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Once we have collected all relations

The output of the relation collection can be viewed as a matrix

© a row corresponds to a relation;
© a column corresponds to a prime ideal;

@ the coefficient is the valuation of the corresponding ideal in
the corresponding relation.
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Orders of magnitude

This is the dataset that comes directly from the relation collection.

what?
year bits | dd | rows | columns
2010 | RSA | 768 | 232 | 64€9 35e9
2017 | DLP | 768 | 232 | 9.1e9 7
2019 | RSA | 795 | 240 | 8.9¢9 | 2.4€9
2019 | DLP | 795 | 240 | 3.8¢9 | 1.0e9
2020 | RSA | 829 | 250 | 8.7€9 | 6.5€9

Note: vast difference in the numbers comes from very different

parameter choices.

The dataset weighs between hundreds of GB and several TB.
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Sparsity

Another trait of the dataset.

Relations (rows) are VERY sparse.

Typical: 20 to 25 non-zero entries per row on average.
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Rows and columns

There is no connection between rows and columns in this matrix.

We may sort rows and columns in any way we like, provided that
we keep track of the permutation.

This is in contrast with other linear algebra problems for which the
notion of “diagonal element” is meaningful. Here it is not.
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This is already linear algebra

We need to do some linear algebra

@ In the factoring case, the matrix is defined over 5.
We are looking for several left nullspace elements.

© In the discrete logarithm case (later!), the matrix is defined
over Z/¢7, for some large prime number /.
We are looking for a right kernel vector.

The filtering step is the beginning of the linear algebra step.
(but they are often regarded as separate steps.)
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Domain of the matrix coefficients

Factoring usage

Since we ultimately work modulo 2, all coefficients are either 0 or 1.

Discrete logarithm usage

Coefficients can be larger integers a priori, BUT the vast majority
are £1. We can really assume that this is always the case.
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Goal of the filtering step

The filtering step is a preprocessing step, which aims at reducing
the matrix size.

Another appropriate term can be that filtering is actually creating
some preconditioner.

Preprocessing operations

We want to apply a chain of elementary matrix transformations
M — M

such that a solution to the linear system xM’' =0 (or M'x = 0)
leads to a solution of the linear system we started with.
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Transformations

We can do the following things:

@ Sort rows and columns.
© Remove duplicate rows.

© We will also see how, under certain conditions, we can:
© Take out some rows or columns.

© Replace rows by linear combinations (as is done in Gaussian
elimination).

Old terminology

Until the late 1990s, the term structured Gaussian elimination was
often used to refer to what is now known as filtering.
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The filtering step

© The filtering step modifies the matrix built from the relations.

@ It outputs a new matrix that is used as input by the linear
algebra computation that comes next.

© The “quality” of the matrix produced by the filtering step
impacts the time spent in the linear algebra step.

Quality metrics

® We want the new matrix to be much smaller

© We want to maintain sparsity.

© Ultimately we want to minimize the cost of the subsequent
linear algebra step.

The filtering step is memory-bound and |/O-bound. CPU-wise, no
serious computation is done during filtering.
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Definitions

Definition (Excess)

The excess of set of relations (resp. a matrix) is the difference
between the number of relations (resp. the number of rows) and
the number of prime ideals (resp. the number of columns).
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Definitions

Definition (Weight)

© The weight of a column (resp. a row) in a matrix is the
number of non-zero elements in this column (resp. this row).

© The weight of an ideal (resp. a relation) is the weight of the
associated column (resp. row).

© The total weight of a matrix is the number of non-zero
elements of this matrix.
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Definitions

Definition (Density)

© The density of a column (resp. a row) in its weight divided by
its size.

© The density of a matrix is its average row density.
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Inside the filtering step

The filtering step is split in 4 stages:
@ duplicate removal: very easy, uses hash tables to remove
relations that appear more than once;
© singleton removal: remove useless rows and columns;

® ‘“clique” removal: use the excess to reduce the size of the
matrix;

© merge: beginning of a Gaussian elimination.
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Why do we have duplicates?

Duplicate relations are completely identical rows.

This can only happen if the corresponding pairs (a, b) and (&', b')
are such that:

® (a— ba)=(a — ba) x aunit in Ok.

© and the same thing on the other side, which probably means
a=+a and b = +b’ (if we have a rational side).

In most configurations, duplicate relations mean identical (a, b)'s.
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Can we really have identical (a, b)'s?

If we do only line sieving: we can't.

© By design, we only process an (a, b) pair once.

@ For a large scale computation, accidentally sieving the same
sub-range twice may happen, though.

For special-q sieving, the situation is a bit different, since a given
(a, b) pair may belong to two distinct lattices £4 and L.
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Points in two different lattices

If (a, b) is in two different lattices L4 and Ly, then the
factorization of (a — ba) x J involves both q and ¢'.

An approach that does not work to avoid duplicates:
If two (or more) prime ideals from the special-q range appear in

the factorization of (a — ba)) x J, keep the relation only if the
current special-q is the largest of the two (or more).
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Intersections of two lattices
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Intersections of two lattices

Point @ is in £, N Ly and is reached twice.
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Intersections of two lattices

Point @ is in £, N Ly and is reached twice.
Point is in £, N Ly and is reached only once.
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Intersections of two lattices

Point @ is in £, N Ly and is reached twice.
Point is in £, N Ly and is reached only once.
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Avoiding duplicates is not trivial

On-the-fly duplicate removal

Trying to avoid duplicates altogether with special-q sieving is a
more subtle task than one may think.

It is possible to do it, though, with moderate overhead cost.
Cado-NFS has this functionality.

Some factors affect the number of duplicates, such as the size of
the special-q range.

Good rule of thumb: keep gmax/gmin under control (say 2).
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Dealing with duplicates

Good news: dealing with duplicates is very easy.

© Only (a, b) matters.

® We can use a hash table. But a hash table with several billion
entries could require some thought.

Cado-NFS uses a few very basic techniques:

© Hash (a, b),
@ split the input according to H(a, b) mod K (on disk),

© de-duplicate each subset.

Very simple-minded and strongly |/O-bound, but does the job.
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Singleton removal

© A singleton is a column of weight 1.

© The removal of a singleton is the removal of the column and
of the row corresponding to this single non-zero coefficient.

© Example:

O HFEF O OO O =
= O = O

OO OO O O O
OO OO O O K =
OO OO H O
OO O+ O KO

© Removing a singleton reduces the total weight of the matrix
but cannot reduce the excess.
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Singleton removal

© A singleton is a column of weight 1.

© The removal of a singleton is the removal of the column and
of the row corresponding to this single non-zero coefficient.

© Example:

O HFEF O OO O =

O O O O O O = O
OO OO O O = =
OO OO H O
OO O+ O KO
= OO

© Removing a singleton reduces the total weight of the matrix
but cannot reduce the excess.
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Singleton removal

© A singleton is a column of weight 1.

© The removal of a singleton is the removal of the column and
of the row corresponding to this single non-zero coefficient.

© Example:

cocooooo
Co o O R R
CcCo o R OR
oOrRr R, OOO
el e = el =]

© Removing a singleton reduces the total weight of the matrix
but cannot reduce the excess.
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Singleton removal

© A singleton is a column of weight 1.

© The removal of a singleton is the removal of the column and
of the row corresponding to this single non-zero coefficient.

© Example:

cocooooo
Co o O R R
CcCo o R OR
oOrRr R, OOO
el e = el =]

© Removing a singleton reduces the total weight of the matrix
but cannot reduce the excess.
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Singleton removal

© A singleton is a column of weight 1.

© The removal of a singleton is the removal of the column and
of the row corresponding to this single non-zero coefficient.

© Example:

O O O O K =
O O O - O =
O == O OO
= = O = = O

© Removing a singleton reduces the total weight of the matrix
but cannot reduce the excess.
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Singleton removal

Why can we remove singletons?

Any solution to xM' = 0 or M’x = 0 immediately leads to a
solution for the original matrix M.

Note: this “leads to" part may require us to memorize the deleted
row. (This is only for DLP.)
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Singleton removal

© Only need to know if a coefficient is non-zero or not, not the
actual value.

© For each row, we store the indices of the columns with
non-zero coefficients (but not the value of the coefficients).

© We also store and maintain the weight of each column.

© Removing a singleton can create other singletons, it may be
necessary to loop through the matrix more than once.
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“Clique” removal

© While the excess is larger that what is needed, it is possible to
remove some rows. (we may need to memorize them, though.)

® We can choose which row is deleted, how do we choose?

© Put otherwise: what is the best possible use of the excess that
we have?
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“Clique” removal

© Remark: if a row containing a column of weight 2 is removed,
this column becomes a singleton and can be removed.

® A “clique” is a connected component of the graph where the
nodes are the rows and the edges are the columns of weight 2.

© It has NOTHING TO DO with cliques in graph theory.

© If any row in a “clique” is removed, the creation of singletons
leads to the removal of all rows of the “cliques”.

© Example:
()—(»)

(%)

& O—>
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“Clique” removal

© When removing a “clique”, one more row than column is
removed, so the excess is reduced by 1. And the total weight
of the matrix is reduced.

© The “clique” removal algorithm is quite simple:
while the excess allows it, remove a “clique”.

© How do we choose the “clique” to remove?
Multiple cost functions have been explored over the years.
Current wisdom is mainly based on empirical evidence.

@ In order to compute and remove “cliques”, we only need to
know if a coefficient is non-zero or not, not the actual value.
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The purge binary in Cado-NFS

© In Cado-NFS, the singleton and “clique” removal are done by
the purge binary.
© Algorithm:

© Input: the relations and a target excess.

© Output: the remaining relations (and separately, the deleted
relations if needed).

© 1. Remove all singletons.

© 2. Remove some “cliques”.

© 3. Go to 1 if the excess is larger than the target value.

© The purge binary is the same for factorization and discrete
logarithm computations.
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Merge

© Merge is the beginning of a Gaussian elimination:
combinations of rows are performed to create singletons that
are then removed.

Definition (k-merge)

Let kK > 2 be an integer. Let C be a column of weight k and
n,...,rg the k rows corresponding to the k non-zero coefficients
of C. A k-merge is a way to perform successive rows additions of
the form rj < ajjri + Bjjrj, with i # j and 1 <, j < k, such that
the column C becomes a singleton, which will be deleted.

® For factorization, ajj = 3jj = 1; for discrete logarithm, they
are usually very small (almost always £1).

© Merge does not change the right kernel (if we memorize the
removed rows) nor the left kernel.

CSE291-14: The Number Field Sieve; The filtering step 29/46



Merge — example

Example of a 2-merge and a 3-merge in the case of factorization.

11010
10101
11100
01110
11011
11110
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Merge — example

Example of a 2-merge and a 3-merge in the case of factorization.

N T o T S T S
= e =)
e ==

0
@
0
0
@
0

R = O R =
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Merge — example

Example of a 2-merge and a 3-merge in the case of factorization.

== RO
O = O O O O

R = O R O
e el
= =)
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Merge — example

Example of a 2-merge and a 3-merge in the case of factorization.

O = O =
[ T G G W'y
= = = O

[ o J Y
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Merge — example

Example of a 2-merge and a 3-merge in the case of factorization.
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Merge — example

Example of a 2-merge and a 3-merge in the case of factorization.

O O O =
= O R
= = = O
e e i
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Merge — example

Example of a 2-merge and a 3-merge in the case of factorization.

= O
—_ = =
= = =
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Merge — how do we do it?

© For a k-merge with k > 3, there is more than one way to
perform the additions to create a singleton.

® We want to minimize the fill-in of the matrix, i.e., we want to
minimize the increase of the total weight of the matrix.
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Merge — simple approach

Simple approach:

© Select the row with smallest weight among our set of k rows.

© Subtract an appropriate combination of this row to the other
rows.

The Markowitz rule

If the lightest row among k has weight w, the incurred fill-in
(difference in total matrix weight) is:

(k—1)w—1)—(k—1)—w
—(k—1)(w—2)—w+2-2
= (k—2)(w—2)—2
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Merge — minimal spanning tree

The simple approach may be refined:

© In order to find the way of performing a k-merge that
minimize the fill-in, we compute a minimal spanning tree.
© The minimal spanning tree is computed on the graph where:

© the nodes are the k rows involved in the k-merge;
© the weight of the edge between two rows is the weight of the
sum of these two rows.

© This minimal fill-in may be below the Markowitz estimate.

This approach matches the simple one if the MST happens to be a
star (with arm length 1).
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Merge — example

Example of the use of a minimal spanning tree for a 6-merge in the

case of factorization.

011010
11010Q
001100
001001
000101
000010
000011
00000Q
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Merge — implementation

© All possible k-merges (for 2 < k < kmax) are in a priority
queue sorted (in ascending order) by the fill-in implied by the
merges.

© Each time a merge is performed, the matrix changes and the
minimal spanning trees of the other merges can change.

© Unfortunately, it is too costly to recompute all minimal
spanning trees after each change. We approximate the fill-in
with Markowitz count.

(k —2)(Wmin —2) — 2

CSE291-14: The Number Field Sieve; The filtering step 35/46



Merge — implementation

© Merge reduces the size of the matrix but increases the total
weight of the matrix:

© Performing a k-merge reduces the number of rows and
columns of the matrix by 1.

© The excess is not modified.
© A 2-merge reduce the total weight of the matrix by at least 2.

© But, in general, performing a k-merge, with k > 3, increases
the total weight of the matrix.

© In merge, the values of the non-zero coefficients matter.
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Merge — stopping criteria

© merge must be stopped while the matrix is still sparse.
© A possible criteria is to use an estimate of the time of the
linear algebra step, based on information such as:

© The current matrix size. (which Y\ as time goes).
© The current total matrix weight. (which * as time goes).
© Finer grained data can also be used.

© We can stop merge once the estimate that is used starts to
increase.

© In practice, merge is performed until a given average weight
per row is reached.
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The binaries for merge in Cado-NFS

© The merge stage is split in two binaries in Cado-NFS.
® For factorization:
© merge
© replay
© For discrete logarithm:
© merge-dl
© replay-dl
© The binaries replay and replay-dl build the matrix for the
linear algebra step from the results of the merge algorithm.
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Oversieving

© By computing more relations in the sieving step, we can
increase the excess at the beginning of purge.
© So more “cliques” can be removed.

@ If the weight function used in the “clique” removal algorithm
is well-designed, the filtering step should produce a better
matrix.

© Trade-off: between the additional time spent in the sieving
step and the gain in the linear algebra step.

© The additional time spent in the filtering step due to the
additional relations is negligible compared to the time spent in
the other steps.
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Oversieving — experiment

© lllustrate oversieving with RSA-155.
© We computed a lot more relations that is needed.

© We performed the filtering step with different weight functions
and increasing sets of relations.

© To compare results, we used N x W, where

© N = number of rows of the final matrix
© W = total weight of the final matrix
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Oversieving — results

9,0 -
Relative excess
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Oversieving lessons

State-of-the-art implementations have a very flat curve that gives
the linear algebra cost estimate as a function of the stopping point.

This explains why the stopping point of the merge process is
approached in a fairly relaxed way.
© Aim at a ballpark estimate of an average row density ~ 200.
© See where this brings us.
© Possibly look at what happens for 150, 175, 225, 250.
@ It probably makes little difference in the end.
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Some experimental data

what?
year bits | dd | relations | unique | singl | merged
2010 | RSA | 768 | 232 64€9 48e9 | 2.5e9 | 192e6
2017 | DLP | 768 | 232 119 9.1e9 ? 23.5e6
2019 | RSA | 795 | 240 | 8.9e9 6.0e9 | 1.2e9 | 282e6
2019 | DLP | 795 | 240 | 3.8e9 2.4e9 | 150e6 | 36e6
2020 | RSA | 829 | 250 | 8.7e9 6.1e9 | 1.8e9 | 405e6
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Memory footprint

This all depends on the choice of parameters, but overall the
purge step (singleton and “clique” removal) has the largest
memory requirement.
@ Input and output data sets are bulky.
© Need to keep lots of info in RAM.
© RSA-829: 1.4TB RAM needed (this has significantly improved
since).

The merge step generally has a slightly smaller memory footprint.
RSA-829: 450GB.
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Parallelizing

Recent work has proven that merge can be efficiently parallelized,
with no noticeable impact on the output quality.

© This is still single-machine parallelization. Multi-machine
parallelization attempts have been unsuccessful thus far.

© The merge process remains strongly 1/0-bound.
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Simulation of the filter step

How can we predict the size of the matrix that we obtain after the
filter step?
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Simulation of the filter step

How can we predict the size of the matrix that we obtain after the
filter step?

© Approach 1: create fake relations up to the expected required
number, and see what we get after
duplicates/singleton/clique/merge.
© Data processing cost is identical to the real computation.
© May be hard to use if we want to explore many different
parameter sets.
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Simulation of the filter step

How can we predict the size of the matrix that we obtain after the
filter step?

© Approach 1: create fake relations up to the expected required
number, and see what we get after
duplicates/singleton/clique/merge.
© Data processing cost is identical to the real computation.
© May be hard to use if we want to explore many different
parameter sets.

© Approach 2: do the same on a reduced-scale model, say 10- or
100-fold.

© This works surprisingly well.
© Still WIP in Cado-NFS, but results are very promising.
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