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The name of the game
The relation collection process as a whole is like this:
Input.

2 polynomials f0 and f1 such that N | Res(f0, f1);
e.g. deg f0 = 1 and deg f1 > 1.
(f0,1 output by polyselect, or derived from SNFS setting).

Output.
A set of many, many relations:

a, b : p1, . . . , pk : q1, . . . , qℓ.

with p and q prime numbers below some bounds B0 and B1.
Slight abuse of notations: the integers
F0(a, b) = Res(f0, a − bx) = bdeg f0f0(a/b) =

∏
pi and

F1(a, b) = Res(f1, a − bx) = bdeg f1f1(a/b) =
∏

qi
are often called norms.
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What a relation encodes
As we have seen, a relation such as

a, b : p1, . . . , pk : q1, . . . , qℓ.

encodes a factorization in some algebraic structure, with some info
that is only implicit.

Example: non-monic linear polynomial
If we have f0(x) = m1x −m0, the interpretation is:

Res(a − bx , f0(x)) = m1a −m0b
= ±p1 × · · · pk .

a − b(m0/m1) = ± 1
m1

p1 × · · · pk .
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Interpretation (2)

Interpretation on the algebraic side
If Q[x ]/f1(x) = Q(α), the interpretation of the right part is as
follows.

Assume for example that only q1, q3 are primes modulo which
algebraic work is a bit harder.
All other primes are “easy primes”.

F1(a, b) = q1 × · · · qk .

⟨a − bα⟩ = J−1 × (reminder: J = ⟨1, α⟩−1)
× some ideals above q1 and q3 (work needed)
× some trivially described ideals above other primes.
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Coprimality of a, b

Fact. If (a, b) gives a relation but d = gcd(a, b) is non-trivial,
then (a/d , b/d) gives almost the same relation.
Later on in the algorithm, those two relations cannot be
non-trivially combined.
Consequence. The output of the algorithm must contain only
primitive relations.

Rem. The number of coprime pairs is a constant fraction of the
total number of pairs.
Rem. In practice, computing all the GCDs in advance is too
costly: do it only on selected locations at the appropriate time.
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A promise from asymptotic analysis

When we did the analysis, we had:

A large space A to choose from (#A = LN [1/3, ])
a probability π that ϕ(x) = a − bx give rise to a
doubly-smooth relation. (π = LN [1/3, ]).
a target number of relations, say B = L[1/3, something].
constraint: (#A)× π ≥ B.

Then in that case, given the quantities at stake, we claimed that
we had a way to find AND output all B required relations for a
cost of (#A)1+o(1) = LN [1/3, + o(1)].

Our claim: sieving can do that. Sieving = today.
Small excursion: good and bad ways to do otherwise.
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Very naive algorithm

1. For a in a certain range:
2. For b in a certain range:
3. For all p < B0

4. check if p | F0(a, b).
5. For all prime ideals p of norm < B1

6. check if p | J × ⟨a − bα⟩.
7. If smooth on both sides, print the relation.

Cost: (#A)× B = LN [1/3, too much].

This naive technique does not work.
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Same, with ECM

1. For a in a certain range:
2. For b in a certain range:
3. Check smoothness of F0(a, b) with ECM;
4. Check smoothness of F1(a, b) with ECM;
5. If doubly-smooth, print the relation.

ECM takes time LB[1/2,
√

2 + o(1)] to find prime factors below B.
With B = LN [1/3, something], that means

LN [1/6, . . .].
(#A)× LN [1/6, . . .] is (#A)1+o(1): that works!

Good news: no memory needed. Infinitely parallelizable. May
be relevant for GPU, FPGA, ASIC, at least to a certain extent.
Bad news: not fast in practice.
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Over the top

Another approach:

1. Divide the set of (a, b) into many subsets.
2. For each subset (= many (a, b) pairs):
3. Compute product tree of all F0(a, b).
4. Compute product tree of all F1(a, b).
5. Compute remainder trees on both sides.
6. Recover smooth pairs, print relations.

As crazy as it may seem, it works, too!
Important detail: choose subsets so that products are balanced.
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The sieving approach (today)
1. Divide the set of (a, b) into many subsets.
2. For each subset (= many (a, b) pairs):
3. For each p < B0:
4. Mark (a, b) such that p | F0(a, b).
5. For each p < B1:
6. Mark (a, b) such that p | F1(a, b).
7. For each (a, b) with a large recorded contribution:
8. Compute and factor F0(a, b).
9. Compute and factor F1(a, b).

10. Print relation.

Sieving per se (steps 3-6) costs (#A)
∑

i log log Bi in total, and
steps 8- are only executed for a small fraction π of the input.
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Keep in mind: several methods

There is no single way to do relation collection
In practice, the most efficient way involves a blend of:

Sieving (in order to detect);
Trial-division;
Re-sieving (in order to factor);
ECM;
Product trees (which can replace sieving entirely).

And in the case of NFS, we have two sides to deal with, with
“norms” of very different size to factor. The chain of algorithms
need not be the same on both sides.
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Factoring slang

The name NFS highlights the importance of the sieving
process.
Yet, sieving is not the only way!
QS variants (large primes, special-q) also come into play here,
and lead to the presence of certain types of primes in the
relations.

Our preferred terminology

Large prime bound (for historical reasons): the largest prime
that appears in the relations. This is independent of the
method that we use for collecting relations.
Algorithms such as sieving, product trees, etc, may be
parameterized in many ways, and this conditions the shape of
the relation that they output.
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Outer/inner aspects

Two directions of study:

Outer aspect: how the work is divided into pieces in general;
Inner aspect: what we do with each piece.

We start with the outer aspect.
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Line sieving

Idea. The (a, b) search area is too large. Cut it into sub-areas that
are handled sequentially / independently.

First strategy
Cut the sieving space (rectangle) in lines, according to b.

This is called line sieving. Has been widely used in the past.

Line sieving alone is no longer competitive, because we can do
better.
However, line sieving is still part of special-q sieving.
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Special-q

Better strategy: sieving by special-q
We want to focus on pairs (a, b) so that a specific prime number is
forced to appear in the factorization of Res(F0(x), a − bx) or
Res(F1(x), a − bx).

(good to know: this is one prime that we will not have discover in the
factorization of the norm!)
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Line sieving vs special-q sieving

Line sieving
The work area is divided in lines (constant b).

For each line, we have to loop through many primes to identify for
which a we have a contribution to record as T [a] + = log p.

Special-q sieving
The work area is divided in sublattices of Z2.

Each piece of work explores combinations i × (a0, b0) + j × (a1, b1),
with (i , j) ranging over a fixed rectangle, e.g. 2I × 2I−1.

We have to loop through many primes to identify for which (i , j)
we have a contribution to record as T [(i , j)] + = log p.
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How do we define the q-lattice

Here is a lattice
The set of (a, b) such that q | am1 − bm0 is a lattice (say Lq).

Basis (if gcd(m1, q) = 1):
{

(a0, b0) = (q, 0)
(a1, b1) = ((m0/m1) mod q, 1)
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The Gauss reduction algorithm

u
v•

•
•

CSE291-14: The Number Field Sieve; Collecting relations in NFS 19/45



The Gauss reduction algorithm

u
v

v − 3u

•
•
•
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The Gauss reduction algorithm

u
v

v − 3u

•
•
•

while (!done) {
v ← v −

⌊ v ·u
u·u

⌉
u

swap u and v
}

Repeating this produces an almost-orthogonal basis for Lq.
This is is inherently attached to a scalar product. Here:

(a0, b0) · (a1, b1) = a0a1 + b0b1.
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The reduced basis

With Gauss reduction, we obtain the reduced basis.
We typically expect a0 ≈ a1 ≈ b0 ≈ b1 ≈

√q.

This basis defines the correspondence:

(a, b) = i(a0, b0) + j(a1, b1).

We have two 2-dimensional spaces:

the (i , j) plane: always a fixed-size rectangle.
and the (a, b) plane. The set of reached points is isotropic.
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Special-q

a

b

In both cases, the reduced basis defines a change of basis.
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q-lattice versus skewness

If our polynomial has skewness S, we have to adapt our lattice
reduction in order to reach basis vectors with a/b ≈ S.

Scalar product for skewed-Gauss
The adaptation to the skewed case simply uses the following
alternate scalar product:

(a0, b0) · (a1, b1) = a0a1 + S2b0b1.

E.g. the vectors (
√

S, 1/
√

S) and (−
√

S, 1/
√

S) are orthogonal
with respect to this scalar product.
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Skewed-Gauss reduction

We expect a pair of vectors (a0, b0) and (a1, b1) with entries:

a0 ≈ a1 ≈
√

qS.

b0 ≈ b1 ≈
√

q/S.

Note that it doesn’t reduce much if q < S (and the orders of
magnitude above do not hold), but this case does not occur in
practice.
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Most ideals are easy ones

Reminder from two weeks ago
An easy ideal q represented by (q, x − r) is the prime ideal above q
that contains all algebraic integers that are OK -multiples of
(α− r).

This implies that q divides J × (a − bα) if and only if a/b ≡ r
mod q.

Basis of the lattice of (a, b) such that q | (a − bα)× J :

Lq :
{

(q, 0)
(r , 1)

This can undergo Gauss reduction, and works the same way.
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Special-q versus special-q

Remember: there might be several ideals above the same q.

On the rational side (deg f0 = 1), q is enough to refer to a
particular set of (a, b) such that p | F0(a, b).
In contrast, on the algebraic side, we really need the
description of an ideal, not just the information of the prime
number.
We may speak of special-q sieving in this case (for
terminology nerds).
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Special-q sieving brings many changes

Special-q sieving is not a way to do the same thing as before.

It is really an important change of the relation collection process.

The division of the work is not the same as with line sieving.
The relations that we obtain are different.

What are the advantages and disadvantages of special-q sieving?
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Division of the work is different

With special-q sieving, we have many q’s of the same size.

The yield per q is more stable.
It is easier to make projections of the total yield.

In contrast, line sieving suffers from much more irregular yields,
which also drop more quickly.

The diminishing returns effect is significant.
Projections are harder to make.
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Not the same relations
Cons:

We miss relations that are very smooth. If the primes involved
in the factorization are smaller than all special-q, the
(a, b)-pair belongs to no q-lattice.
Such relations are extremely rare anyway.
Some relations occur several times. If the factorization
corresponding to an (a, b)-pair contains two primes of the
sizes of the special-q’s, it belongs to the two q-lattices.

Pros:

We know in advance that one norm is divisible by q.
We avoid considering some positions that are obviously
non-smooth. e.g. when the norm is prime or almost prime.

Rem. There are more primes and almost primes than very smooth
numbers.
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Choosing the side of the special-q

Question. On which side do we put the special-q?
Consider two numbers; the sum of their sizes is fixed.
Is it more likely for them to be simultaneously smooth if they have
the same size or if they are unbalanced?

Answer. The concavity of log ρ tells that it is better to balance
the sizes.
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Choosing the side of the special-q

Consequence. Choose q on the side that gives the largest norms.

In the GNFS case, the algebraic side is the heaviest.
In the SNFS case, there are low-degree cases where it is better
to put the special-q on the rational side.

Rem. There might exist cases with no clear answer (esp. SNFS):

In such cases, alternating the sides of the special-q can make
sense (recently: HSNFS-1024 DLP).
Or it is even possible to work with hybrid special-q.
The set of (a, b) such that q | F0(a, b) and q | (a − bα)× J is
the intersection of two lattices, and it is in turn a lattice:
everything can work pretty much the same way!
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What do we have to do?

We have chosen two basis vectors, and we’re going to explore (i , j)
in a fixed-size rectangle [−2I−1, 2I−1]× [1, J ]. We have:

(a, b) = i · (a0, b0) + j · (a1, b1).

On each side, we want to sieve:
Allocate a big array.
Initialize each cell with log |F (a, b)| (for the appropriate F ).
This is (log-)norm initialization (not today)
For many primes p, subtract log p from all array cells when p
divides. This is sieving proper (today + Tuesday)

Once this is done, it takes some extra work to list the array cells
with the smallest cofactors.
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Preferred viewpoint: most general

WLOG, we will assume that we work on the number field side.
Everything applies (only simpler, at times) to the rational side as
well.

The rational analogue of “the ideal (p, r)” is “the ideal
(p, (m0/m1) mod p)”. In other words, r is implicit in the rational
case, as it is directly inferred from the polynomial.
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The sieving primes

Sieving involves a loop over primes. Which primes?

This is an implementation detail of sieving.

The more relevant quantity globally is the large prime bound.
Whether sieving deals with prime ideals of norm within one
range or another is only of interest to sieving itself.

Terminology

The factor base is the set of prime ideals that are considered
during sieving.
The sieving bound or factor base bound is the upper bound on
the norms of the ideals in the factor base.
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Beware

We had (and we still have) q, which encodes an ideal that we will
force into all relations produced.

Now we also consider p, which is some ideal in the factor base.

So p is not q(also, we want them coprime).

Challenge
Within the (i , j) rectangle, we want to identify locations where p
divides (a − bα)× J .
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The p-lattice

Let p be an ideal to be sieved.

Fact: The set of positions in the (i , j)-plane where p divides
(a − bα)× J is a lattice Lp.

We already encountered this for the easy primes, but this holds
more generally.

Each (power of a) prime ideal of inertia degree one gives rise
to a lattice in the (a, b) plane.
We’ll see how it connects to the (i , j) plane.
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prime ideal → lattice in (a, b) plane

Given a prime ideal p above p.

pJ−1 ∩ (Z + αZ) is a lattice. It has a basis.
Some cases are uninteresting: if p has inertia degree > 1, then
intersection points only have p | gcd(a, b) (except possibly if
p | J).

The description of the basis in the (a, b) plane only involves some
non-trivial work for the rare non-easy ideals. Anyway it can be
done beforehand.

In effect, we are interested in the description of sets of sieving
locations, and we know that each of these is going to be a lattice
in the (a, b) plane.
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Example of description

Example
Let f = 3x4 + x3 + x2 + x + 1. Algebraic number theory tells us
that 3OK splits into three ideals, of norm 3, 3, and 9.

3OK = p1p2p3.

p1 | (a − bα)× J iff a ≡ b mod 3.
p2 | (a − bα)× J iff b ≡ 0 mod 3.
p3 never divides (a − bα)× J , unless a, b are both multiples
of 3 (and we disregard this case).
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Another example of description

Example
Let f = 9x4 − x2 − 5. Algebraic number theory tells us that 3OK
splits into four ideals, each of norm 3.

3OK = p1p2p3p4.

p1 | (a − bα)× J iff a ≡ b mod 3.
p2 | (a − bα)× J iff a ≡ −b mod 3.
Both p3 and p4 divide (a − bα)× J iff b ≡ 0 mod 3.

p2
3 | (a − bα)× J iff 3a − b ≡ 0 mod 9.

p2
4 | (a − bα)× J iff 3a + b ≡ 0 mod 9.
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Compact encoding
All congruences we have to deal with in the (a, b) plane (for prime
ideals and their powers) are of the form:

λa − µb ≡ 0 mod pk .

If p ∤ λ, WLOG we can assume λ = 1. This encodes the most
common case of easy ideals ((p, r)→ a − rb ≡ 0 mod p),
and this extends to powers with 0 ≤ r < pk .
Or p | λ, whence p ∤ µ and WLOG we can assume µ = 1. We
obtain a relation of the form

psa − b ≡ 0 mod pk

with pk−1 possible choices for s. (Note: s not necessarily
coprime to p.)
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Compact encoding

Another way to look at this mathematically speaking is to relate
this with the space P1(Z/pkZ) which has pk + pk−1 elements:

First case: the affine point (r : 1) in P1(Z/pkZ).
Second case: the point (1 : ps) in P1(Z/pkZ) which is “at
infinity”. In such cases, the NFS folklore uses the term
projective roots (they exist only projectively).

In Cado-NFS, the computation of the factor bases is done prior to
sieving, and gives for each prime power lists of one of the two
encodings above.
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Compact encoding → lattice
Affine case
For a set of sieving locations modulo pk , described in compact
encoding by an affine integer r < pk , the lattice basis is{

(a0, b0) = (pk , 0)
(a1, b1) = (r , 1)

Projective case
For a set of sieving locations modulo pk , described in compact
encoding by an integer s < pk−1 which denotes the point (1 : ps)
on the projective line, the basis is (assuming νp(ps) = c > 0):{

(a0, b0) = (pk−c , 0)
(a1, b1) = ((ps/pc)−1 mod pk−c , pc)
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Four points of view

More mathematical: some power of a prime ideal.
Also mathematical: a point in P1(Z/pkZ).
More down-to-earth: a lattice basis.
More compact: an integer between 0 and pk + pk−1.
E.g. by letting pk + s encode (1 : ps)

These are equivalent ways of describing the same thing: a set of
(a, b) pairs where we know that some divisibility condition is met.
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Where do we sieve in the (i , j) plane?
Lp: locations of interest in the (a, b) plane.
Lp ∩ Lq has a basis in the (i , j) plane.

(a, b) = i · (a0, b0) + j · (a1, b1).

Example: affine case

a − rb ≡ 0 mod pk

⇔ (ia0 + ja1)− r(ib0 + jb1) ≡ 0 mod pk

⇔ i(a0 − rb0) + j(a1 − rb1) ≡ 0 mod pk

⇔ i − Rj ≡ 0 mod pk

with R ≡ −a1 − rb1
a0 − rb0

mod pk if the denominator is invertible!
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Translation from (a, b) to (i , j)

This is preparatory work that must be done for each special-q:

Transforming the factor base
For each prime ideal (power) or more down-to-earth representation
in the (a, b) plane, compute the down-to-earth representation in
the (i , j) plane.

Anything can happen:

affine in (a, b) → affine in (i , j).
affine in (a, b) → projective in (i , j).
projective in (a, b) → affine in (i , j).
projective in (a, b) → projective in (i , j).
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Ready!

At this point, our gear is packed, we’re ready to sieve.
We have:

a huge array T [], indexed by (i , j).
T [] can be up to several gigabytes of RAM.

And we also have:

A (long) list of prime (powers) pk (not that we must sieve
powers, but for sure we can).
Each comes with a descriptions of the location of hits: places
in the (i , j) plane where we want to subtract log p.
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