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Recap from last time

We learned a lot from the algebraic number theory background.
How do we get back on our feet, and think about a factoring
algorithm?

The roadmap of the too-easy algorithm seemed very simple.
We learned about multiple roadblocks that we have to
circumvent to make this work:

Beyond the entirely-trivial cases (how do we factor F7?)
and also in greater generality (how do we factor general
numbers?)

And then, assuming all this can be overcome, can we really
make this a sieving algorithm?
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How would we factor N?

Find f ∈ Z[x ] and m ∈ Z such that f (m) ≡ 0 mod N.
Neither m, nor deg f , nor the coefficients of f should be too
large.

The analysis will help us see that in greater detail.
For some numbers, some very nice values exist.

Fix a smoothness bound B.
Find many pairs (a, b) such that:

a − bm factors into primes below B.
⟨a − bα⟩ factors into prime ideals of norm below B.

Using linear algebra, find a subset of the (a − bx) such that:∏
i(ai − bim) is a square in Z.∏
i(ai − biα) is a square in Z[α].

Write down both square roots in Z and Z[α], map them to
Z/NZ, and hopefully get a factor.
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NFS

Not all fields are as cool as Q(
√

−11) (see lecture 4).

The ring of integers is not always obvious.
Sometimes, it is even extremely hard to compute OK !
In general, we do not have unique factorization of elements.
We’re not certain that we’ll always like to restrict ourselves to
a monic definition polynomial. (Spoiler alert: indeed, we
won’t!)
The units can be much more complicated than ±1.

We expect some difficulties!
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Pollard’s F7 example

In the cubic integers example, Pollard only had the units issue to
deal with.

The field Q(α) =Q[x ]/(x3 + 2) does have a unit of infinite
order.
Fortunately, this generator is easy to find: 1 + α.
This is easy to see: Res(1 + x , x3 + 2) = (−1)3 + 2 = 1.

So there’s no really annoying difficulty here.
We can simply add a column with the valuation in (1 + α).

What is a real pain, however, is how to factor algebraic numbers
into elements. We’ll leave that aside.
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Pollard’s F7 example

In the case of Q( 3√−2), we would need the following preparation
work.

Choose a smoothness bound B.
List all primes below B.
List all primes in Q(α) whose norm is below B.
List the known units (−1 and 1 + α)

Then we would need to find pairs (a, b) such that we have
simultaneous smoothness.

Can we do that with sieving? Yes.
Will this end up giving us a factorization? Yes.
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Sieving for smooth (a, b)

We are interested in many possible polynomials ϕ = a − bx .

Note: it is useless to consider the case gcd(a, b) > 1, since it
brings no useful new information compared to the coprime case.

Pollard used sieving in a simple way:

For each b from 1 to 2000, sieve the range −4800 ≤ a < 4800
in order to detect the smooth values of a − bm.
See file pollard.sage on Canvas.
For each apparently smooth a − bm, compute and try to
factor Norm(a − bα).
In cases where Norm(a − bα) is smooth, factor it, and record
this information.
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F7

F7 was first factored with CFRAC in 1970.

Pollard’s method: 1988.

Is it significantly faster? Not really.
Is it a general factoring method? Not at all.
But it does bring something new.

First, we’ll see how it can work with a number fields where not all
ideals are principal.
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Sieving: later

We’re definitely going to describe a sieving algorithm.

But: for the moment (next few slides), our description will be
trial-division-based.

Remember that conceptually, sieving can be introduced after the
fact by swapping two loops.
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Two sides

Whenever we want to create a relation, there are clearly two sides
to consider. Similarities are very strong.

On the rational side, we compute a − bm.
For each prime number p, see if p | a − bm. If yes, record the
valuation.
If a − bm is fully factored, we’re happy.
Pay attention to ±1.

On the algebraic side, we “compute” a − bα.
For each prime ideal p, see if p | ⟨a − bα⟩. If yes, record the
valuation.
If ⟨a − bα⟩ is fully factored this way, we’re happy.
Pay attention to units.

Note: this does not mean that we factor a − bα.
Note2: we need to think a bit about the interpretation of the
relation that we obtain.
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Factoring on the algebraic side

In order to be able to factor things on the algebraic side:
we need to determine all “small” prime ideals that will define
our factor base.
“small”: their norm must be below some bound B.
we need be able to check if an ideal divides another.

We’re also aware of the gap between factoring an element (which
is not well-defined), and factoring an ideal into prime ideals. Units
are part of this gap.
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Bad news, first
Real-life example (from DLP-240):

f = 286512172700675411986966846394359924874576536408786368056 x3

+ 24908820300715766136475115982439735516581888603817255539890 x2

− 18763697560013016564403953928327121035580409459944854652737 x
− 236610408827000256250190838220824122997878994595785432202599

disc f = A 236-digit integer (not an RSA modulus!).

Computing OK is very hard
It is very hard to be absolutely sure that we have computed OK .

Computing O∗
K is infeasible

The computation of a system of generators for O∗
K is completely

out of reach.
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Good news

While the global objects (such as OK and O∗
K ) are hard to

compute, everything that is local (attached to a prime p) is much
more tractable (polynomial in log p and deg f ).

For any prime p, we can describe the prime ideals of OK that
are above p, even if we do not know OK .
For any prime ideal p, finding the p-valuation of an ideal such
as ⟨a − bα⟩ is doable, even if we do not know OK .
For most primes p, these tasks are actually very easy.

The other bit of good news is that we can work around the fact
that computing O∗

K is out of reach.
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What are the prime ideals above p?

Preliminary question: does p divide fn or disc(f )?
If yes, you’ll have to ask an expert (they won’t charge much).

If not, then Z[α] (or Z[α̂] if f not monic) can be used in lieu of
OK . We can really do as if they were the same.

If f factors modulo p into irreducible factors of degrees
d1 + · · · + dk = n, then there are k prime ideals above p, of
residue class degrees d1 to dk .
Repeated factors cannot appear (because p ∤ disc f ).

Example
f = x3 + 2, p = 31: f splits completely modp.
There are three prime ideals of degree 1 above p.

f = x3 + 2, p = 41: f splits modp into (deg = 1) × (deg = 2).
There are two prime ideals, of degrees 1 and 2, above p.
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What are the prime ideals above p?

Identifying most prime ideals
In the easy case (p ∤ fn disc f ), a prime ideal above p is uniquely
determined by

The prime number p
One of the irreducible factors of f mod p.

The most typical case is when the residue class degree is 1.
Such a prime ideal can be identified as (p, x − r), or (p, α − r), or
(p, r) depending on notations.

(p, x − r) is the prime ideal above p that contains all algebraic
integers that are OK -multiples of (α − r).

This is an implicit description, but it is sufficient for NFS.
Caveat: when fn ̸= 1, (p, x − r) ̸= ⟨p, α − r⟩.
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Identifying most prime ideals

ideals=[]
f=K.defining_polynomial()
Disc=f.discriminant()
for p in prime_range(10000):

if gcd(p,Disc) != 1:
continue

fp=f.change_ring(GF(p)).factor()
for g,m in fp:

assert m == 1
if p^(g.degree()) < 10000:

ideals.append((p,g))

Cado-NFS has a program called makefb which does just this.
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What are the ideals that we miss?

There are prime ideals above the prime divisors of fn disc f .
Cado-NFS calls them “bad ideals”.

Whenever we look at what happens above a given p,
everything is doable with a bit of code.
We are only interested in prime ideals of small norm, and
finding the prime numbers p in this range that divide fn disc f
is easy because they’re small.

Note: in some cases, the simple mechanism can be extended.

There are a few “bad ideals” in OK .
With some effort, we can find and describe them.
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Divisibility by easy ideals

Question: is some ideal above p a divisor of the ideal ⟨a − bα⟩?

Preliminary question: does p divide fn or disc(f )?
If yes, you’ll have to ask an expert (they won’t charge much).

If not, we are in the easy case, and it is quite simple.
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Divisibility by easy ideals
Assume that p ∤ fn disc f (easy case).

p is coprime to gcd(a, b).
p is identified by (p, g(x)).
We want to check if p | ⟨a − bα⟩.

p | ⟨a − bα⟩ ⇔ g(a/b) ≡ 0 mod p
⇔ Res(a − bx , g(x)) ≡ 0 mod p

Side-effect: at most one matching p above a given p, and
νp(⟨a − bα⟩) = νp(Res(a − bx , f (x))).

Only ideals of degree 1 matter
This can happen only if deg g = 1.
As long as we are factoring ⟨a − bα⟩, only ideals of the form
(p, x − r) can appear.

CSE291-14: The Number Field Sieve; NFS in the not-so-easy case 20/39



Data format

To represent the factorization of ⟨a − bα⟩, we typically store this
information:

The integers a and b.
All the prime factors of Res(a − bx , f (x)).

This is concise, and sufficient to precisely identify all prime ideals
in the factorization (when we need to do so).

For most primes, this boils down to computing a/b mod p.
For “bad primes”, this is doable as well.

All this identification work can be done basically as fast as printf.
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Example from Cado-NFS

To do an F7 factorization with Cado-NFS:

git clone https://gitlab.inria.fr/cado-nfs/cado-nfs
cd cado-nfs
make -j4
[download f7.params]
[download f7.poly]
./cado-nfs.py --wdir /tmp/F7 f7.params slaves.hostnames=localhost

We find in one of the /tmp/F7/F7.upload/F7.*.gz files:

-1044,509:2,2,d,13,10f,119,fa7,3a03:2,b,1f,161,e2f
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Example from Cado-NFS
A relation: -1044,509:2,2,d,13,10f,119,fa7,3a03:2,b,1f,161,e2f

-1044,509: These are a = −1044 and b = 509 (in decimal).
2,2,d,13,10f,119,fa7,3a03: The prime factors of a − b × 243.
2,b,1f,161,e2f: The prime factors of Res(a − bx , x3 + 2).

This says that (blue and red are hex above, decimal below):

−1044 − 509 · 243 = ±22 × 13 × 19 × · · ·
⟨−1044 − 509α⟩ = a “bad ideal” of norm 2

× (11, α − 4)
× (31, α − 27)
× (353, α − 292)
× (3631, α − 1389).

Violet numbers such as 1389 are implicit: a/b mod 3631 = 1389.
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Things to pay attention to

Repeated factors are rare and when a prime divides multiple
times, it is printed multiple times (see the 2 in the example).
The unit on the rational side does not appear in the relation.
It’s easy enough to find out the sign!
There is some information about “bad ideals”.
We might provide it to our expert so that they can identify
these ideals properly.
On the algebraic side, we only have a factorization into ideals.
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Important caveat for non-monic f
Reminder:

Norm⟨a − bα⟩ = Norm(a − bα) = 1
fn

Res(a − bx , f (x)).

We claim that we are writing down the factorization of
⟨a − bα⟩.
But the prime factors that we list are those of
Res(a − bx , f (x)).
There’s got to be something missing.

The ideal J is here to square things up
When fn ̸= 1, we are actually writing down the factorization of
J × ⟨a − bα⟩, with J = ⟨1, α⟩−1 = {x , x ∈ OK and xα ∈ OK }.

J = ⟨1, α⟩−1 is an integral ideal of norm fn.
J has no reason to be prime (e.g., if fn isn’t, J isn’t either).
This is hardly ever mentioned in the literature.
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Example with non-monic f

The number 2199 + 3109 is a nice 60-digit number to play with.

./cado-nfs.py --wdir /tmp/c60 $(bc<<<2^199+3^109)
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Summary of the information we have

On the algebraic side, we have:

in a straightforward manner, the ideals and valuations in the
factorization of ⟨a − bα⟩ × J , when p ∤ fn disc(f ) (all p but
finitely many).
with some extra work, the full factorization of ⟨a − bα⟩ can be
obtained, but we’ll have to ask our expert for that.
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What remains to be done

If we follow our basic workplan, we can see how linear algebra will
produce a subset of the (a − bx) such that∏

i(ai − bim) is a square in Z (we will add a column with the
sign for that).∏

i⟨ai − biα⟩ has even valuations at
all easy prime ideals if we only look at these.
all prime ideals with some extra effort.

Therefore ⟨
∏

i(ai − biα)⟩ is the square of an ideal, but we do not
know if

∏
i(ai − biα) is the square of an element!

We will see how to work around this difficulty when we address the
square root computation.
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What we have done so far

We have a few ideas of how an NFS algorithm could look like.

So far, we mentioned ad hoc numbers, but our demo gives
away the fact that it also works in greater generality.
Factoring into prime ideals is doable.
We mentioned some possibilities down the road, but I claim
that these can be circumvented.

Now: list (and name) all the different steps of the General Number
Field Sieve (GNFS).
We’re going to repeat blocks of our sketch slide “How would we
factor N?”
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How would we factor N?

Find f ∈ Z[x ] and m ∈ Z such that f (m) ≡ 0 mod N.
Neither m, nor deg f , nor the coefficients of f should be too
large.

The analysis will help us see that in greater detail.
For some numbers, some very nice values exist.

Fix a smoothness bound B.
Find many pairs (a, b) such that:

a − bm factors into primes below B.
⟨a − bα⟩ factors into prime ideals of norm below B.

Using linear algebra, find a subset of the (a − bx) such that:∏
i(ai − bim) is a square in Z.∏
i(ai − biα) is a square in Z[α]. This is tricky!

Write down both square roots in Z and Z[α], map them to
Z/NZ, and hopefully get a factor.
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Finding f and m
Find f ∈ Z[x ] and m ∈ Z such that f (m) ≡ 0 mod N.
Neither m, nor deg f , nor the coefficients of f should be too large.

The analysis will help us see that in greater detail.
For some numbers, some very nice values exist.

This is called Polynomial Selection: next lecture.

Here’s a simple method called base-m to do it for arbitrary N:

Choose the degree d of f s.t. N > 2d2 .
Set m = ⌈N1/(d+1)⌉.
Write N in base m: N =

∑d
i=0 fimi where 0 ≤ fi < m.

Set f =
∑d

i=0 fix i . (not monic!).
Notation-wise, we sometimes write “the rational polynomial”
as g = x − m.
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Parameters

Remark that d is a free parameter in the previous slide.
So is, for example, the bound B.
As well as many, many other parameters!

This is called parameter selection
Parameter selection is among the black arts in NFS!

Asymptotic analysis gives asymptotic guidelines.
In practice, it’s a complicated matter which requires a lot of
global understanding of how NFS works.

We’ll tentatively cover a bit of the practical side of this by the end
of the quarter.
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Finding pairs a, b
Find many pairs (a, b) such that:

a − bm factors into primes below B.
⟨a − bα⟩ factors into prime ideals of norm below B.

This is called Relation Collection: beginning of February.

One of the ways to do relation collection is sieving.

It is actually possible to sieve for rational primes p ∈ Z but
also for prime ideals p ⊂ OK .
There are many, many, many parameters.
Most of the old knowledge of sieving from the QS era is
relevant.
This is the most expensive part, computationally speaking.
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Combining pairs

Using linear algebra, find a subset of the (a − bx) such that:∏
i(ai − bim) is a square in Z.∏
i(ai − biα) is a square in Z[α]. This is tricky!

This comprises two steps: We will see both mid-February.

The Filtering step is a pre-processing step.
Then we have Linear Algebra proper.

Linear algebra is the second most expensive step, and requires
expensive hardware, too.
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Combining pairs

Using linear algebra, find a subset of the (a − bx) such that:∏
i(ai − bim) is a square in Z.∏
i(ai − biα) is (almost) a square in Z[α].

This comprises two steps: We will see both mid-February.

The Filtering step is a pre-processing step.
Then we have Linear Algebra proper.

Linear algebra is the second most expensive step, and requires
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Factoring N , at last

Arrange so that
∏

i(ai − biα) really is a square in Z[α].
Write down both square roots in Z and Z[α], map them to Z/NZ,
and hopefully get a factor.
Again, two steps here. End of February.

A pre-processing step called the characters step.
Then the square root step.

This step will entail some more algebraic number theory, as well
asymptotically fast algorithms.
As each square root only has probability 1/2 to factor N, this step
is designed to produce several independent square roots.
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The different steps of NFS

N

polynomial
selection

relation
collection
(sieving)

filtering linear
algebra

square
root

p, q

Note: there is also a version of NFS that computes discrete
logarithms in F∗

p. The main outline is similar. End of February.
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Some handwaving
We find f with a known root m modulo N.
Let Q(α) be the number field defined by f .
For any polynomial P(x), we have:

the integer P(m);
the number field element P(α);

These are compatible: both map to P(m) mod N in Z/NZ.

Z[x ]

subring of Q Z[m] = Z Z[α] subring of Q(α)

Z/NZ

x → m x → α

mod N α → m
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Write something multiplicative

The NFS diagram can also be written as a multiplicative diagram,
even though it is a bit awkward to write it as such.

group generated by
Z[x ] − {things that do not map to Z/NZ∗}

subgroup of Q∗ subgroup of Q(α)∗

Z/NZ∗

x → m x → α

mod N α → m

No difference in practice between the two diagrams.
The multiplicative one just says that we won’t stumble on
factors of N accidentally. There is no practical difference
between Z[x ] and the structure on top.
The multiplicative diagram does have an interest in the
discrete logarithm context.
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Rundown of an NFS computation

A more detailed look at the factorization of 2199 + 3109.

./cado-nfs.py --wdir /tmp/c60 $(bc<<<2^199+3^109)
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