deliberately don’t give proofs. Those can be found in
textbooks.
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Algebraic numbers

Def. Let K ⊂ L be two fields. “x ∈ L is algebraic over K” means:

∃P ∈ K [X ], P(x) = 0.

if all x ∈ L are algebraic, L/K is an algebraic extension ;
a finite extension is algebraic ;
an algebraic extension is not necessarily finite (Q̄).
Common terminology:

Algebraic number = something algebraic over (a finite
extension of) Q.
Number field = a finite algebraic extension of Q.
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Roots of the defining polynomial

Let f be irreducible over Q.
By construction, f has a root in K =Q[x ]/f .
Where do the other roots of f lie ?

In some cases, they are also in K . Some examples:
If f has degree 2,
If f is a cyclotomic polynomial (e.g. x4 + 1 = Φ8).

Most often they are not. Most typical example: Q( 3√2).

It is sometimes convenient to think of the roots of f in an
algebraic closure of K . For example in C.
This links to the Galois group.
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Example

sage: K.<h> = NumberField(x^4+1)
sage: h.minpoly()
x^4 + 1
sage: h.minpoly().roots(K)
[(h, 1), (-h, 1), (h^3, 1), (-h^3, 1)]
sage: h.minpoly().change_ring(K).factor()
(x - h) * (x + h) * (x - h^3) * (x + h^3)
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Example

sage: K.<alpha> = NumberField(x^3-2)
sage: alpha.minpoly()
x^3 - 2
sage: alpha.minpoly().roots(K)
[(alpha, 1)]
sage: alpha.minpoly().change_ring(K).factor()
(x - alpha) * (x^2 + alpha*x + alpha^2)

On top of K , the field where the other roots of f live is an
extension of degree 2.
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Splitting field

Let f be irreducible over Q.
K = Q(α) =Q[x ]/f brings one root to f .

there may be more.
But α may also be the only root: f may factor in K as

f = (x − α) × (irreducible factor of degree n − 1).

We may then build another extension, of degree at most n − 1.
And so on and so forth.

The splitting field (normal closure) of f has degree at most n!.
This is what happens generically, for f having no magical property.
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Galois groups

Normal extension
A field extension L/K is normal if and only if, given g ∈ K [x ]
irreducible:

g has a root in L ⇔ g splits completely.

Def. Normal+Separable=Galois (see textbooks, e.g. Stewart).
In the NFS world, we’re always separable.
Gal(L/K ): group of automorphisms of L leaving K fixed.
In the NFS context, L is never computed, and we are not really
interested in Gal(L/Q) either. However:

Gal(L/Q) is the Galois-related thing which is a group.
We are interested in its action on K .
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Galois group (2)

Q

K

L, normal closure of K

GK = Gal(L/K )

G/GK

G = Gal(L/Q)

When we speak of “the Galois group of f ”, or of K , we’re
implying G .
But G can be partitioned into cosets, each acting in a unique
way on K (elements of G do not leave K fixed!).

A “random” polynomial of degree n has Galois group Sn.
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Embeddings into C

Take for example K = Q(α) =Q[x ]/x3 − 2. We have three
embeddings of K into C.

ϕ1 :
{

K → C,

α 7→ 3√2,
ϕ2 :

{
K → C,

α 7→ j 3√2,
ϕ3 :

{
K → C,

α 7→ j2 3√2.

The Galois group of x3 + 2 is S3, of order 6.
Given K = Q(α), the set of roots in a splitting field is:
(α1, . . . , αn) = (ασ)σ∈G/GK . (notation: ασ = σ(α))
The Galois group thus controls the various existing embeddings
into C.
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Norm, trace, etc

Symmetric functions of the roots are defined over Q
(because by Galois theory, they are fixed by G).
Two important examples. Let ζ ∈ K .

TrK/Q(ζ) =
∑

σ∈G/GK

ζσ,

NormK/Q(ζ) =
∏

σ∈G/GK

ζσ.

In particular the norm can be turned into something very
algorithmic, computable, and useful.
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Computing the norm

Let A(α) =
∑

i aiα
i denote an element of K .

A denotes a polynomial with coefficients in Q.
The Galois conjugates are A(α)σ = A(ασ).
But note also that {ασ}σ∈G/GK are exactly the roots of f .

Thus the computation of the norm is achieved by the Resultant of
f and A.
The resultant is the product of the evaluations of a polynomial at
all the roots of another.

it is an eminently computable thing!
Only arithmetic in the coefficient ring is needed.
and we will deal with simple cases only.
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The norm and the resultant
Definition of Res(u(x), v(x))

Res(u(x), v(x)) = lc(u)deg v ∏
u(µ)=0

v(µ) = lc(v)deg u ∏
v(ν)=0

u(ν),

= (also) determinant of the Sylvester matrix.

Repeat: the roots of f are {ασ}σ∈G/GK .
IOW: f = lc(f )

∏
σ∈G/GK

(x − ασ)
Therefore

NormK/Q(A(α)) =
∏

σ∈G/GK

A(ασ) =
∏

r∈roots of f
A(r)

= (1/fn)deg A Res(f , A).
Notice that we do not need to compute L or Gal(L/K ).
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Common case in NFS

In the NFS context, we often consider algebraic numbers like
a − bα. Their norm can be computed easily.

NormK/Q(a − bα) = 1
fn

Res(f , a − bx) = bn

fn
f (a

b ),

= 1
fn

(
fnan + fn−1an−1b + · · · + f0bn

)
.

If one introduces the homogeneous polynomial

F (X , Y ) = Y nf (X/Y ) = fnXn + fn−1Xn−1Y + · · · + f0Y n,

then NormK/Q(a − bα) = 1
fn F (a, b).

Note: F is more than a computational hack. It means something.
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Working in K

More generally, one may compute in number fields using
polynomials in a generating element.
Trace, norm, etc of an element ζ correspond to trace, determinant
of the multiplication-by-ζ matrix in any basis. We even have:

Definition: Characteristic polynomial of an algebraic number
The char. poly. of an algebraic number ζ is the char. poly. of the
multiplication-by-ζ matrix in any basis.

Definition: Minimal polynomial of an algebraic number
The minimal polynomial of an algebraic number ζ is the min. poly.
of the multiplication-by-ζ matrix in any basis.
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Software

Software for working with number fields:

Pari/gp (GPL). Most advanced. Interface is very bad.
Sage. Includes pari, but lots of glue code missing.
Magma. Includes a severely outdated version of pari. But
interface is very complete. Good enough for our purposes.
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Keep in mind: norm, resultant, Galois group

The norm of any algebraic number can be computed.
It is obviously a multiplicative thing.
To compute it, the Resultant can be used.
Norm(a − bα) = 1

fn Res(a − bx , f ) = 1
fn F (a, b).

The Galois group dwells somewhere around. It’s often the full
symmetric group. We don’t have to bother much with it,
except maybe know that it exists.
All of this is readily available in computer software.
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Plan

Number fields, algebraic numbers

Algebraic integers, ring of integers

Ideals

Factoring into prime ideals

Units and the class group



Goals

Goal here:

Give a proper definition of the ring of integers of a number
field.
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Integrality

Definition: integral element
Let A ⊂ B be two rings. “x ∈ L is integral over A” means:

∃P ∈ A[X ], P monic and P(x) = 0.

Prop. x ∈ L is integral over A iff ∃M f.g. A-module with xM ⊂ M.
Def. Elements of B which are integral over A form the integral
closure of A in B (which is an A-algebra).
Def. A ring is integrally closed if it is its own integral closure in its
field of fractions.

Examples: Z is integrally closed.
An integral closure is integrally closed.
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Algebraic integers

In the number field case:
Definition: algebraic integer
Let K be a number field. An algebraic number ζ ∈ K is an
algebraic integer iff it is integral over Z.

Criterion: an algebraic number is integral iff its characteristic
polynomial has coefficients in Z.
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Example

sage: K.<z>=NumberField(x^2+11)
sage: z.charpoly()
x^2 + 11
sage: ((z+1)/2).charpoly()
x^2 - x + 3

Sometimes, there are surprising algebraic integers!
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Ring of integers

Definition: ring of integers
Def. Let K/Q be a number field. The ring of integers OK of K is
the integral closure of Z in K .

Prop. OK is a finitely generated torsion-free Z-module.

Finitely generated: there is a basis over Z.
Torsion-free: there is no way to multiply something by an
integer and get zero.
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Ring of integers

Properties we expect and appreciate:

all algebraic integers are in the ring of integers.
the ring of integers is a ring.

OK is the most reasonable Z-like ring to work with within K .
Unfortunately, computing OK is difficult.
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Example

sage: K.<alpha>=NumberField(x^3+7)
sage: OK=K.ring_of_integers()
sage: OK.basis()
[1, alpha, alpha^2]
sage: K.<alpha>=NumberField(x^4 - 2*x^3 - 2*x^2 - 2*x + 1)
sage: OK=K.ring_of_integers()
sage: OK.basis()
[1/2*alpha^2 + 1/2, 1/2*alpha^3 + 1/2*alpha, alpha^2, alpha^3]
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Examples of algebraic integers

Textbook case: f ∈ Z[x ] monic and irreducible.
Let K = Q(α) =Q[x ]/f .

Then α is an algebraic integer.
So are all a − bα with a, b ∈ Z,
or A(α) with A ∈ Z[x ]. But OK may be larger than Z[α] !

Real-life case: f not monic
Say f = fnxn + · · · . Let α̂ = fnα. We have:

0 = f n−1
n f (α) = f n

n αn + f n−1
n fn−1αn−1 + · · · + f n−1

n f0,

= α̂n + fn−1α̂n−1 + fnfn−2α̂n−2 + · · · + f n−1
n f0.

So α̂ is an algebraic integer. But OK may be larger than Z[α̂] !
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Integral basis

We can always fabricate subrings of OK of the form Z[α].
But in general OK needs not be of that form.
Which best form can we expect in full generality ?

OK can be written as: OK = Zω1 + · · ·Zωn,
where ωi are algebraic integers of the form 1

d Ai(α) for some
common denominator d (hard task: find the ωi).
(ωi)i is a Q-basis of K .
The matrix whose rows are coefficients of Ai may be put into
Hermite normal form. Internally this is what is done in
software.
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Keep in mind

The ring of integers OK is cool.
The minimal polynomials of its elements are in Z[x ] and
monic.
OK is a ring, with a basis.
It is unfortunately rarely as simple as Z[α].
When we start from a non-monic definition polynomial, its
root is not an algebraic integer, and Z[fnα] is typically much
smaller than OK .

Further topic: orders
Orders (= certain types of subrings) in number fields are useful.
These must be introduced in order to explain how to compute OK .
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A picture

K

Q Z⊃

OK⊃

integral closure

p1 · · · pm

pZ⊃

⊃

Fpk1 · · ·Fpkm

Fp

{±1}

O∗
K , the unit group

⊃

⊃

We are chiefly interested in:

The ring of integers OK , as a first-class citizen in this big
picture. Not necessarily that we must compute it.
The decomposition (factorization) of prime (ideals) of Z in
OK .
Other multiplicative structure, e.g. units.
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Plan

Number fields, algebraic numbers

Algebraic integers, ring of integers

Ideals

Factoring into prime ideals

Units and the class group



Goals

Our goals here:

define ideals, operations on ideals, and some vocabulary.
give a few examples.
show how it can work algorithmically.
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Primes ?

The ring of integers is nice, but lacks one thing: unique
factorization.
Example: in Q(

√
−5), one has 6 = 2 × 3 = (1 +

√
−5)(1 −

√
−5),

and all “look prime”.
However, OK -ideals do enjoy unique factorization.
Here

6OK =
〈
2, 1 +

√
−5

〉2
×

〈
3, 1 +

√
−5

〉
×

〈
3, 1 −

√
−5

〉
,〈

1 +
√

−5
〉

=
〈
2, 1 +

√
−5

〉
×

〈
3, 1 +

√
−5

〉
,〈

1 −
√

−5
〉

=
〈
2, 1 +

√
−5

〉
×

〈
3, 1 −

√
−5

〉
.
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Ideals in OK

Ideals are very important objects in number fields.

Definition
An ideal I of OK is such that:

I forms an additive group.
I is stable under multiplication by elements of OK .

An ideal may be specified by giving a set of generators.

Notation
All sets below are OK -ideals by construction.

⟨x⟩ = xOK = {xa, a ∈ OK }.

⟨x , y⟩ = {xa + yb, a, b ∈ OK }.

⟨x1, . . . , xk⟩ = {
∑

i
xiai , ai ∈ OK }.
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Ideals
We can add ideals:

I + J = {ideal generated by sums of elements of I and J}.

We can multiply ideals:

I × J = {ideal generated by products of elements of I and J}.

We can intersect ideals: I ∩ J = set-wise intersection, really!

Note that since an ideal is made of elements of OK , we have:
I × J ⊂ I × OK = I: «to contain is to divide».
I ∩ J really works as the lcm of ideals.
I + J contains I and J : this is a gcd.
Ideals such that I + J = OK are coprime.
E.g. two ideals that contain coprime integers are coprime.
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Ideals

Definition: prime ideals
An ideal I is prime if ab ∈ I implies a ∈ I or b ∈ I.
Fact: if I is prime, then OK /I is an integral domain.

Definition: maximal ideals
An ideal I is maximal if it is maximal for inclusion (nobody
between I and OK ).
Fact: if I is prime, then OK /I is a field.

Fact: in a number field, all prime ideals are maximal. So these two
concepts are identical as far as we are concerned.
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Fractional ideals

Ideals in OK form a multiplicative semigroup. Extension desired !
Def I ⊂ K is a fractional ideal (of O), or a (fractional) O-ideal iff
I is a non-zero O-module and ∃a ∈ O, aI ⊂ O.

Terminology: Integral ideal: ideal of O.
Fractional ideal: more general.

Informally: fractional ideal = ideal with denominator.

Definition of ideal division

I−1 = {a ∈ K , aI ⊂ OK }.
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Fractional ideals

Fantastic properties of OK

OK is a Dedekind domain (integrally closed, Noetherian, all prime
ideals maximal).
This implies that the fractional OK -ideals form a group with
unique factorization.
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Representing ideals

Note: OK is not in general a principal ideal domain.

Ideals can be represented by a set of generators.
Two are always enough.
Fractional ideals: integer denominator, + generators.
Principal ideals: one generator is possible, but often not
worthwhile (or too large)

Algorithmically, it is sometimes useful to represent ideals more
generally as Z-modules within K , with generators in HNF form.
(HNF = Hermite Normal Form = like Gauss, but on integer
matrices)
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Example

sage: K.<alpha>=NumberField(x^3+7)
sage: OK=K.ring_of_integers()
sage: [K(c) for c in OK.basis()]
[1, alpha, alpha^2]
sage: OK.ideal(11).factor()
(Fractional ideal (11, alpha^2 + 5*alpha + 3))
* (Fractional ideal (11, alpha - 5))

sage: I11a=OK.ideal(11).factor()[0][0]
sage: I11b=OK.ideal(11).factor()[1][0]
sage: I11a.basis()
[11, 11*alpha, alpha^2 + 5*alpha + 3]
sage: I11b.basis()
[11, alpha + 6, alpha^2 + 8]
sage: OK.ideal(29).factor()
(Fractional ideal (-2*alpha^2 + 3*alpha + 10))
* (Fractional ideal (-alpha^2 + 2*alpha - 2))
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HNF means algorithms
sage: L=[u*v for u in I11a.basis() for v in I11b.basis()]
sage: L
[121,
11*alpha + 66,
11*alpha^2 + 88,
121*alpha,
11*alpha^2 + 66*alpha,
88*alpha - 77,
11*alpha^2 + 55*alpha + 33,
11*alpha^2 + 33*alpha + 11,
11*alpha^2 + 33*alpha - 11]

sage: m=matrix(ZZ,[uv.vector() for uv in L])
sage: m1=m.hermite_form(include_zero_rows=False)
sage: m1
[11 0 0]
[ 0 11 0]
[ 0 0 11]
sage: ideal([OK(v) for v in m1.rows()])
Fractional ideal (11)
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Plan

Number fields, algebraic numbers

Algebraic integers, ring of integers

Ideals

Factoring into prime ideals

Units and the class group



Ideals above ideals

For I an OK -ideal, I ∩ Z is a Z-ideal.
I ∩ Z = pZ ⇔ “I lies above p”.
What are the prime ideals that lie above p.
Surely, ⟨p⟩ = pOK is one such ideal, but are there ideals that
contain (divide) ⟨p⟩ = pOK ?
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Obvious mathematical breakthrough

We are attempting to factor the prime number p in the number
field K .

Number fields must be Bill Gates’ delight!

The obvious mathematical breakthrough would be devel-
opment of an easy way to factor large prime numbers.
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Norm of ideals

The quotient ring OK/I is always finite.

Norm I def= # (OK/I). If K is Galois,
∏

σ Iσ = ⟨Norm I⟩.
If I is principal, Norm ⟨γ⟩ = |Norm γ|.
(beware: this is only for (fractional) OK -ideals).
The norm is multiplicative: Norm IJ = Norm I · Norm J .

For example, in a number field of degree n, the norm of ⟨p⟩ is pn.
We look for the largest ideals that contain (divide) ⟨p⟩.

Their norm has to be a p-th power.
There are generally several such prime ideals above p.
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Prime ideals

Important case when I is maximal (same as prime, for us):

then OK/I is a field.
If I lies above p, then OK/I is an extension of Fp =Z/(Z ∩ I).
The degree [OK/I :Z/(Z ∩ I)] is called the residue class degree
or inertia degree of I.
The inertia degree is commonly denoted f , but we also have f
lying around...
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Factorization of pOK

Guiding principle
Try to «read» the factorization of ⟨p⟩ from that of f mod p.

Caveat: This does not always work!
Condition (Dedekind criterion):

if we have defined orders and indices of orders:
p coprime to [OK : Z[α]] (IOW, Z[α] is p-maximal).
In particular, if νp(disc f ) ≤ 1, then our condition is satisfied.
if not, the only thing we can do is to write sufficient
conditions that guarantee that we are in the easy case.
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Sufficient conditions for the Dedekind crit.

In we are in any of the following situations:

OK = Z[α]
or p ∤ fn disc f “coarse Dedekind criterion”
or, informally, if OK is not very different from Z[α], as far as
p is concerned

then the Dedekind criterion holds and we are in the easy case: the
factorization of ⟨p⟩ is directly linked to that of f mod p.
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Factorization of ⟨p⟩ = pOK

Nice situation, when Z[α] is p-maximal.

Factors of pOK correspond to factors of f mod p.
Inertia degrees are degrees of irreducible factors.
Ideal multiplicities are multiplicities of irr. factors.

Example. Let K = Q(α) with α3 = 2.

⟨2⟩ = a3
2, with a2 = ⟨2, α⟩. OK/2OK

∼= (F2)3.
⟨3⟩ = a3

3, with a3 = ⟨3, α + 1⟩. OK/3OK
∼= (F3)3.

X 3 − 2 ≡ (X + 2)(X 2 + 3X − 1) mod 5, thus
⟨5⟩ = a5b5, with a5 = ⟨5, α + 2⟩ and b5 = ⟨5, α2 + 3α − 1⟩.
OK/5OK

∼= F5 × F52 .
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More taxonomy
Definitions

p is inert in K if ⟨p⟩ is a prime ideal (hence OK/pOK ≡ Fpd ).
p ramifies in K if ⟨p⟩ has a repeated factor (⇒ p | disc K ).
p splits completely in K if ⟨p⟩ factorizes only into prime ideals
of inertia degree 1.

Prime ideals of OK also inherit this terminology: inert, ramified.
Unramified ideals have multiplicity 1 in the factorization of
(I ∩ Z)OK .
Examples on previous slide: a2, a3 ramified. a5, b5 unramified.
Important, for f defining a p-maximal Z[α]:

p ramifies iff f has a repeated factor (i.e. p | disc f ).
Also holds more generally: p ramifies iff p | disc K .
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Factoring ideals into prime ideals

Given a (possibly fractional) OK -ideal I, how do we factor it into
prime ideals?

I = I1 · I2 · · · · · Ik .

This is a two-step process:

Factor Norm I.
For each pk that appears in the factorization, find which of
the prime ideals above p have a non-zero valuation at I.
If I is fractional, one simple way to go is to factor the integral
ideal dI first, and then divide by the prime ideals that divide
dOK .
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Prime ideals above primes

K

Q Z⊃

OK⊃ p1 · · · pm

pZ⊃

⊃ Fpk1 · · ·Fpkm

Fp
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Breathe

Things to keep in mind:
Ideals, in general, are things that we can deal with:

they have bases (as Z-modules) or generators (as OK
modules).
operations: +, × (also: ∩).
we can do operations on ideals using linear algebra.

Prime numbers in Z factor into prime ideals in OK .
Prime ideals in OK :

are always above some rational prime p in Z.
lead to finite fields of the form OK /I (finite field extending
Fp).
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Easy ideals

Some ideals are very easy to work with.
When I is unramified and has residue class degree 1, then
I = (p, α − r) for some r ∈ Fp. This corresponds to the field
isomorphism: {

OK/I → Fp,
α 7→ r

Note: these ideals are the most common ones!

There are only finitely many prime ideals whose norm is not
coprime to disc K .
Among the unramified prime ideals, those of residue class
degree > 1 are less frequent.
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Factorization of ⟨a − bα⟩ = (a − bα)OK

Important case for NFS: factorization of I = ⟨a − bα⟩.

It’s actually easy to find the easy prime ideals that divide I.

See next lecture.
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Further topics

Non-easy ideals
While non-easy ideals are exceedingly rare in the NFS context,
there are a few situations where we want to deal with the mildly
complicated process of finding their valuations in factorizations.
This is covered in books (e.g. Cohen). I probably won’t cover it.

Distribution of prime factoring patterns
When factoring ⟨p⟩, factoring patterns are not random at all.
They are prescribed by a very important theorem called
Chebotarev’s density theorem, which ties these patterns to the
Galois group.
Again, I probably won’t cover it.
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Plan

Number fields, algebraic numbers

Algebraic integers, ring of integers

Ideals

Factoring into prime ideals

Units and the class group



Units

Which elements of OK are invertible ?

Theorem
An algebraic integer x ∈ OK is invertible iff NormK/Q(x) = ±1.

Caveat: x ∈ K with Norm = 1 has no reason to be a unit in OK .
As an abelian group, UK has:

A (finite!) torsion subgroup Utors (roots of unity) ;
a rank, so that UK ∼= Utors × Zrank.
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Units

Finding torsion units is essentially trivial.
Finding the rank of the torsion-free part is also trivial (Dirichlet
Unit Theorem).
It is very difficult to find the generators of the torsion-free part.
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The class group

Principal ideals form a subgroup of the group of (fractional) ideals.

Class group, class number
The quotient I(OK )/K× is called the class group Cl(OK ).
Its order is called the class number of OK , often denoted h.

Fact: the class group is a finite abelian group.

Various consequences of the definition:

An ideal is principal iff it maps to zero in the class group.
If h = 1 (the class group is trivial) then any ideal is principal.
If the exponent of the class group is λ, then for any ideal, Iλ

is principal.

CSE291-14: The Number Field Sieve; Algebraic Number Theory background 57/58



Computing the class group

Computing the class number (and structure of Cl(OK )) is hard.
It is linked to the computation of a system of generators for units.
The number field sieve does in fact include the statement of a
method for tackling the problem.
Generally, the complexity for computing h is subexponential.

Further topics
There is a lot more to say about the unit group and the class
group (which are intimately related).
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