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Motivation

NFS has many parameters.
The asymptotic analysis can be a rough guide...
asymptotically.
It is not wise to take these values as granted for a practical
computation.

We will (probably) come back to the complexity analysis of NFS in
March.

Goal today: do the analysis, just to fix ideas.
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The L function

The following notation is attributed to R. Schroeppel.

Lx [a, α] = exp
(
α(log x)a(log log x)1−a

)
.

CEP with the L function
A random integer n ≤ Lx [a, α] is Lx [b, β]-smooth with probability:

Lx

[
a − b, −α

β
(a − b)(1 + o(1))

]
.

This formulation is very important for analyzing sieve algorithms.
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Calculus with
Lx [a, α] = exp

(
α(log x)a(log log x)1−a)

.

Basic formulae with L

Lx [a, α] × Lx [b, β] =


Lx [a, α + o(1)] if a > b,
Lx [b, β + o(1)] if b > a,
Lx [a, α + β] if a = b.

Lx [a, α] + Lx [b, β] =


Lx [a, α + o(1)] if a > b,
Lx [b, β + o(1)] if b > a,
Lx [a, max(α, β)] if a = b.

Lx [b, β]loglog x Lx [a,α] = Lx [a + b, αβ].

LLx [b,β][a, α] = Lx [ab, αβab1−a + o(1)].

loglog x Lx [a, α] · loglog x Lx [−a, 1/α] = 1.
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Many parameters

Three main parameters.

The degree d of the polynomial f .
The smoothness bound: B = LN [b, β].
The bound on a and b in a − bα: A = LN [a, α].

Caveat: obvious notation clashes!
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Many parameters

Three main parameters.

The degree d of the polynomial f .
The smoothness bound: B = LN [b, β].
The bound on the coefficients of ϕ(x): A = LN [a, α].

Caveat: obvious notation clashes!
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Convenient form for d

The simplistic base-m polynomial selection works for arbitrary N.

Set m = ⌈N1/(d+1)⌉.
Write N in base m: N =

∑d
i=0 fimi where 0 ≤ fi < m.

Set f =
∑d

i=0 fix i . (not monic!)

It will be convenient to choose d so that N1/(d+1) has a nice
expression.
Asymptotically, we expect that d grows to ∞ as N → ∞, so
N1/(d+1) =

(
N1/d

)1+o(1)
.

Use L notation
We have N = LN [1, 1], so let us take d = loglog N LN [D, δ].
This yields m = LN [1 − D, 1/δ · (1 + o(1))].
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Checklist

d = deg f = loglog N LN [D, δ].
The smoothness bound: B = LN [b, β].
The bound on the coefficients of ϕ(x): A = LN [a, α].
This yields m = LN [1 − D, 1/δ · (1 + o(1)].

Next step: how large are a − bm and Norm(a − bα)?

Next step: how large are Res(ϕ(x), x − m) and Res(ϕ(x), f (x))?
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Checklist

d = deg f = loglog N LN [D, δ].
The smoothness bound: B = LN [b, β].
The bound on the coefficients of ϕ(x): A = LN [a, α].
This yields m = LN [1 − D, 1/δ · (1 + o(1)].

Next step: how large are a − bm and Norm(a − bα)?
Next step: how large are Res(ϕ(x), x − m) and Res(ϕ(x), f (x))?
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How large is |a − bm| = | Res(ϕ(x), x − m)|?

The coefficients of ϕ(x) are at most A = LN [a, α].
We have | Res(ϕ(x), x − m)| = O(Am).

| Res(ϕ(x), x − m)|

condition | Res(ϕ(x), x − m)|
a < 1 − D m1+o(1) = LN [1 − D, 1/δ · (1 + o(1))]
a = 1 − D LN [1 − D, (α + 1/δ) · (1 + o(1))].
a > 1 − D LN [a, α · (1 + o(1))].
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How large is | Res(ϕ(x), f (x))|?

The coefficients of ϕ(x) are at most A = LN [a, α].
We have:

Res(u − vx , f (x)) = fdud + fd−1ud−1v + · · · + f0vd .

All summands have the same size: ≈ m · Ad .
Note: Ad = LN [a + D, αδ].
The degree-dependent multiplication has negligible impact.
FYI, more general formula: ≈ C × ||ϕ||deg f ||f ||deg ϕ

with C a combinatorial term that depends on deg f and deg ϕ.
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How large is | Res(ϕ(x), f (x))|?

The coefficients of ϕ(x) are at most A = LN [a, α].
We have:

Res(u − vx , f (x)) = fdud + fd−1ud−1v + · · · + f0vd .

All summands have the same size: ≈ m · Ad .
Note: Ad = LN [a + D, αδ].

| Res(ϕ(x), f (x))| ; which one of m and Ad wins?

condition | Res(ϕ(x), f (x))|
a + D < 1 − D m1+o(1) = LN [1 − D, 1/δ · (1 + o(1))]
a + D = 1 − D LN [1 − D, (αδ + 1/δ) · (1 + o(1))].
a + D > 1 − D LN [a + D, αδ · (1 + o(1))].
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Checklist

d = deg f = loglog N LN [D, δ].
This yields m = LN [1 − D, 1/δ · (1 + o(1))].
The smoothness bound: B = LN [b, β].
The bound on the coefficients of ϕ(x): A = LN [a, α].
| Res(ϕ, x − m)| ≤ | Res(ϕ, f )| = LN [max(1 − D, a + D)︸ ︷︷ ︸

ν

, ·].

The smoothness probability is LN [ν − b, ·], by CEP.

The total cost is:

(finding smooth pairs) + (factoring into relations︸ ︷︷ ︸
LN [max(a, b), ·] is a safe upper bound

)+(linear algebra︸ ︷︷ ︸
LN [b,·]

).
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We need enough relations

LN [a, ] × LN [max(1 − D, a + D) − b, ] ≥ L[b, ].

Several consequences (as we had in the QS case):

a ≥ max(1 − D, a + D) − b.
Furthermore, a > b or a > max(1 − D, a + D) − b cannot be
optimum choices, as we can improve the overall cost if it
happens to be the case.

If a > b and 1 − D ≤ a + D: decrease a to max(b, 1 − 2D).
If a > b and 1 − D ≥ a + D: increase b, decrease a.
If a = b and a > max(1 − D, a + D) − b: decrease a and b.

We can thus assume a = b = max(1 − D, a + D) − b (possibly
with a o(1) shift).
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Optimum choice for D

We don’t know what D is, plot the size of
both resultants as a function of a.
(using | Res(ϕ, f )| = LN [ν, ·].)

a

ν

1−2D

1−D
1

Given our reasoning, here’s how the optimum
max(a, b) looks like as a function of D.

D

max(a,b)

1/3
1/2
2/3

1

1
3

2
3

We do the analysis with D = a = b = 1/3, and see what we get.
In particular: pay attention to whether and compensate well!
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Checklist

d = deg f = loglog N LN [1/3, δ].
m = LN [2/3, 1/δ · (1 + o(1))].
The smoothness bound: B = LN [1/3, β].
The bound on the coefficients of ϕ(x): A = LN [1/3, α].
Note: this makes A2 = LN [1/3, 2α + o(1)] polynomials ϕ to
choose from.
| Res(ϕ, x − m)| = LN [2/3, 1/δ + o(1)].
| Res(ϕ, f )| = LN [2/3, αδ + 1/δ + o(1)].
The smoothness probability is LN [1/3, ·], by CEP.

And the total cost would be LN [1/3, ·] if we find a solution.
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Smoothness
Heuristic
We have to assume that values such as Res(ϕ, x − m) or Res(ϕ, f )
behave like random integers of the same size.
This is mandatory if we want to apply CEP.
This heuristic is also present in QS, but not in Dixon’s random
squares.

Assuming that, the probability that both Res(ϕ, x − m) and
Res(ϕ, f ) are smooth is:

LN

[
1/3, − 1

3β
· 1

δ
(1 + o(1))

]
× LN

[
1/3, − 1

3β
· (αδ + 1

δ
)(1 + o(1))

]
.

= LN

[
1/3, − 1

3β
· (αδ + 1

δ
+ 1

δ
)(1 + o(1))

]
.
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More characterization of the optimum

The probability of smoothness:

LN

[
1/3, − 1

3β
· (αδ + 1

δ
+ 1

δ
)(1 + o(1))

]
.

Notice that δ no longer appears anywhere else.

Pick the best δ

The smaller the Res values, the better the smoothness probability.
We minimize αδ + 2

δ by with δ =
√

2/α.

“Having enough relations” translates to:

2α − 1
3β

· 2
√

2α ≥ β.
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Factoring into relations

Spoilers:

sieving will crush the cost of factoring relations to something
asymptotically negligible,
linear algebra will cost (B2)1+o(1),

. . . so that the total cost is LN [1/3, 2 max(α, β) + o(1)].
Given this total cost, it makes sense to search for a solution with
α = β. Can we find one?
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Complexity of NFS
We have a solution with α = β if we find a solution to:

2α − 1
3β

· 2
√

2α ≥ β with α = β.

3β2 ≥ 2
√

2β.

β3/2 ≥
√

8/9

α = β ≥ 3
√

8/9.

2β ≥ 3
√

64/9.

Complexity of NFS
Asymptotically, and heuristically, NFS has a complexity of:

LN
[
1/3, (64/9)1/3 + o(1)

]
.
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Complexity of NFS: key equations

B = LN
[
1/3, (8/9)1/3 + o(1)

]
.

A = LN
[
1/3, (8/9)1/3 + o(1)

]
.

d = loglog N(LN
[
1/3, 31/3 + o(1)

]
)

= (31/3 + o(1)) ·
( log N

log log N

)1/3
.

Res(ϕ, f ) = LN

[
1/3,

3
2 ·

√
2α + o(1)

]
= LN

[
1/3, 3 · 3−1/3 + o(1)

]
.

Res(ϕ, x − m) = LN

[
1/3,

1
2 ·

√
2α + o(1)

]
= LN

[
1/3, 3−1/3 + o(1)

]
.

Do not over-interpret this!
“In theory”, algebraic norm is 3× rational norm. Not in practice.
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Huge difference with QS

QS: exp
(

1 · (log N)1/2(log log N)1/2 · (1 + o(1))
)

.

NFS: exp
(

(64/9)1/3 · (log N)1/3(log log N)2/3 · (1 + o(1))
)

.

(note: (64/9)1/3 = 1.923 . . .)
Asymptotics can be tricky, but the complexity difference is really a
major one.
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Wrap up

NFS complexity for arbitrary N is:

LN [1/3, (64/9)1/3 + o(1)].

It is for arbitrary N, thus General NFS (GNFS).
We left much aside, including:

How do the inner algorithms work?
In particular, is it true that sieving can eliminate the cost of
factoring into relations?
And is it true that we solve the linear system in time B2+o(1)?
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