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Goal

Our goal: review the different methods for polynomial selection.
© Why is it important?
© What kind of game is it?
© What are the different methods?

© How do we measure the quality of the output?
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What is polynomial selection

The polynomial selection phase is when we choose the pair of
polynomials that define both sides of the NFS diagram.
© The algebraic polynomial f defines the number field.

© The rational polynomial (thus far, x — m) completes the
picture.

In practice, this is more general

In fact, not even x — m is monic. Several methods do relax this
condition (but not the first ones).
In some cases, both polynomials are of degree > 1.
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Importance of polynomial selection

Polynomial selection is important because it determines the size of
the “norms” (actually, of the integers being checked for
smoothness).

© Asymptotic analysis crudely reduced polynomial selection to
the choice of the pair (D, 0).

© We eventually found out that § was controlling the
compromise between the size of Res(¢, x — m) and of

Res(¢, f).

This general role is also true in practice

A good polynomial selection makes these “norms” small as
¢(x) = a — bx ranges over the values we explore.

© Certainly, some things can be achieved, and some can't.
© Can we force these values to be smooth more often than on
average?
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A general workplan

Starting point: a method that can yield good polynomial paitrs.

© Arrange so that the method has many degrees of freedom.
© Explore a huge search space to find exceptional situations.

© Find reasonable assessment criteria that make it possible to
identify which are the “exceptionally good” polynomial pairs.
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An extension: non-linear rational polynomial

What if we replace x — m by mx — mg?

© Res(a — bx,x — m) = a — bm becomes
Res(a — bx, mix — mg) = am; — bmyg, which looks nicer.
© If we write m = mg/m; € Q and that f(m) =0 mod N,
everything works as before.

® The condition to meet is the existence of a common root:
Res(f(x), mix — mp) =0 mod N.

This extra degree of freedom has been part of all polynomial
selection algorithms since the early 2000s.
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An extension: higher degree polynomials

If a polynomial selection can find a pair of nonlinear polynomials:

© whose resultant is divisible by N with multiplicity 1

@ and with a known common root in Z/NZ,

Then we can work exactly along the lines of NFS.

Caveat: no such thing is known in general, EXCEPT for DLP.

© NFS for DLP (discrete logs in Z/pz.*): p replaces N.
© The existence of root finding modp is the key.

© In some cases (but not always), this wins.
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Notations

Traditionally, notations are as follows:
® f is the algebraic polynomial.
The coefficients are named fy, ..., fy, or ag, ..., aqd.

® g is the linear polynomial.

Often, to highlight the symmetric roles played by the two sides:
© fy is “the polynomial on side 0" (typically deg fp = 1).
® fi is “the polynomial on side 1".

© But this messes with the per-coefficient notations.
Notations ag, ..., aq are preferred for coefficients of the
nonlinear polynomial in this case.

Implementations such as Cado-NFS are mostly agnostic w.r.t side
numbering.
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Size matters

Notations: (fy, f),degfi = d, L =3 a;x".

Our first approach consists in searching for “small” polynomial
pairs.
© Eventually, one of our guides will be the size of the integers
we will try to factor.

© Given the power dependency in the degrees of the polynomials,
we have only a few possible choices for the degree.

@ Given a choice for d = deg f;, can we obtain polynomials f
and f; with small coefficients?
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Two equations (Kleinjung, 2016)

A good question to ask

In order to reach all integers in a range [M,2M], how large do we
have to choose the coefficients of fy and 7
Let M% be a bound on the coefficients of fy (likewise M for f1).

@ First constraint: to reach M different values with the degrees
of freedom that we have:

CO'(d0+1)+C1~(d1+1)21.

© Second constraint: Res(fy, fi) must be at least M.
Since Res(fy, i) = MW fy|*€ " £ |4 we must have:

Co-di+c1-do > 1.
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Two different constraints

Note that the constraints are of different nature.
© CQ-(do—i—].)—i—Cl-(dl—{—l)Zl.
Pairs not meeting this constraint may exist, but such a family
cannot reach all integers.
® ¢p-di+c1-dy > 1.
It is outright impossible for pairs to not meet this constraint,
and be useful for NFS.

a

impossible
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Important example #1

Take what the naive polynomial selection method gives: dy = 1,

1
d].:dICO:Cl:TH-

© o (do+1)+cr-(ch+1)=%4+9H >1
OCQ'd1+C1'do:dLH+%H:1.

Put otherwise, the resultant bound is tight, but there is immense
legroom in the choice of f.
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Important example #2

What can we obtain with ¢; = 07

i.e., a family of algebraic polynomials with coefficients bounded by a
constant.

The remaining constraint rewrites simply as
Codl = 1,

which does not say much.

Does this do anything?

If we have access to a fictitious oracle that outputs such a
polynomial f;, what does it give?
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SNFS: polynomial selection with an oracle

If we have access to a fictitious oracle that outputs such a
polynomial f;, what does it give?

© We can do the entire NFS analysis based on that.

© The algebraic norm can be rewritten as LN[1/3,X+ ad].

@ This changes the optimum § from /2/a to /1/a.

© Eventually, we end up with Ly[1/3,(32/9)/3 + o(1)].
This is called SNFS.

© The “special” integers are those that are precisely reached by

this “ideal” choice.

© By extension, the SNFS term is also used for anything that is
reached by a non-general polynomial selection.
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The constraint space

Example for dyp = 1 and d; = 6.

a1
base-m
SNFS
impossible =

Note that ¢y + ¢1 appears in the smoothness probability.

© ¢+ c1 = log(|fo] - [])/log N.

® cg + ¢ measures the polynomial-dependent part of the
maximum size of the integers which are checked for
smoothness.

Thus the intersection point P is “ideal”. Alas, moving towards P is

expensive.
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Where are we?

© Base-m polynomial selection is a starting point.
© We have an argument that explains that it is not “optimal”.

© SNFS numbers are really special.
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What can base-m do?

Notations: (fy, f1),degfi = d, i = a;x".

Recall that the simplistic base-m method choses m ~ N/(d+1),

© There is an immense degree of freedom in the choice of m.

© Can we do many trials and hope for something nice to
happen?

Opportunities for improvement:

© It is not a very big deal if |fy| (max coefficient of the linear
polynomial) increases by a tiny bit.

© Can this be compensated by a larger decrease of |f]?
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Base-m, revisited

Instead of picking m first, and then the coefficients of f:

e Choose ay first, slightly smaller than N1/(d+1),

® Then choose m, and deduce the rest of the coefficients.

Our game: correlation between effort and yield

Ultimately, we want to answer the question:
“If we generate C polynomial pairs, what is the best we
can obtain, as a function of C?”

Can also be phrased as: if ag ~ NY/(9+1) /c how many trials does
it take to have all coefficients of f close to a4?
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Base-m, revisited

Let ¢ be an arbitrary number.

© Choose ag ~ N¥/(4+1) /¢ (many possible choices!)
© Let m= [(N/ag)¥?] = (N/ag)"? + p with |u| < 1.

Lemma: ay_1 =~ aq4

‘N—admd) ‘(m—u)d—md‘
lag—1| = md—1 = ad

< agm|(1 - p/m)? ~ 1]

md—1

< dag % small constant bound.

And d is small as well, so we expect az_1 to have roughly as many
bits as a4.
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Other coefficients

The d — 1 coefficients ag to ag_» are a priori close to m, with:
m = (N/ad)l/d ~ (Nl—l/(d-i-l)c)l/d ~ Nl/(d—l—l)cl/d'

L/(d+1)
ad

Heuristic: ag to ag_» behave like random integers. With probability
d—1
(ag/m)?—! ~ (c_(l/d+1)) = c(@=1/d 3l are < aqy.

Conclusion

By trying c(@>~1/d values ay, we expect to:
© change |fi| to NY/(d+1) /¢
© change |fo] to NY/(d+1) 5 c1/d.
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Rewrite

Conclusion (rewrite)

By trying c(@°~1)/d values ay, we expect to:
© change || to NY/(d+1) /¢,
© change |fy| to N1/(d+1) 5 c1/d.
We can also write: by trying C values ay, we expect to:
© change |f] to N¥/(d+1)/cd/(d*~1),
e change |fo| to N/(d+1)x C1/(d*-1),
© change |f||f] to N2/(d+1) /C1/(d+1),
C1
This moves in the right direction!

© More work leads to smaller polynomials.

© This is woefully exponential, of course.

)
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Skewness

Notations: (fy,f1),degfi = d,fi = > aix’, ¢(x) = u — vx.

Skewness is a way to add more flexibility to the polynomial
selection process.

Observation: the polynomial x — m is unbalanced. So is the
expression Res(u — vx,x —m) = u— vm.

© Can we work with larger u and smaller v?
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Skewed polynomials

Res(u — vx,f1) = F(u,v) = (u9ag + - + u'v? T2 + -+ v9a).

© If coefficients of f; have roughly the same size and both
coefficients of ¢(x) are bounded by A, then all a;u’v¥~" have
the same size.

dp d1 a2 a3z a4
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Skewed polynomials

Res(u — vx,f1) = F(u,v) = (u9ag + - + u'v? T2 + -+ v9a).

© If coefficients of f; have roughly the same size and both
coefficients of ¢(x) are bounded by A, then all a;u’v¥~" have

the same size.
@ If the a; are unbalanced, say i ~ S > 1, then with

lu| < AVS and |v| < A/V/S, aII a;ju'vd~" have the same size.

v

=] [5]

dp d1 a2 a3z a4 dap d1 a2 as aja

The ratio S is called the skewness; the polynomials are skewed.
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Skewed polynomials

Res(u — vx,f1) = F(u,v) = (u9ag + - + u'v? T2 + -+ v9a).

© If coefficients of f; have roughly the same size and both
coefficients of ¢(x) are bounded by A, then all a;u’v¥~" have

the same size.
@ If the a; are unbalanced, say i ~ S > 1, then with

lu| < AVS and |v| < A/\/g aII a;ju'vd~" have the same size.

IIIII v

dp d1 a2 a3z a4 dap d1 a2 as aja

The ratio S is called the skewness; the polynomials are skewed.
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Skewed norm

Definition
Given P =Y pix’ € R[x], the S-skewed (infinity) norm of P is:

_ _ _ci—(deg P)/2
IPls = 1Plc.s = ,_max _[pis'=8P)2),
=100 = 10000 =0.01

All polynomials above have the same S-skewed norms (with their
respective S). If |P| = |Q|s, then

max{Res(u — vx, P), (u,v) € [0, A]*}
= max{Res(u — vx, Q), (u, v) € [0, AV'S] x [0, A/V/S]}.
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How do we find skewed polynomials?

When we revisited base-m, we chose ay4 first, and then m.
This gave rise to:

© ag~ ag_1 ~ NY(d+1) /¢
e m= {/Njay > NV/(9+1) = the textbook base-m

N1/(d+1)
o I]]]]ﬁ [

This polynomial pair is already somewhat skewed, we may turn it
to our advantage.
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How do we find skewed polynomials?

When we revisited base-m, we chose ay4 first, and then m.
This gave rise to:
© ag~ ag_1 ~ NY(d+1)/c,
e m= {/Njay > NV/(9+1) = the textbook base-m.
1/(d+1)
NY/(@+1) /¢

This polynomial pair is already somewhat skewed, we may turn it

to our advantage.
© Aim at the same skew-norm, starting from a smaller ay4 ():
© bits we still have to cancel (m),
© bits we no longer care about (),

© new bits to cancel (m),
© a moderately larger rational norm because m got larger (m),
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Analysis of skewed base-m

Analysis is a bit painful, but the outcome is quite clear:

With the same number of trials, we can expect to find smaller
skewed-norms that in the non-skewed base-m.
Ct/(d+1) is replaced by a mildly larger number

Refinements:

© Do not optimize ag.

© Rationale: this makes it possible to form many linear
combinations like fy + tf; and choose the best one.
We'll get to that with root properties and root sieving.
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Better polynomials: non-monic fy

In fact, fy can be non-monic:
fo = mix — myg.
Then, the common root modulo N must be m = my/m; and
_ d d—1 d
Res(fy, mix — mg) = agmg + ag—1mimg ~ +--- + agmy.
Remark: if the latter is equal to N, it implies

admg =N mod m.

First ingredient of Kleinjung's algorithms (2006 and 2008) is called
Kleinjung “Lemma 2.1". It computes a reasonably good f; from a
fixed choice of N, d, my, mg and ag.
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Kleinjung “Lemma 2.1"

Input: N, d, m1, mg, and some fixed coefficients [aj, .
Output: A polynomial f; such that Res(fi, mix — mg) =

First, compute
d d—i
N—>i aimhm§

d—j
my

[7:

Then, fori=j—1,j—2,...,0, compute:

i+1
riy1 — ajr1m
o r— i+1 i+1Mg
my
ri+tim
@ a — ; where t; is an integer such that
my
mi i r; :
——<t,<—and ti = —— mod m|
2 2 mq

The output is fi = agx? + ag_1x9 1 +--- + a1x + ap.
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Kleinjung “Lemma 2.1" — example

Kleinjung's “Lemma 2.1" algorithm applied to RSA-155 with

d =5 and
as = 358870426380
mp = 31392776870911769459515309198
my = 823916492006383

gives:

fi = 358870426380x°
+ 428308592054328x*
— 16336877672072510723154851996x°>
— 12601611387318107328006122118x°
— 19621855499511523845845304751x
— 8369763785495595985304502899
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Output of Kleinjung “Lemma 2.1"

If we apply Kleinjung “Lemma 2.1" with only the leading coefficient
ay fixed and with mg close to g = {’/%, the algorithm yields:

mo— g

® ay_1 rather small: |ag_1| < my + day o

© Other a;'s satisfy |a;| < m1 + mo.
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Output of Kleinjung “Lemma 2.1"

If we apply Kleinjung “Lemma 2.1" with only the leading coefficient
a4 fixed and with mg close to fmg = ,d/%, the algorithm yields:

mo— g

® ay_1 rather small: |ag_1| < my + day o

© Other a;'s satisfy |a;| < m1 + mo.

Our goal, and how we reach it

Have coefficient sizes which are a good match to some skewness.
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® ay_ rather small: |ag_1| < m; + dad"’om;;m.

© Other a;'s satisfy |a;| < m1 + mo.
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Output of Kleinjung “Lemma 2.1"

If we apply Kleinjung “Lemma 2.1" with only the leading coefficient
a4 fixed and with mg close to fmg = ,d/%, the algorithm yields:

mo— g

® ay_1 rather small: |ag_1| < my + day o

© Other a;'s satisfy |a;| < m1 + mo.

Our goal, and how we reach it

Have coefficient sizes which are a good match to some skewness.
© Find smart way to make ag_» small.

© Rely on (mild) luck to make ay_3 small.
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Making ay_» small

Use the equation admg =N mod m.

Key idea

Build m; as a product of small primes. Use the combination of
modular information to fabricate a small ag_».

© Let P be a set of small primes =1 mod d (m; will be a
product of a subset of P).

© Pick some a4 (e.g. smooth).

© Some primes r € Q C P give d solutions to adxd =N
mod r.

© Any choice of exactly one d-th root modulo each of those r's
gives a value mg defined modulo m; =[] r by CRT.
We may choose one which is close to g = /N/ay.

CSE291-14: The Number Field Sieve; Polynomial selection in NFS 32/35



Making ay_» small

Many choices

Pick ¢ primes for which agx? = N mod r has d solutions.
@ In total, d¢ possible choices for my.

©® mg is a linear combination of ¢ values among d x £.
This follows from explicit Chinese Remainder Theorem.

Expand the value ay_»/mq obtained by “Lemma 2.1" from the
d-th roots of mg mod r that we have chosen.

© By restricting to 1st order terms, we get a linear combination.
© If ag_»/mg ends up being close to an integer A for some
chosen my, then for f{ = fi — A(m1x — mo)x9~2, we have:
© al;_,/mo close to 0,
© 321—1 does not change much.
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Finding combinations that are close to Z

The problem can be reduced to the following:

© (! sets S1,...,5y, each containing d real numbers in [0, 1).

e d' choices: (si,...,s;) with each s; € S;, and:
ag_o/mgo mod Z = Zs,-.

© Naive complexity: O(d*).
© Better:
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Finding combinations that are close to Z

The problem can be reduced to the following:

© (! sets S1,...,5y, each containing d real numbers in [0, 1).

e d' choices: (si,...,s;) with each s; € S;, and:
ag_o/mgo mod Z = Zs,-.

© Naive complexity: O(d*).
© Better: O(d*/?).
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What do small combinations give ?

Algorithm has:
® ay chosen small.
® ay_1 small by construction, = mj.

® ay_» small thanks to small combinations.

With some extra luck,
a4_3 may be somewhat smaller than expected.
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