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Various sieving strategies

Depending on pk , we will use varying strategies:

for very small p, we will use pattern-sieving;
mildly larger primes (say up to 2I) are done with line sieving
(“small sieve” in Cado-NFS).
even larger primes are sieved with bucket sieving, which can
even be done in several stages.
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Pattern sieving

Idea. When p is tiny, there are many hits, and those are very close
to each other.
We can use the fact that a processor likes to work with (64-bit)
machine words rather than single bytes.
Used in Cado-NFS for p = 2, 3, 5, 7 and small powers.
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Pattern sieving for 2 and its powers

For powers of 2:

Prepare a block of 16 bytes.
From the factor base data, we know where we should subtract
k log 2, for k = 1, 2, 3. Store this info in the block.
Subtract this block from the sieving space, 2 unsigned long at
a time.
Alignment of the pattern changes with j .

Rem. No carries! Guaranteed! We do an unsigned long-level
subtraction to emulate 8 independent byte subtractions.
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Pattern sieving for 3

For 3:

Still want to use unsigned longs. But the pattern must have a
number of bytes that is divisible by 3.
Use a block of 3 unsigned longs.
Prepare and apply block as before.
Alignment of the pattern changes with j .
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More pattern sieving

Cado-NFS has more pattern sieving:

Use SSE2 / AVX / . . . to apply the pattern.
Handle larger primes (3,5,7).
Instead of doing the pattern separately for each prime, use
just one longer pattern (like in wheel sieve).

Pros/Cons
Obviously, pattern sieving is only suitable for (very) small primes.
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Line sieving (“small sieve”)

Warning. We use the terminology “line sieving” for a part of the
lattice sieving. Do not forget we are still in a special-q sublattice.
Context. This is used when pk < 2I .
There is at least one hit per line of the (i , j)-plane.
Handle the j-lines one after the other (hence the name!).
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Line sieving (“small sieve”)

(i , j) rectangle

first hit
in line +pk +pk
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Line sieving

1. Initialize: j = 0, t = −2I−1 + (2I−1 mod pk).
2. [work on the current line]
3. set u = t [first hit in line]
4. while u < 2I−1,
5. subtract log p at position (u, j);
6. u ← u + pk

7. Increment j , stop if j ≥ J .
8. t ← t + R [first or maybe second hit]
9. if t ≥ pk , then t ← t − p [first hit, really]

10. Go to step 2.
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Line sieving

Tricks:

For j even, we sieve only odd i (and add 2pk instead of pk).
In the projective case (when p | j is a necessary condition), it
makes sense to adapt the algorithm, and not go through lines
which have assuredly no hit.
Note that this is a rare case, and it is not a problem if it is
dealt with by special code.
For a given small pk , since there are many hits, we have some
positive aspects implementation-wise:

Computation time is spent in the tightest loop.
Memory accesses are close to each other.
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The sieve area is too large

Problem: The sieve area 2A = 2I × J is often large.

If we line-sieve factor base primes for the whole (i , j) rectangle,
then despite the good things that we mentioned, we have bad
cache behaviour because we will traverse a multi-GB memory area
over and over again.

Full memory traversal is expensive: it causes all memory caches to
be emptied and refilled constantly!
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The sieve area is too large

Dividing into small regions
It is better to split the sieve area in pieces.

we typically handle sub-areas of the (i , j) rectangle 64 KB at a
time.

Index within such an area can be 16 bits.
Always fits in L2 cache.
L1 cache is often smaller, though.

our hope is that this will minimize cache misses.

As I grows, line sieving only on regions of 64 KB at a time means:

we deal with only a fixed number of lines at a time.
Extreme cases: 1 line when I = 16

line fragments when I > 16 !
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Sieving regions: doing it right

Challenge: for each new region:

we must resume all small sieve computation where we left
them.
this means: store the “first hit in line” as it would have been
deduced, had we kept going.

This is reasonable as long as we have something to do with
line-sieved primes in each region.
Clearly, if pk ≥ region size, we do not want to go through all this.
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Many misses
Problem: when pk > 2I , there are lines with no hit.

(i , j) rectangle

+pk

Worse: when pk ≫ 2I , almost no line has a hit. For pk larger
than the region size, not even every region has a hit.
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A new enumeration for primes above 2I

Idea
Because pk is larger than the width of the (i , j) rectangle, there
might be a way to enumerate all hits efficiently.

The answer is the Franke–Kleinjung algorithm:

Goal: obtain a basis of the lattice that is well adapted to
enumerating the hits.
We intend to run that in a tight loop, and infer the list of
(possibly rare) regions where hits will occur.

Note: most of the following description assumes k = 1. The case k > 1
for such p is only WIP in Cado-NFS anyway at the moment, and is not
sure to be worthwhile.
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Franke–Kleinjung’s lattice sieving
Idea. Adapt the stopping criterion in Gauss algorithm to get a
basis adapted to the width 2I of the search space.

Lemma
There exists a basis ⟨v0 = (α, β), v1 = (γ, δ)⟩ of Lp such that

β and δ are positive;
−2I < α ≤ 0 ≤ γ < 2I ;
γ − α ≥ 2I .

The proof is neither really complicated, nor enlightening.
Implementation.

Easy to get something that works; similar to Euclidean
algorithm;
Enumerating is costly because we have many primes: many
hits to process.
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Franke–Kleinjung’s lattice sieving

j

i
2I−1−2I−1

(α, β)
(γ, δ)
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Franke–Kleinjung’s lattice sieving

Fact. This basis allows to iterate on the points of Lp that are
exactly in the (i , j)-rectangle with no branching.
Let (i , j) be a valid hit. At most one of the following vectors is
valid:

(i , j) + (α, β);
(i , j) + (γ, δ);

And if the two above vectors are invalid, then the following is
valid:

(i , j) + (α, β) + (γ, δ).

Fact. Applying this rule starting with (0, 0), we enumerate all
points of Lp in the (i , j) rectangle.
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Franke–Kleinjung’s lattice sieving

j

i
2I−1−2I−1

v0

v1

add v1 add v0

add v0 + v1
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Franke–Kleinjung’s lattice sieving

Tricks:

Deciding which vectors to add depends on easy bounds on i .
This can be implemented in a branch-free way using cmov’s
(nowadays, the C compiler does it for you).
Assume that the memory layout is such that T [(i , j)] is at
address j · 2I + (i − imin). Then adding a vector to an index to
the array T is done by adding an integer.
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Handling the memory locality question

Problem. When p is large, each hit in the (i , j)-rectangle is a
cache miss.
If not careful, a lot of time is spent fetching remote memory into
cache in order to subtract log p in the appropriate cell.
Think different!

In term of information, the data produced by the sieve is a
(huge) set of sieve updates, i.e. pairs (location, contribution).
Instead of using directly the sieve update, store them for
future use.
Before applying the updates to the sieve array, sort them
according to increasing locations.
Then, applying the log p’s contributions will be
cache-compliant.
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Handling the memory locality question

But. Sorting is not really local, is it?

Sorting is a very well studied topic, and there exist variants
that are local.
For instance, merge_sort is quasi-linear even on a Turing
machine.
Even better: we do not need a perfect sorting, since at the L1
cache level, we can consider to have random access.

Solution: Bucket sorting.
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Bucket sieving

We reuse our division of the (i , j) rectangle into regions.
Def. A region is a set of contiguous j-lines of the (i , j)-rectangle
that fits (more or less) in the L1 cache.
The sieve array is therefore split in many regions.

Prepare k buckets, i.e. storage for lists of sieve updates, each
bucket corresponding to a region.
Run the sieving à la Franke–Kleinjung for each p in the factor
base; for each hit, append the sieve update in the appropriate
bucket.
For each region, apply all the updates of the corresponding
bucket.
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Big steps of bucket sieving

1. Allocate buckets
2. Fill buckets: for both sides, and for all prime ideals above the

bucket threshold,
Iterate through locations of updates with the Franke–Kleinjung
enumeration.
Append each update in the right bucket (lower bits of memory
location and some info related to p).

3. Loop over all regions (64 KB each):
Initialize (log-)norms.
Apply buckets: read locations from buckets, do subtractions.
do the line sieving for the small primes (both sides), for this
region only.
Look for survivors that deserve further investigation.
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Bucket sieving

Analysis.
When sieving, we have k pointers (one for each bucket) advancing
in parallel.
If the cache can handle k cache lines, there are no misses.
Furthermore, processors tend to be optimized for linear memory
access: we can hope for automatic prefetching.
Caveat.
Ever heard about TLB? (Translation look-aside buffer)
This is a key element of the virtual memory mechanism. One can
think of it as a cache for the big table that contains the
correspondence physical / logical addresses.
If the number of buckets k is larger than the TLB, we often have
TLB misses.

CSE291-14: The Number Field Sieve; Collecting relations in NFS 26/67



Bucket sieving — details

Bucket updates:

Buckets take a lot of memory (but then we do not need all
the sieving area in memory).
Do not need to store the high bits of j (= bucket id).
Do not need to store log p. Indeed, primes are sieved in
increasing order, so we can just remember the few events
when log p increases in a bucket.
For re-sieving (later), it would be nice to have p, but store
only 16 bits of p, called a hint.
Conclusion. Only 32 bits per update.
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Recap

We have seen so far:

How we sieve, for tiny, for small, and also for larger primes.
The (i , j) sieving rectangle is divided into regions, typically of
64 KB.
The bucket sieving process computes in advance bucket
updates. Buckets are attached to regions.
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Recap

We thus have the bits and pieces for an algorithm that identifies
(i , j) coordinates for which. . .

Res(a − bx , f0(x)) and Res(a − bx , f1(x)) are both smooth;
or at least, both have a large contribution from FB primes.
In this last case the norms might be almost smooth, and it
might well be that this is good enough for our purposes.
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Recap

Next: we need to recover the complete factorization for all these
promising locations (i , j).

Some factors come from the factor base: some work is needed
to find them again: re-sieving.
When norms are just promising, not completely smooth,
cofactorization will be used to find the remaining factors.
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Graphically

f0, f1 and one q (among many!)

sieve on side 0 sieve on side 1

(i , j)’s on side 0 (i , j)’s on side 1

(i , j)’s that look promising on both sides

recover FB primes on side 0 recover FB primes on side 1

recover larger primes on side 0 recover larger primes on side 1

print relation whenever everything succeeded
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Parameters

Cado-NFS’s lattice siever is called las.
The las program is quite versatile, and is controlled by a host of
(command-line) parameters.
Almost every transition in the previous slide can be controlled by a
parameter.
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Parameters: the special-q’s
f0, f1 and one q (among many!)

sieve on side 0 sieve on side 1

(i, j)’s on side 0 (i, j)’s on side 1

(i, j)’s that look promising on both sides

recover FB primes on side 0 recover FB primes on side 1

recover larger primes on side 0 recover larger primes on side 1

print relation whenever everything succeeded

Several parameters can be used to select q’s.

First: sqside is (integer) side 0 or 1.

q0 , q1 : all special-q in the range q ∈ [q0, q1).

q0 , q1 , and -random-sample n :
only n special-q’s, evenly spaced across [q0, q1).

q0 , rho : just one single special-q, the ideal (q0, x − ρ).

las also agrees to work with an arbitrary list of special-q’s given
by the todo parameter.
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Parameters: the sieving parameters
f0, f1 and one q (among many!)

sieve on side 0 sieve on side 1

(i, j)’s on side 0 (i, j)’s on side 1

(i, j)’s that look promising on both sides

recover FB primes on side 0 recover FB primes on side 1

recover larger primes on side 0 recover larger primes on side 1

print relation whenever everything succeeded

I or A : size of the (i , j) sieving area.

lim0 , lim1 : factor base bounds on both sides.
We sieve for p < lim0 on side 0.

bkthresh : when we start to use Franke–Kleinjung enumeration
(a good default value is 2I);

tdthresh , bkthresh1 , adjust-strategy : more advanced
parameters.
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Parameters: large primes
f0, f1 and one q (among many!)

sieve on side 0 sieve on side 1

(i, j)’s on side 0 (i, j)’s on side 1

(i, j)’s that look promising on both sides

recover FB primes on side 0 recover FB primes on side 1

recover larger primes on side 0 recover larger primes on side 1

print relation whenever everything succeeded

lpb0 , lpb1 : bit size of the largest primes
that we tolerate in relations.

f0, f1 and one q (among many!)

sieve on side 0 sieve on side 1

(i, j)’s on side 0 (i, j)’s on side 1

(i, j)’s that look promising on both sides

recover FB primes on side 0 recover FB primes on side 1

recover larger primes on side 0 recover larger primes on side 1

print relation whenever everything succeeded

mfb0 , mfb1 : maximum bit size of
norms after removing all sieved primes.
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Parameters: after-sieve threshold
f0, f1 and one q (among many!)

sieve on side 0 sieve on side 1

(i, j)’s on side 0 (i, j)’s on side 1

(i, j)’s that look promising on both sides

recover FB primes on side 0 recover FB primes on side 1

recover larger primes on side 0 recover larger primes on side 1

print relation whenever everything succeeded

lambda0 , lambda1 : coarse-grain test.

We would like to keep (i , j) whenever the unsieved part is below
mfb on both sides.

However we do not know the bit size of the unsieved part, just
a coarse approximation of it.
We compare this approximation with lambda× lpb.
lambda defaults to mfb/lpb, but it is allowed to put explicit
values.
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Re-sieving

If a cell passes the λ-threshold on both sides, we need to compute
the corresponding norms and test them for smoothness according
to the large prime bound: need exact cofactor.

Norm computation: not so much tricks to do, since we need
an exact result.
We handle a region at once and deal with all the survivors: we
can therefore do again the line sieving for the small primes
(and divide the norm by p).
The buckets are also applied again, but this time the primes
are reconstructed from the hints and trial divided in the norm.
The remaining part of the norms are tested against the exact
threshold, and possibly factored with ECM (cofactorization).
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Parameters: trial division
f0, f1 and one q (among many!)

sieve on side 0 sieve on side 1

(i, j)’s on side 0 (i, j)’s on side 1

(i, j)’s that look promising on both sides

recover FB primes on side 0 recover FB primes on side 1

recover larger primes on side 0 recover larger primes on side 1

print relation whenever everything succeeded

tdthresh :

For the smallest primes, divide
them out at the promising (i , j) positions by trial division only.

Rationale: when p is really small, it is quick enough to trial-divide
all the survivors.
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Wait, we have two sides!

f0, f1 and one q (among many!)

sieve on side 0 sieve on side 1

(i, j)’s on side 0 (i, j)’s on side 1

(i, j)’s that look promising on both sides

recover FB primes on side 0 recover FB primes on side 1

recover larger primes on side 0 recover larger primes on side 1

print relation whenever everything succeeded

The activity on both sides is interleaved.

1. Fill the buckets on side 0;
2. Fill the buckets on side 1;
3. Loop on each region:
4. Initialize norms on side 0;
5. Pattern- and line- sieve on side 0;
6. Apply bucket updates on side 0;
7. Initialize norms on side 1 (only survivors);
8. Pattern- and line- sieve on side 1;
9. Apply bucket updates on side 1;

10. Cofactorize both sides (includes re-sieving).
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How do we parallelize?

1. Allocate buckets
2. Fill buckets: for both sides, and all (large-ish) prime ideals

...
3. Loop over all regions (64 KB each):

Apply buckets
and do very local things on with this 64 KB region.

Parallelize in “two directions”
We parallelize steps 1 and 2 in one direction, and step 3 in another.
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Multi-threading

This way of organizing the computation is “easy” to parallelize in a
shared-memory environment.

Steps 1 and 2 (allocate / fill buckets): each thread has its
own set of buckets and takes care of part of the factor base.
Thereafter, all buckets are readable by everyone.
Step 3: Region are processed independently by all threads.

Region r is processed by thread r mod T (if T threads).

Advantage: The memory pressure per core is reduced.
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Splitting the factor base

For steps 1 and 2, we want to split the factor base in many “slices”
so that, for the overhwelming majority of them:

slices contain roughly an equal number of prime ideals.
slices contain no more than 216 prime ideals.
all prime ideals in a slice are easy ideals, and not projective
roots in the (i , j) plane.
all prime ideals in a slice have equal ⌊logβ |Norm(p)|⌉.
all prime ideals in a slice are above prime number with equal
number of roots modulo p.

These restrictions are here so that the inner loop can be
streamlined as much as possible.
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Processing regions in parallel

Thread k deals with regions k, k + T , . . ..

To make the “small sieve” efficient, the per-line first hits for
each prime must be remembered from one region to the next.
Some annoying arithmetic adjustments are necessary.
It gets worse when lines are larger than one region.
More pragmatic approach: precompute the starting points for
all “small-sieved” primes and all regions. That’s cheap
enough.
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Memory footprint

With bucket sieving, most of the memory goes into the storage of
bucket updates.

number of updates ≈ #A×
∑
p∈F0

p bucket-sieved

1
|Norm p|

.

≈ #A× (log log lim− log log bkthresh) .

Orders of magnitude:

#A ≈ 234. lim around 232.
I ≈ 16 and bkthresh = 2I .
log log 232 − log log 216 ≈ 0.69
4 bytes per update. Total about 13G.
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Too many buckets at a time

When #A ≈ 234 and regions are 64 KB:

That makes about 218 buckets that we are writing to.
(way) more than the CPU can handle efficiently.

We can alleviate both problems at once with multi-layer bucket
sieving.
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Multi-layer

Simple idea (but not trivial implementation-wise):

For primes above some threshold (say about 2I+8), dispatch
into “big buckets” that correspond to “big regions”,
equivalent to 28 regions at a time.

Cado-NFS calls this threshold bkthresh1.

Subdivide the region processing into blocks 28 regions. When
we begin such a block:

we bucket-sieve the primes between bkthresh and bkthresh1.
and do a secondary pass on the updates from the current “big
bucket”.
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How do we handle prime ideals?

Largest factor base prime ideals.
#A× (log log lim− log log bkthresh1) updates in total.
Dispatched at the beginning of sieving into ⌈#A/224⌉ “big
buckets”.
Re-dispatched in a second pass when we begin processing the
first region in a batch of 28.

Prime ideals between bkthresh and bkthresh1.
Dispatched among the “next 28 regions” only when we’re
about to process them.
This is fine, since these have many hits anyway.
Need memory for 224 (log log bkthresh1− log log bkthresh)
updates.

Primes below 2I are line-sieved only when we process a region.
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Pros/Cons

Two advantages:

We limit the number of buckets that we are writing to.
The memory cost is reduced:

number of updates ≈ #A× (log log lim− log log bkthresh1)
+ 224 (log log bkthresh1− log log bkthresh) .

Downside: the processing of the large primes requires two steps.

Two-layer bucket sieving matters a lot in large computations.
it can probably be improved: the current “hard” cutoffs are
not ideal.
it might make sense to have three layers at some point.
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Use case

Two fundamental differences between time and memory
requirements of sieving and batch smoothness detection.

Sieving: dependence on #A.
Batch smoothness detection: dependence on the number of
integers we want to test for smoothness.

Since NFS sieving has two sides, it makes sense to:

Do sieving on the “hard” side.
Once the rare survivors are identified, feed them to batch
smoothness detection.
Batch smoothness detection can even run asynchronously: do
a dozen special-q’s, then do batch smoothness detection on
the survivors, etc.
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Norms: what is it about?
Context

We have the polynomials f and g .
We have chosen a special-q on one of the two sides.
So we are working with

(a, b) = (i · (a0, b0) + j · (a1, b1))

for (i , j) in the (i , j) rectangle.
We will sieve on both sides because we want both
|Res(a − bx , f (x))| and |Res(a − bx , g(x))| to be smooth.

Sooner or later we will need to compare two things
The accumulated contribution of sieved factor base primes p;
and the size of the |Res(a − bx , f (x))| (on the side we’re
sieving on).
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Norms: what is it about?

The accumulated contribution of sieved factor base primes p;
vs: the size of the |Res(a − bx , f (x))|.

We do this comparison additively

at the beginning of the computation, we store
log|Res(a − bx , f (x))| at the location corresponding to (i , j).
each time we identify a location where p divides the norm, we
subtract log p to that location.

We choose the log base so that the computation can be done
using single-byte integer arithmetic.
This inaccuracy is an acceptable trade-off.
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Norms: what is it about?
Each cell contains an 8-bit integer:

Initialized with the logarithm of the norm.
During sieving, the logarithm of the prime to be divided is
subtracted.
After sieving, positions where the cell contains a small integer
are promising: only consider those for cofactorization.

After sieving, the cell corresponding to (i , j) contains an
approximation of the log of the part of Res(a − bx , f (x)) that is
made of primes that were not sieved.
In NFS, depending on this log value, we may decide to:

strive to factor them (e.g. with ECM);
or ignore them because they stand too little chance of being
interesting in the end.
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Norm initialization in Cado-NFS (I)

When developing an NFS sieving program, it is important to be
precise with norm computations at the beginning, because this is
an important debugging asset.
Early versions of Cado-NFS:

precise (but slowish) computation of norms;
various tricks come into play;
computation of algebraic norms more expensive;
still claims a share of the total computation cost that is way
too large (10%).
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Norm initialization in Cado-NFS (II)

More recent improvements in the norm computation (version 2.1,
improved in 2.3):

Unify algebraic and rational norm initialization by computing
piecewise linear approximations of polynomials that are
accurate up to a multiplicative factor.
Neighbouring cells often have the same value. We compute
the value changes instead (easy for a linear polynomial).
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Piecewise linear approximations
Input:

a polynomial f̃ (x) with real coefficients. f̃ (x) is such that

F̃ (i , j) = jdeg f̃ f̃ (i/j) = Res(a − bx , f (x)).

The q-lattice defines a homography that yields F̃ from F :

F̃ (i , j) = F (ia0 + ja1, ib0 + jb1).

an inaccuracy tolerance τ ;
a range of interest [−2I−1, 2I−1]× [1, J ].

output: a list of linear functions u0, . . . , uk−1 and consecutive
intervals R0, . . . , Rk−1 such that ∪sRs = [−2I−1, 2I−1] and

∀s, ∀i ∈ Rs , e−τ |F̃ (i , 1)| ≤ us(i) ≤ eτ |F̃ (i , 1)|
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Piecewise linear approximations: example
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Piecewise linear approximations: example
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Piecewise linear approximations: example
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Piecewise linear approximations

Once we have the PL approximations correct, then we can say that:

|log|F̃ (i , 1)| − log|approximation(i)|| ≤ τ ;∣∣∣log|F̃ (i , j)| − jdeg f log|approximation(i/j)|
∣∣∣ ≤ τ + (deg f ) log j .

it makes sense to compute PL approximations for more than
just line j = 1.
If we computed PL approximations for j0, then the inaccuracy
drops to (deg f )(log j − log j0), so approximations on lines
spaced in a geometric progression are fine.
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(log)norm computation for linear polynomials

Input: ũ = c1x + c0. Want to compute logβ |c1i + c0j | for some j ,
and for all i : −2I−1 ≤ i < 2I−1.

compute real root ζ = −(c0j)/c1.
set i = imin = −2I−1.
compute y =

⌊
log Ũ(i , j)

⌉
.

if i < ζ, compute i ′ s.t.
⌊
log Ũ(i ′, j)

⌉
= y − 1.

(if i > ζ, aim at y + 1 instead).
fill the table with y until location i ′, and resume from there.

Finding i ′ is easy enough precisely because ũ is a linear
approximation.
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A foreword on J (integer bound)
Duh, some special-q’s are much faster than others:

# 3 relation(s) for side-1 (1310000579,873183740)
# Time for this special-q: 28.8720s [norm 0.0280+0.0200, [...]

sieving 26.5920 (22.4760 + 1.0400 + 3.0760), [...]
factor 2.2320 (1.8160 + 0.4160)]

while for others:

# 19 relation(s) for side-1 (1310009947,283600118)
# Time for this special-q: 126.4920s [norm 0.1800+0.4480, [...]

sieving 111.3360 (86.7800 + 6.4040 + 18.1520), [...]
factor 14.5280 (11.7120 + 2.8160)]

Explanation comes from J .
(I’m not talking about the ideal J here!)
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Lattice sieving

We sieve for (a, b) = i · u⃗0 + j · u⃗1.

(u⃗0 = (a0, b0), u⃗1 = (a1, b1)) basis of the lattice Lq.
We pick u⃗0 the shortest vector in Lq.
We let typically −I/2 ≤ i < I/2 and 0 ≤ j < J , have in mind
J = I/2 too.
We have detLq = q.
Furthermore, because of skewness, ai/bi ≈ s.
Bottom line: the vectors u⃗′

i = (ai
√

1
qs , bi

√
s
q ) are relevant to

plot.

Following slide: plot [−I/2, I/2]u⃗′
0 + [0, I/2]u⃗′

1.
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What happens?

It might really happen that the sieving rectangle looks pretty
distorted.
If u⃗0 is really really short, then u⃗1 is somewhat bigger, since the
lattice determinant is constrained.
As q varies, one may wonder how the quotient of complex numbers
u1
u0

evolves. There are theorems for that.
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A familiar shape

-1  0  1

(a): u0

 0

(b): ratio τ = u1/u0
(turn your head clockwise)

It’s even possible to write down the density around u1/u0 = x + iy ,
which is 3

πy2 dxdy .
So, bad stuff happens, sometimes.
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Historical provision in las against that

Some straightforward options.

Discard q when it so happens that u1/u0 has large imaginary
part (that is, when u⃗0 is exceptionally small).
Other option: limit J to a smaller value in that case.
las does exactly this.

The issue we observe is that J is sometimes reduced a LOT.
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Better strategy for adjusting I , J

Assume we have in mind an area A ≈ 231 within the (i , j) plane.
We sieve for (a, b) = i · u⃗0 + j · u⃗1.
Obvious “we should rather do this” strategy.

Multiply the shortest vector by the largest interval.
Ah, yes, but our I is limited to 216. (no longer in the
development version — still at work!)
One of the intervals, for sure, will be at least

√
A.

Depending on u1/u0, we might prefer
√

A · S for some S > 1.
The closest power of two is within [

√
AS/2,

√
2AS].

J , on the other hand, is not limited. So we should allow
swapping vectors and reducing I instead for distorted lattices.
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Relevant curve

r

f (x) = 2x

(a)

(b)
(c)

This is by no means a game changer, but will avoid wasting some
special-q’s.
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Some example plots
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Some example plots
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Some example plots
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Some example plots
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Some example plots
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Some example plots
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Some example plots
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Some example plots
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Some example plots
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Some example plots
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Some example plots
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Some example plots
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Some example plots
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