CSE291-14: The Number Field Sieve

https://cseweb.ucsd.edu/classes/wi22/cse291-14

Emmanuel Thomé

January 20, 2022

CSE291-14: The Number Field Sieve

Part 3c

NFS in the not-so-easy case

A roadmap for NFS

Stumbling blocks

Prime ideals and factorization of $\langle a - b\alpha \rangle$

Making sense of a relation

The main steps of NFS and the NFS diagram

We learned a lot from the algebraic number theory background. How do we get back on our feet, and think about a factoring algorithm?

- The roadmap of the too-easy algorithm seemed very simple.
- We learned about multiple roadblocks that we have to circumvent to make this work:
 - Beyond the entirely-trivial cases (how do we factor F_7 ?)
 - and also in greater generality (how do we factor general numbers?)
- And then, assuming all this can be overcome, can we really make this a sieving algorithm?

A roadmap for NFS

Stumbling blocks

Prime ideals and factorization of $\langle a - b \alpha \rangle$

Making sense of a relation

The main steps of NFS and the NFS diagram

- Find f ∈ Z[x] and m ∈ Z such that f(m) ≡ 0 mod N. Neither m, nor deg f, nor the coefficients of f should be too large.
 - The analysis will help us see that in greater detail.
 - For some numbers, some very nice values exist.
- Fix a smoothness bound B.
- Find many pairs (*a*, *b*) such that:
 - a bm factors into primes below *B*.
 - $\langle a b\alpha \rangle$ factors into prime ideals of norm below *B*.
- Using linear algebra, find a subset of the (a bx) such that:
 - $\prod_i (a_i b_i m)$ is a square in \mathbb{Z} .
 - $\prod_i (a_i b_i \alpha)$ is a square in $\mathbb{Z}[\alpha]$.
- Write down both square roots in \mathbb{Z} and $\mathbb{Z}[\alpha]$, map them to $\mathbb{Z}/N\mathbb{Z}$, and hopefully get a factor.

- Find $f \in \mathbb{Z}[x]$ and $m \in \mathbb{Z}$ such that $f(m) \equiv 0 \mod N$. Neither m, nor deg f, nor the coefficients of f should be too large.
 - The analysis will help us see that in greater detail.
 - For some numbers, some very nice values exist.
- Fix a smoothness bound B.
- Find many pairs (a, b) such that:
 - a bm factors into primes below *B*.
 - $\langle a b\alpha \rangle$ factors into prime ideals of norm below *B*.
- Using linear algebra, find a subset of the (a bx) such that:
 - $\prod_i (a_i b_i m)$ is a square in \mathbb{Z} .
 - $\prod_i (a_i b_i \alpha)$ is a square in $\mathbb{Z}[\alpha]$.
- Write down both square roots in \mathbb{Z} and $\mathbb{Z}[\alpha]$, map them to \mathbb{Z}/\mathbb{NZ} , and hopefully get a factor.

- Find f ∈ Z[x] and m ∈ Z such that f(m) ≡ 0 mod N. Neither m, nor deg f, nor the coefficients of f should be too large.
 - The analysis will help us see that in greater detail.
 - For some numbers, some very nice values exist.
- Fix a smoothness bound B.
- Find many pairs (a, b) such that:
 - a bm factors into primes below *B*.
 - $\langle a b\alpha \rangle$ factors into prime ideals of norm below *B*.
- Using linear algebra, find a subset of the (a bx) such that:
 - $\prod_i (a_i b_i m)$ is a square in \mathbb{Z} .
 - $\prod_i (a_i b_i \alpha)$ is a square in $\mathbb{Z}[\alpha]$.
- Write down both square roots in \mathbb{Z} and $\mathbb{Z}[\alpha]$, map them to \mathbb{Z}/\mathbb{NZ} , and hopefully get a factor.

 Find f ∈ Z[x] and m ∈ Z such that f(m) ≡ 0 mod N. Neither m, nor deg f, nor the coefficients of f should be too large.

• The analysis will help us see that in greater detail.

- For some numbers, some very nice values exist.
- Fix a smoothness bound B.
- Find many pairs (a, b) such that:
 - a bm factors into primes below *B*.
 - $\langle a b\alpha \rangle$ factors into prime ideals of norm below *B*.
- Using linear algebra, find a subset of the (a bx) such that:

 Π_i(a_i b_im) is a square in ℤ.
 Π_i(a_i b_iα) is a square in ℤ[α].
 This is tricky!
- Write down both square roots in \mathbb{Z} and $\mathbb{Z}[\alpha]$, map them to $\mathbb{Z}/N\mathbb{Z}$, and hopefully get a factor.

- Find f ∈ Z[x] and m ∈ Z such that f(m) ≡ 0 mod N. Neither m, nor deg f, nor the coefficients of f should be too large.
 - The analysis will help us see that in greater detail.
 - For some numbers, some very nice values exist.
- Fix a smoothness bound B.
- Find many pairs (a, b) such that:
 - a bm factors into primes below *B*.
 - $\langle a b\alpha \rangle$ factors into prime ideals of norm below *B*.
- Using linear algebra, find a subset of the (a bx) such that:
 - $\prod_i (a_i b_i m)$ is a square in \mathbb{Z} .
 - $\prod_i (a_i b_i \alpha)$ is a square in $\mathbb{Z}[\alpha]$.
- Write down both square roots in \mathbb{Z} and $\mathbb{Z}[\alpha]$, map them to $\mathbb{Z}/N\mathbb{Z}$, and hopefully get a factor.

A roadmap for NFS

Stumbling blocks

Prime ideals and factorization of $\langle a - b\alpha \rangle$

Making sense of a relation

The main steps of NFS and the NFS diagram

NFS

Not all fields are as cool as $\mathbb{Q}(\sqrt{-11})$ (see lecture 4).

- The ring of integers is not always obvious.
 Sometimes, it is even extremely hard to compute O_K!
- In general, we do not have unique factorization of elements.
- We're not certain that we'll always like to restrict ourselves to a monic definition polynomial. (Spoiler alert: indeed, we won't!)
- The units can be much more complicated than ± 1 .

We expect some difficulties!

In the cubic integers example, Pollard only had the units issue to deal with.

- The field Q(α) = Q[x]/(x³ + 2) does have a unit of infinite order.
- Fortunately, this generator is easy to find: 1 + α. This is easy to see: Res(1 + x, x³ + 2) = (-1)³ + 2 = 1.

So there's no really annoying difficulty here. We can simply add a column with the valuation in $(1 + \alpha)$.

What is a real pain, however, is how to factor algebraic numbers into elements. We'll leave that aside.

In the case of $\mathbb{Q}(\sqrt[3]{-2})$, we would need the following preparation work.

- Choose a smoothness bound B.
- List all primes below *B*.
- List all primes in $\mathbb{Q}(\alpha)$ whose norm is below *B*.
- List the known units $(-1 \text{ and } 1 + \alpha)$

Then we would need to find pairs (a, b) such that we have simultaneous smoothness.

- Can we do that with sieving? Yes.
- Will this end up giving us a factorization? Yes.

We are interested in many possible polynomials $\phi = a - bx$.

Note: it is useless to consider the case gcd(a, b) > 1, since it brings no useful new information compared to the coprime case.

Pollard used sieving in a simple way:

- For each b from 1 to 2000, sieve the range -4800 ≤ a < 4800 in order to detect the smooth values of a bm. See file pollard.sage on Canvas.
- For each apparently smooth a bm, compute and try to factor Norm $(a b\alpha)$.
- In cases where Norm $(a b\alpha)$ is smooth, factor it, and record this information.

 F_7 was first factored with CFRAC in 1970.

Pollard's method: 1988.

- Is it significantly faster? Not really.
- Is it a general factoring method? Not at all.
- But it does bring something new.

First, we'll see how it can work with a number fields where not all ideals are principal.

A roadmap for NFS

Stumbling blocks

Prime ideals and factorization of $\langle a - b\alpha \rangle$

Making sense of a relation

The main steps of NFS and the NFS diagram

We're definitely going to describe a sieving algorithm.

But: for the moment (next few slides), our description will be trial-division-based.

Remember that conceptually, sieving can be introduced after the fact by swapping two loops.

Two sides

Whenever we want to create a relation, there are clearly two sides to consider. Similarities are very strong.

- On the rational side, we compute a bm.
 - For each prime number p, see if $p \mid a bm$. If yes, record the valuation.
 - If a bm is fully factored, we're happy.
 - Pay attention to ± 1 .
- On the algebraic side, we "compute" $a b\alpha$.
 - For each prime ideal p, see if p | ⟨a − bα⟩. If yes, record the valuation.
 - If $\langle a b\alpha \rangle$ is fully factored this way, we're happy.
 - Pay attention to units.

Note: this does not mean that we factor $a - b\alpha$. Note2: we need to think a bit about the interpretation of the relation that we obtain. In order to be able to factor things on the algebraic side:

 we need to determine all "small" prime ideals that will define our factor base.

"small": their norm must be below some bound *B*.

• we need be able to check if an ideal divides another.

We're also aware of the gap between factoring an element (which is not well-defined), and factoring an ideal into prime ideals. Units are part of this gap.

Prime ideals and factorization of $\langle a - b\alpha \rangle$ Hard things vs doable things Describing prime ideals Factoring into ideals

Bad news, first

Real-life example (from DLP-240):

 $f = {}^{286512172700675411986966846394359924874576536408786368056} x^3$

+ 24908820300715766136475115982439735516581888603817255539890 x^2

 $-\ 18763697560013016564403953928327121035580409459944854652737 \, \textit{x}$

 $-\ 236610408827000256250190838220824122997878994595785432202599$

disc f = A 236-digit integer (not an RSA modulus!).

Computing $\mathcal{O}_{\mathcal{K}}$ is very hard

It is very hard to be absolutely sure that we have computed $\mathcal{O}_{\mathcal{K}}$.

Computing $\mathcal{O}_{\mathcal{K}}^*$ is infeasible

The computation of a system of generators for $\mathcal{O}_{\mathcal{K}}^*$ is completely out of reach.

While the global objects (such as \mathcal{O}_K and \mathcal{O}_K^*) are hard to compute, everything that is local (attached to a prime p) is much more tractable (polynomial in log p and deg f).

- For any prime p, we can describe the prime ideals of \mathcal{O}_K that are above p, even if we do not know \mathcal{O}_K .
- For any prime ideal \mathfrak{p} , finding the \mathfrak{p} -valuation of an ideal such as $\langle a b\alpha \rangle$ is doable, even if we do not know $\mathcal{O}_{\mathcal{K}}$.
- For most primes *p*, these tasks are actually very easy.

The other bit of good news is that we can work around the fact that computing \mathcal{O}_{K}^{*} is out of reach.

Prime ideals and factorization of $\langle a - b\alpha \rangle$ Hard things vs doable things Describing prime ideals Factoring into ideals

Preliminary question: does p divide f_n or disc(f)? If yes, you'll have to ask an expert (they won't charge much).

If not, then $\mathbb{Z}[\alpha]$ (or $\mathbb{Z}[\hat{\alpha}]$ if f not monic) can be used in lieu of \mathcal{O}_{K} . We can really do as if they were the same.

- If f factors modulo p into irreducible factors of degrees d₁ + ··· + d_k = n, then there are k prime ideals above p, of residue class degrees d₁ to d_k.
- Repeated factors cannot appear (because $p \nmid \text{disc } f$).

Example

 $f = x^3 + 2$, p = 31: f splits completely mod p.

There are three prime ideals of degree 1 above p.

 $f = x^3 + 2$, p = 41: f splits mod p into $(\text{deg} = 1) \times (\text{deg} = 2)$. There are two prime ideals, of degrees 1 and 2, above p.

Identifying most prime ideals

In the easy case $(p \nmid f_n \operatorname{disc} f)$, a prime ideal above p is uniquely determined by

- The prime number p
- One of the irreducible factors of f mod p.

The most typical case is when the residue class degree is 1. Such a prime ideal can be identified as (p, x - r), or $(p, \alpha - r)$, or (p, r) depending on notations.

(p, x - r) is the prime ideal above p that contains all algebraic integers that are \mathcal{O}_{K} -multiples of $(\alpha - r)$.

This is an implicit description, but it is sufficient for NFS. Caveat: when $f_n \neq 1$, $(p, x - r) \neq \langle p, \alpha - r \rangle$.

Identifying most prime ideals

```
ideals=[]
f=K.defining_polynomial()
Disc=f.discriminant()
for p in prime_range(10000):
    if gcd(p,Disc) != 1:
        continue
    fp=f.change_ring(GF(p)).factor()
    for g,m in fp:
        assert m == 1
        if p^(g.degree()) < 10000:
            ideals.append((p,g))</pre>
```

Cado-NFS has a program called makefb which does just this.

What are the ideals that we miss?

There are prime ideals above the prime divisors of f_n disc f. Cado-NFS calls them "bad ideals".

- Whenever we look at what happens above a given p, everything is doable with a bit of code.
- We are only interested in prime ideals of small norm, and finding the prime numbers *p* in this range that divide *f_n* disc *f* is easy because they're small.

Note: in some cases, the simple mechanism can be extended.

There are a few "bad ideals" in \mathcal{O}_K . With some effort, we can find and describe them.

Prime ideals and factorization of $\langle a - b \alpha \rangle$

Hard things vs doable things Describing prime ideals Factoring into ideals Question: is some ideal above p a divisor of the ideal $\langle a - b\alpha \rangle$?

Preliminary question: does p divide f_n or disc(f)? If yes, you'll have to ask an expert (they won't charge much).

If not, we are in the easy case, and it is quite simple.

Divisibility by easy ideals

Assume that • $p \nmid f_n \operatorname{disc} f$ (easy case).

- p is coprime to gcd(a, b).
- \mathfrak{p} is identified by (p, g(x)).
- We want to check if $\mathfrak{p} \mid \langle \mathbf{a} \mathbf{b} \alpha \rangle$.

$$\mathfrak{p} \mid \langle a - b\alpha \rangle \Leftrightarrow g(a/b) \equiv 0 \mod p$$
$$\Leftrightarrow \operatorname{Res}(a - bx, g(x)) \equiv 0 \mod p$$

Side-effect: at most one matching \mathfrak{p} above a given p, and $\nu_{\mathfrak{p}}(\langle a - b\alpha \rangle) = \nu_{p}(\operatorname{Res}(a - bx, f(x))).$

Only ideals of degree 1 matter

This can happen only if deg g = 1. As long as we are factoring $\langle a - b\alpha \rangle$, only ideals of the form (p, x - r) can appear. To represent the factorization of $\langle a-b\alpha\rangle,$ we typically store this information:

- The integers *a* and *b*.
- All the prime factors of Res(a bx, f(x)).

This is concise, and sufficient to precisely identify all prime ideals in the factorization (when we need to do so).

- For most primes, this boils down to computing $a/b \mod p$.
- For "bad primes", this is doable as well.

All this identification work can be done basically as fast as printf.

A roadmap for NFS

Stumbling blocks

Prime ideals and factorization of $\langle a - b \alpha \rangle$

Making sense of a relation

The main steps of NFS and the NFS diagram

To do an F_7 factorization with Cado-NFS:

```
git clone https://gitlab.inria.fr/cado-nfs/cado-nfs
cd cado-nfs
make -j4
[download f7.params]
[download f7.poly]
./cado-nfs.py --wdir /tmp/F7 f7.params slaves.hostnames=localhost
```

We find in one of the /tmp/F7/F7.upload/F7.*.gz files:

-1044,509:2,2,d,13,10f,119,fa7,3a03:2,b,1f,161,e2f

Example from Cado-NFS

A relation: -1044,509:2,2,d,13,10f,119,fa7,3a03:2,b,1f,161,e2f

- -1044,509: These are a = -1044 and b = 509 (in decimal).
- 2,2,d,13,10f,119,fa7,3a03: The prime factors of $a b \times 2^{43}$.
- 2,b,1f,161,e2f: The prime factors of $\text{Res}(a bx, x^3 + 2)$.

This says that (blue and red are hex above, decimal below):

$$-1044 - 509 \cdot 2^{43} = \pm 2^2 \times 13 \times 19 \times \cdots$$

 $\langle -1044 - 509\alpha \rangle = a$ "bad ideal" of norm 2
 $\times (11, \alpha - 4)$
 $\times (31, \alpha - 27)$
 $\times (353, \alpha - 292)$
 $\times (3631, \alpha - 1389).$

Violet numbers such as 1389 are implicit: $a/b \mod 3631 = 1389$.

- Repeated factors are rare and when a prime divides multiple times, it is printed multiple times (see the 2 in the example).
- The unit on the rational side does not appear in the relation. It's easy enough to find out the sign!
- There is some information about "bad ideals".
 We might provide it to our expert so that they can identify these ideals properly.
- On the algebraic side, we only have a factorization into ideals.

Important caveat for non-monic f

Reminder:

Norm
$$\langle a - b\alpha \rangle =$$
Norm $(a - b\alpha) = \frac{1}{f_n}$ Res $(a - bx, f(x))$.

- We claim that we are writing down the factorization of $\langle a b\alpha \rangle$.
- But the prime factors that we list are those of Res(a - bx, f(x)).
- There's got to be something missing.

The ideal J is here to square things up

When $f_n \neq 1$, we are actually writing down the factorization of $J \times \langle a - b\alpha \rangle$, with $J = \langle 1, \alpha \rangle^{-1} = \{x, x \in \mathcal{O}_K \text{ and } x\alpha \in \mathcal{O}_K\}$.

- $J = \langle 1, \alpha \rangle^{-1}$ is an integral ideal of norm f_n .
 - J has no reason to be prime (e.g., if f_n isn't, J isn't either).
- This is hardly ever mentioned in the literature.

The number $2^{199} + 3^{109}$ is a nice 60-digit number to play with.

./cado-nfs.py --wdir /tmp/c60 \$(bc<<<2^199+3^109)

CSE291-14: The Number Field Sieve; NFS in the not-so-easy case

On the algebraic side, we have:

- in a straightforward manner, the ideals and valuations in the factorization of $\langle a b\alpha \rangle \times J$, when $p \nmid f_n \operatorname{disc}(f)$ (all p but finitely many).
- with some extra work, the full factorization of $\langle a b\alpha \rangle$ can be obtained, but we'll have to ask our expert for that.

If we follow our basic workplan, we can see how linear algebra will produce a subset of the (a - bx) such that

- $\prod_i (a_i b_i m)$ is a square in \mathbb{Z} (we will add a column with the sign for that).
- $\prod_i \langle a_i b_i \alpha \rangle$ has even valuations at
 - all easy prime ideals if we only look at these.
 - all prime ideals with some extra effort.

Therefore $\langle \prod_i (a_i - b_i \alpha) \rangle$ is the square of an ideal, but we do not know if $\prod_i (a_i - b_i \alpha)$ is the square of an element!

We will see how to work around this difficulty when we address the square root computation.

A roadmap for NFS

Stumbling blocks

Prime ideals and factorization of $\langle a - b \alpha \rangle$

Making sense of a relation

The main steps of NFS and the NFS diagram

We have a few ideas of how an NFS algorithm could look like.

- So far, we mentioned ad hoc numbers, but our demo gives away the fact that it also works in greater generality.
- Factoring into prime ideals is doable.
- We mentioned some possibilities down the road, but I claim that these can be circumvented.

Now: list (and name) all the different steps of the General Number Field Sieve (GNFS).

We're going to repeat blocks of our sketch slide "How would we factor N?"

How would we factor N?

• Find $f \in \mathbb{Z}[x]$ and $m \in \mathbb{Z}$ such that $f(m) \equiv 0 \mod N$. Neither m, nor deg f, nor the coefficients of f should be too large.

• The analysis will help us see that in greater detail.

- For some numbers, some very nice values exist.
- Fix a smoothness bound B.

Find many pairs (a, b) such that:

- a bm factors into primes below *B*.
- $\langle a b\alpha \rangle$ factors into prime ideals of norm below *B*.

Using linear algebra, find a subset of the (a − bx) such that:
 ∏_i(a_i − b_im) is a square in Z.
 ∏_i(a_i − b_iα) is a square in Z[α].

• Write down both square roots in \mathbb{Z} and $\mathbb{Z}[\alpha]$, map them to $\mathbb{Z}/N\mathbb{Z}$, and hopefully get a factor.

Finding f and m

Find $f \in \mathbb{Z}[x]$ and $m \in \mathbb{Z}$ such that $f(m) \equiv 0 \mod N$. Neither *m*, nor deg *f*, nor the coefficients of *f* should be too large.

- The analysis will help us see that in greater detail.
- For some numbers, some very nice values exist.

This is called **Polynomial Selection**: next lecture.

Here's a simple method called base-m to do it for arbitrary N:

- Choose the degree d of f s.t. $N > 2^{d^2}$.
- Set $m = \lceil N^{1/(d+1)} \rceil$.
- Write N in base m: $N = \sum_{i=0}^{d} f_i m^i$ where $0 \le f_i < m$.
- Set $f = \sum_{i=0}^{d} f_i x^i$. (not monic!).
- Notation-wise, we sometimes write "the rational polynomial" as g = x - m.

Remark that d is a free parameter in the previous slide.

So is, for example, the bound B.

As well as many, many other parameters!

This is called parameter selection

Parameter selection is among the black arts in NFS!

- Asymptotic analysis gives asymptotic guidelines.
- In practice, it's a complicated matter which requires a lot of global understanding of how NFS works.

We'll tentatively cover a bit of the practical side of this by the end of the quarter.

Finding pairs *a*, *b*

Find many pairs (a, b) such that:

- a bm factors into primes below *B*.
- $\langle a b\alpha \rangle$ factors into prime ideals of norm below *B*.

This is called **Relation Collection**: beginning of February.

One of the ways to do relation collection is sieving.

- It is actually possible to sieve for rational primes $p \in \mathbb{Z}$ but also for prime ideals $\mathfrak{p} \subset \mathcal{O}_{\mathcal{K}}$.
- There are many, many, many parameters.
- Most of the old knowledge of sieving from the QS era is relevant.
- This is the most expensive part, computationally speaking.

Combining pairs

Using linear algebra, find a subset of the (a − bx) such that: ∏_i(a_i − b_im) is a square in Z. ∏_i(a_i − b_iα) is a square in Z[α].

Combining pairs

Using linear algebra, find a subset of the (a - bx) such that: • $\prod_i (a_i - b_i m)$ is a square in \mathbb{Z} .

• $\prod_{i} (a_i - b_i \alpha)$ is (almost) a square in $\mathbb{Z}[\alpha]$.

This comprises two steps: We will see both mid-February.

- The **Filtering** step is a pre-processing step.
- Then we have Linear Algebra proper.

Linear algebra is the second most expensive step, and requires expensive hardware, too.

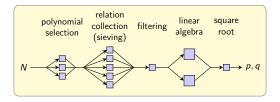
Arrange so that $\prod_i (a_i - b_i \alpha)$ really is a square in $\mathbb{Z}[\alpha]$. Write down both square roots in \mathbb{Z} and $\mathbb{Z}[\alpha]$, map them to $\mathbb{Z}/N\mathbb{Z}$, and hopefully get a factor.

Again, two steps here. End of February.

- A pre-processing step called **the characters step**.
- Then the square root step.

This step will entail some more algebraic number theory, as well asymptotically fast algorithms.

As each square root only has probability 1/2 to factor N, this step is designed to produce several independent square roots.



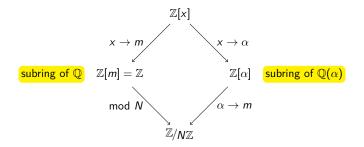
Note: there is also a version of NFS that computes discrete logarithms in \mathbb{F}_p^* . The main outline is similar. End of February.

CSE291-14: The Number Field Sieve; NFS in the not-so-easy case

Some handwaving

- We find f with a known root m modulo N.
- Let $\mathbb{Q}(\alpha)$ be the number field defined by f.
- For any polynomial P(x), we have:
 - the integer P(m);
 - the number field element $P(\alpha)$;

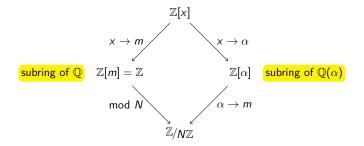
These are compatible: both map to $P(m) \mod N$ in $\mathbb{Z}/N\mathbb{Z}$.



Some handwaving

- We find f with a known root m modulo N.
- Let $\mathbb{Q}(\alpha)$ be the number field defined by f.
- For any polynomial a bx, we have:
 - the integer a bm;
 - the number field element $a b\alpha$;

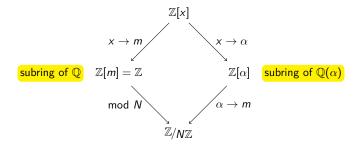
These are compatible: both map to $P(m) \mod N$ in $\mathbb{Z}/N\mathbb{Z}$.



Some handwaving

- We find f with a known root m modulo N.
- Let $\mathbb{Q}(\alpha)$ be the number field defined by f.
- For any polynomial $\prod_i (a_i b_i x)$, we have:
 - the integer $\prod_i (a_i b_i m)$;
 - the number field element $\prod_i (a_i b_i \alpha)$;

These are compatible: both map to $P(m) \mod N$ in $\mathbb{Z}/N\mathbb{Z}$.



Write something multiplicative

The NFS diagram can also be written as a multiplicative diagram, even though it is a bit awkward to write it as such.



No difference in practice between the two diagrams.

- The multiplicative one just says that we won't stumble on factors of N accidentally. There is no practical difference between $\mathbb{Z}[x]$ and the structure on top.
- The multiplicative diagram does have an interest in the discrete logarithm context. CSE291-14: The Number Field Sieve; NFS in the not-so-easy case

A more detailed look at the factorization of $2^{199} + 3^{109}$.

./cado-nfs.py --wdir /tmp/c60 \$(bc<<<2^199+3^109)

CSE291-14: The Number Field Sieve; NFS in the not-so-easy case