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Goal

Our goal: review the different methods for polynomial selection.

Why is it important?
What kind of game is it?
What are the different methods?
How do we measure the quality of the output?
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What is polynomial selection

The polynomial selection phase is when we choose the pair of
polynomials that define both sides of the NFS diagram.

The algebraic polynomial f defines the number field.
The rational polynomial (thus far, x − m) completes the
picture.

In practice, this is more general
In fact, not even x − m is monic. Several methods do relax this
condition (but not the first ones).
In some cases, both polynomials are of degree > 1.
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Importance of polynomial selection
Polynomial selection is important because it determines the size of
the “norms” (actually, of the integers being checked for
smoothness).

Asymptotic analysis crudely reduced polynomial selection to
the choice of the pair (D, δ).
We eventually found out that δ was controlling the
compromise between the size of Res(ϕ, x − m) and of
Res(ϕ, f ).

This general role is also true in practice
A good polynomial selection makes these “norms” small as
ϕ(x) = a − bx ranges over the values we explore.

Certainly, some things can be achieved, and some can’t.
Can we force these values to be smooth more often than on
average?
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A general workplan

Starting point: a method that can yield good polynomial pairs.

Arrange so that the method has many degrees of freedom.
Explore a huge search space to find exceptional situations.
Find reasonable assessment criteria that make it possible to
identify which are the “exceptionally good” polynomial pairs.
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An extension: non-linear rational polynomial

What if we replace x − m by m1x − m0?

Res(a − bx , x − m) = a − bm becomes
Res(a − bx , m1x − m0) = am1 − bm0, which looks nicer.
If we write m = m0/m1 ∈ Q and that f (m) ≡ 0 mod N,
everything works as before.
The condition to meet is the existence of a common root:

Res(f (x), m1x − m0) ≡ 0 mod N.

This extra degree of freedom has been part of all polynomial
selection algorithms since the early 2000s.
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An extension: higher degree polynomials

If a polynomial selection can find a pair of nonlinear polynomials:

whose resultant is divisible by N with multiplicity 1
and with a known common root in Z/NZ

Then we can work exactly along the lines of NFS.

Caveat: no such thing is known in general, EXCEPT for DLP.

NFS for DLP (discrete logs in Z/pZ×): p replaces N.
The existence of root finding modp is the key.
In some cases (but not always), this wins.
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Notations

Traditionally, notations are as follows:

f is the algebraic polynomial.
The coefficients are named f0, . . . , fd , or a0, . . . , ad .
g is the linear polynomial.

Often, to highlight the symmetric roles played by the two sides:

f0 is “the polynomial on side 0” (typically deg f0 = 1).
f1 is “the polynomial on side 1”.
But this messes with the per-coefficient notations.
Notations a0, . . . , ad are preferred for coefficients of the
nonlinear polynomial in this case.

Implementations such as Cado-NFS are mostly agnostic w.r.t side
numbering.
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Size matters

Notations: (f0, f1), deg f1 = d , f1 =
∑

aix i .

Our first approach consists in searching for “small” polynomial
pairs.

Eventually, one of our guides will be the size of the integers
we will try to factor.
Given the power dependency in the degrees of the polynomials,
we have only a few possible choices for the degree.
Given a choice for d = deg f1, can we obtain polynomials f0
and f1 with small coefficients?
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Two equations (Kleinjung, 2016)

A good question to ask
In order to reach all integers in a range [M, 2M], how large do we
have to choose the coefficients of f0 and f1?
Let Mc0 be a bound on the coefficients of f0 (likewise Mc1 for f1).

First constraint: to reach M different values with the degrees
of freedom that we have:

c0 · (d0 + 1) + c1 · (d1 + 1) ≥ 1.

Second constraint: Res(f0, f1) must be at least M.
Since Res(f0, f1) = Mo(1)||f0||deg f1 ||f1||deg f0 , we must have:

c0 · d1 + c1 · d0 ≥ 1.
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Two different constraints

Note that the constraints are of different nature.

c0 · (d0 + 1) + c1 · (d1 + 1) ≥ 1.
Pairs not meeting this constraint may exist, but such a family
cannot reach all integers.
c0 · d1 + c1 · d0 ≥ 1.
It is outright impossible for pairs to not meet this constraint,
and be useful for NFS.

c0

c1

impossible
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Important example #1

Take what the naive polynomial selection method gives: d0 = 1,
d1 = d , c0 = c1 = 1

d+1 .

c0 · (d0 + 1) + c1 · (d1 + 1) = 2
d+1 + d+1

d+1 ≥ 1.
c0 · d1 + c1 · d0 = d

d+1 + 1
d+1 = 1.

Put otherwise, the resultant bound is tight, but there is immense
legroom in the choice of f0.
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Important example #2

What can we obtain with c1 = 0?
i.e., a family of algebraic polynomials with coefficients bounded by a
constant.

The remaining constraint rewrites simply as

c0d1 = 1,

which does not say much.

Does this do anything?
If we have access to a fictitious oracle that outputs such a
polynomial f1, what does it give?
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SNFS: polynomial selection with an oracle

If we have access to a fictitious oracle that outputs such a
polynomial f1, what does it give?

We can do the entire NFS analysis based on that.
The algebraic norm can be rewritten as LN [1/3, 1

δ + αδ].
This changes the optimum δ from

√
2/α to

√
1/α.

Eventually, we end up with LN [1/3, (32/9)1/3 + o(1)].

This is called SNFS.

The “special” integers are those that are precisely reached by
this “ideal” choice.
By extension, the SNFS term is also used for anything that is
reached by a non-general polynomial selection.
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The constraint space
Example for d0 = 1 and d1 = 6.

c0

c1

impossible
SNFS

base-m

Note that c0 + c1 appears in the smoothness probability.
c0 + c1 = log(||f0|| · ||f1||)/log N.

c0 + c1 measures the polynomial-dependent part of the
maximum size of the integers which are checked for
smoothness.

Thus the intersection point P is “ideal”. Alas, moving towards P is
expensive.
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Where are we?

Base-m polynomial selection is a starting point.
We have an argument that explains that it is not “optimal”.
SNFS numbers are really special.
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What can base-m do?

Notations: (f0, f1), deg f1 = d , f1 =
∑

aix i .

Recall that the simplistic base-m method choses m ≈ N1/(d+1).

There is an immense degree of freedom in the choice of m.
Can we do many trials and hope for something nice to
happen?

Opportunities for improvement:

It is not a very big deal if ||f0|| (max coefficient of the linear
polynomial) increases by a tiny bit.
Can this be compensated by a larger decrease of ||f1||?
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Base-m, revisited

Instead of picking m first, and then the coefficients of f :

Choose ad first, slightly smaller than N1/(d+1).
Then choose m, and deduce the rest of the coefficients.

Our game: correlation between effort and yield
Ultimately, we want to answer the question:

“If we generate C polynomial pairs, what is the best we
can obtain, as a function of C?”

Can also be phrased as: if ad ≈ N1/(d+1)/c, how many trials does
it take to have all coefficients of f close to ad?
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Base-m, revisited
Let c be an arbitrary number.

Choose ad ≈ N1/(d+1)/c (many possible choices!)
Let m = ⌊(N/ad)1/d⌉ = (N/ad)1/d + µ with |µ| ≤ 1.

Lemma: ad−1 ≈ ad

|ad−1| =

∣∣∣N − admd
∣∣∣

md−1 = ad

∣∣∣(m − µ)d − md
∣∣∣

md−1

≤ adm
∣∣∣(1 − µ/m)d − 1

∣∣∣
≤ dad × small constant bound.

And d is small as well, so we expect ad−1 to have roughly as many
bits as ad .
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Other coefficients
The d − 1 coefficients a0 to ad−2 are a priori close to m, with:

m ≈ (N/ad)1/d ≈ (N1−1/(d+1)c)1/d ≈ N1/(d+1)c1/d .

ad
N1/(d+1)

Heuristic: a0 to ad−2 behave like random integers. With probability
(ad/m)d−1 ≈

(
c−(1/d+1)

)d−1
= c−(d2−1)/d , all are ≤ ad .

Conclusion
By trying c(d2−1)/d values ad , we expect to:

change ||f1|| to N1/(d+1)/c.
change ||f0|| to N1/(d+1)×c1/d .
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Rewrite
Conclusion (rewrite)
By trying c(d2−1)/d values ad , we expect to:

change ||f1|| to N1/(d+1)/c.
change ||f0|| to N1/(d+1)×c1/d .

We can also write: by trying C values ad , we expect to:
change ||f1|| to N1/(d+1)/Cd/(d2−1).
change ||f0|| to N1/(d+1)×C1/(d2−1).
change ||f0||||f1|| to N2/(d+1)/C1/(d+1).

c0

c1

This moves in the right direction!
More work leads to smaller polynomials.
This is woefully exponential, of course.
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Skewness

Notations: (f0, f1), deg f1 = d , f1 =
∑

aix i , ϕ(x) = u − vx .

Skewness is a way to add more flexibility to the polynomial
selection process.
Observation: the polynomial x − m is unbalanced. So is the
expression Res(u − vx , x − m) = u − vm.

Can we work with larger u and smaller v?
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Skewed polynomials
Res(u − vx , f1) = F (u, v) = (udad + · · · + uivd−iai + · · · + vda0).

If coefficients of f1 have roughly the same size and both
coefficients of ϕ(x) are bounded by A, then all aiuivd−i have
the same size.

If the ai are unbalanced, say ai
ai+1

≈ S > 1, then with
|u| < A

√
S and |v | < A/

√
S, all aiuivd−i have the same size.

a4a3a2a1a0

a4a3a2a1a0

u

v

The ratio S is called the skewness; the polynomials are skewed.
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Skewed norm
Definition
Given P =

∑
pix i ∈ R[x ], the S-skewed (infinity) norm of P is:

||P||S = ||P||∞,S = max
0≤i≤deg P

|piS i−(deg P)/2|.

S = 100 S = 1 S = 10000 S = 0.01

All polynomials above have the same S-skewed norms (with their
respective S). If ||P|| = ||Q||S , then

max{Res(u − vx , P), (u, v) ∈ [0, A]2}

= max{Res(u − vx , Q), (u, v) ∈ [0, A
√

S] × [0, A/
√

S]}.
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How do we find skewed polynomials?
When we revisited base-m, we chose ad first, and then m.
This gave rise to:

ad ≈ ad−1 ≈ N1/(d+1)/c.
m = d

√
N/ad ≥ N1/(d+1) = the textbook base-m.

N1/(d+1)/c
N1/(d+1)

This polynomial pair is already somewhat skewed, we may turn it
to our advantage.

Aim at the same skew-norm, starting from a smaller ad ( ):
bits we still have to cancel ( ),
bits we no longer care about ( ),
new bits to cancel ( ),
a moderately larger rational norm because m got larger ( ),
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Analysis of skewed base-m

Analysis is a bit painful, but the outcome is quite clear:

With the same number of trials, we can expect to find smaller
skewed-norms that in the non-skewed base-m.
C1/(d+1) is replaced by a mildly larger number

Refinements:

Do not optimize a0.
Rationale: this makes it possible to form many linear
combinations like f0 + tf1 and choose the best one.
We’ll get to that with root properties and root sieving.
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Better polynomials: non-monic f0

In fact, f0 can be non-monic:

f0 = m1x − m0.

Then, the common root modulo N must be m = m0/m1 and

Res(f1, m1x − m0) = admd
0 + ad−1m1md−1

0 + · · · + a0md
1 .

Remark: if the latter is equal to N, it implies

admd
0 ≡ N mod m1.

First ingredient of Kleinjung’s algorithms (2006 and 2008) is called
Kleinjung “Lemma 2.1”. It computes a reasonably good f1 from a
fixed choice of N, d , m1, m0 and ad .
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Kleinjung “Lemma 2.1”
Input: N, d , m1, m0, and some fixed coefficients [aj , . . . , ad ]
Output: A polynomial f1 such that Res(f1, m1x − m0) = N
First, compute

rj =
N −

∑d
i=j+1 aimi

0md−i
1

md−j
1

Then, for i = j − 1, j − 2, . . . , 0, compute:

ri = ri+1 − ai+1mi+1
0

m1

ai = ri + tim1
mi

0
, where ti is an integer such that

−mi
0

2 ≤ ti <
mi

0
2 and ti ≡ − ri

m1
mod mi

0

The output is f1 = adxd + ad−1xd−1 + · · · + a1x + a0.
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Kleinjung “Lemma 2.1” – example
Kleinjung’s “Lemma 2.1” algorithm applied to RSA-155 with
d = 5 and

a5 = 358870426380
m0 = 31392776870911769459515309198
m1 = 823916492006383

gives:

f1 = 358870426380x5

+ 428308592054328x4

− 16336877672072510723154851996x3

− 12601611387318107328006122118x2

− 19621855499511523845845304751x
− 8369763785495595985304502899
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Output of Kleinjung “Lemma 2.1”
If we apply Kleinjung “Lemma 2.1” with only the leading coefficient
ad fixed and with m0 close to m̃0 = d

√
N
ad

, the algorithm yields:

ad−1 rather small: |ad−1| < m1 + dad
m0−m̃0

m1
.

Other ai ’s satisfy |ai | < m1 + m0.

Our goal, and how we reach it
Have coefficient sizes which are a good match to some skewness.

Find smart way to make ad−2 small.
Rely on (mild) luck to make ad−3 small.
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Making ad−2 small

Use the equation admd
0 ≡ N mod m1.

Key idea
Build m1 as a product of small primes. Use the combination of
modular information to fabricate a small ad−2.

Let P be a set of small primes ≡ 1 mod d (m1 will be a
product of a subset of P).
Pick some ad (e.g. smooth).
Some primes r ∈ Q ⊂ P give d solutions to adxd ≡ N
mod r .
Any choice of exactly one d-th root modulo each of those r ’s
gives a value m0 defined modulo m1 =

∏
r by CRT.

We may choose one which is close to m̃0 = d
√

N/ad .
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Making ad−2 small

Many choices
Pick ℓ primes for which adxd ≡ N mod r has d solutions.

In total, dℓ possible choices for m0.
m0 is a linear combination of ℓ values among d × ℓ.
This follows from explicit Chinese Remainder Theorem.

Expand the value ad−2/m0 obtained by “Lemma 2.1” from the
d-th roots of m0 mod r that we have chosen.

By restricting to 1st order terms, we get a linear combination.
If ad−2/m0 ends up being close to an integer λ for some
chosen m0, then for f ′

1 = f1 − λ(m1x − m0)xd−2, we have:
a′

d−2/m0 close to 0,
a′

d−1 does not change much.
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Finding combinations that are close to Z

The problem can be reduced to the following:

ℓ sets S1, . . . , Sℓ, each containing d real numbers in [0, 1).
dℓ choices: (s1, . . . , sℓ) with each si ∈ Si , and:

ad−2/m0 mod Z ≡
∑

si .

Naive complexity: O(dℓ).
Better:

O(dℓ/2).
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What do small combinations give ?

Algorithm has:
ad chosen small.
ad−1 small by construction, ≈ m1.
ad−2 small thanks to small combinations.

With some extra luck,
ad−3 may be somewhat smaller than expected.
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