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The linear algebra step
The linear algebra step per se comes right after the filtering step
and before the characters step. However from an abstract point of
view, both of the latter are also linear algebra.

Key facts for a bird’s eye view:

The linear algebra step in the Number Field Sieve is the
second hardest problem after the sieving step, in terms of
computation time.
In contrast to sieving, which is embarrassingly parallel, linear
algebra is more difficult to parallelize. We are led to use
hardware with fast interconnect capabilities, and that tends to
be more expensive.
There are some subtle differences between linear algebra for
factoring and linear algebra for the discrete logarithm.
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Multiple questions

We commonly refer to the linear algebra step. Yet one may ask
several questions:

is the system homogenous / inhomogenous?
what are the unknowns? Rows or ideals?
is the system singular?
is there such a thing as a partial solution?
does the world collapse if there is an error in my matrix?
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Context recap: factoring

We must combine relations so that they consist of only squares.
This rewrites as a linear system.

Sparse matrix M: relations = rows, columns = prime ideals.
We seek several (say 64) solutions v to the system

vM = 0 mod 2.
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Context for DLP

We will learn about the NFS-DL variant for discrete logarithms,
which brings in the following differences:

Linear algebra over Z/ℓZ.
Coefficients are most often ±1.
We look for a right kernel vector.
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Things in common

The matrix in both cases is (almost) the same. It is large and very
sparse.

Theory: in the matrix before the filtering, we can show that
asymptotically the number of non-zero coefficients per row is
O(log log (number of rows)).
Practice: filtering comes into play and asymptotics are only
asymptotics.

2019: 795-bit factoring: 282M rows/cols, density ≈ 200.
2019: 795-bit DLP: 36M rows/cols, density ≈ 250.
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Square matrices?

Both examples favored rectangular matrices.
In both cases the excess will be mostly consumed by filtering.
However some mild excess is ok, we can in both cases pad with
zero columns, so that we get a square matrix.
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Exact versus numeric

In both cases, we are dealing with exact linear algebra.

Exact linear algebra
This implies two things.

We really want the solution, not an approximate one.
There is no notion of convergence anyway.

90% to 100% of the nice “linear algebra for PDE solving” book on
your shelf is useless.
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F2 is exact, and positive characteristic

The matrices are not the same, either.

(some PDE example) (a factoring matrix)
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Nothing like “lower-order” either

It is not uncommon that the far-from-diagonal blocks in a PDE
matrix are handled in a delayed way.

Sometimes, we structurally have zero blocks there.
Often, coefficients in this blocks have lower-order significance
can be ignored, or approximated.

None of these shortcuts is valid in our case.
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Which direction

We have seen that both vM = 0 and Mv = 0 existed as problems
to be solved.
For most of the internal dealings of the linear algebra solving, this
does not matter much. We can transpose everything if we so
desire.
Choice for exposition
In these slides, we present the case where we want to solve

Mv = 0

over some field K = Fℓ, and we definitely have ℓ = 2 on the radar.
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Black box

Caveat
We like to use N for the number of rows and columns, but we must
pay attention not to confuse that with the integer to be factored.

From now on, given that we have no use of the integer to be
factored, N denotes the number of rows.

We have an N × N matrix M. We want to solve Mw = 0.
The matrix M is large, (very) sparse, and defined over K = Fℓ.
Because of sparsity, we want a black box algorithm.

v M M × v
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Gauss?

Why can’t we use Gaussian elimination?
Any algorithm that modifies the matrix inevitably causes fill-in.

Smart recipes can be used to minimize fill-in somewhat, but it
is still there.
Example for the RSA768 matrix: a dense bit matrix of this
size costs 4200TB to store.

This is the justification for black-box algorithms.
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Are black boxes useful at all?

An example in numerical analysis.

Take a random vector v .
Iterate v ← Mv/||Mv ||.
If M has a dominant eigenvalue λ, ||Mv ||

||v || → |λ|.

If we can do such things, no doubt we can do more.

How much of this black-box technology applies to finite fields?
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Some terminology

In the numerical linear algebra world, the following distinction
exists:

direct methods may modify the matrix: Gauss, LU, . . .
indirect (or iterative) methods: same as black-box methods.

In the numerical context, an indirect method that involves an
N × N matrix can very well obtain a satisfactory result with only
o(N) applications of the black box.
In contrast, in the exact setting, we typically need Θ(N)
applications of the black box!
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Existing black box algorithms

The numerical context knows several indirect methods, often
ranked according to the trade-off between iteration complexity,
numerical stability, and convergence speed.
In practice, the simplest one is the Lanczos method.

Very simple iteration (≈ Gram-Schmidt orthogonalization).
We work with the symmetric matrix MT M.
Application to finite fields is a bit of a gamble, since we have
isotropic vectors: xT MT Mx = 0 mod ℓ.

Not that much of a problem in large characteristic. Failure
rate about 1/ℓ, no big deal.
Much more annoying if ℓ = 2!!
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Adaptation to finite fields

A very inefficient method to adapt to any finite field:

Embed into F2n , consider MT DM with D diagonal.
This entails a more than n-fold overhead.

Much better alternatives:

Finite field-native algorithms.
Block methods.
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Block algorithms

Extend the black box notion, pretty much in a SIMD way.

v M M × v

v and Mv: blocks of vectors.
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Example for binary matrices

A “block black box” makes perfect sense over F2.

Let v be a sequence of N 64-bit integers.
This can be viewed as 64 vectors of bits.
Compute Mv with bitwise XORs on 64-bit types.

v′
i =

∑
j,Mi,j ̸=0

vj .

Main observations and questions

We do more work in almost the same time.
Can this be put to some use? E.g., use the block black box
fewer times that we would have used the (non-SIMD) black
box?
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Algorithms for finite fields

1986: Wiedemann’s algorithm.
1991-1995: Block Lanczos algorithm (Montgomery), Block
Wiedemann algorithm (Coppersmith).

The probability of success of these algorithms has been studied a
lot by the computer algebra community (mid 1990s to early 2010s,
mostly).
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First things first: transposition

All matrix-times-vector implementations can be transposed easily
to give an implementation of v ← Mv based on an example code
that does v ← vM, and vice-versa.

This is true at least in theory, as there’s really a generic code
transform which does that.
In practice, it depends on how the code is written.
Performance may not be 1:1 (read and write are not exactly
the same!)
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Simplistic approach

Assume that we have two large memory areas for the input and
output vectors. (64-bit integers, or integers mod ℓ).
for(i = 0 ; i < N ; ++i) {

wi = 0;
for(j = 0 ; j < N ; ++j) {

if (Mi,j != 0)
wi = wi + Mi,jvj; // XOR or addmul_si

}
}

Multiple problems.
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Some obvious improvements

Only store the locations (and values) of non-zero coefficients in M.
for(i = 0 ; i < N ; ++i) {

wi = 0;
for(j ∈ indices of non-zero coefficients in row i) {

wi = wi + Mi,jvj; // XOR or addmul_si
}

}

Possible discussions about the data format (size, random
access, etc). Note that in our context, adapting to any data
format is certainly affordable!
(basically, data is code. Decide on the code flow, then adjust
the data format accordingly)
Still very poor performance.
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Accesses are very scattered

The j indices of non-zero coefficients in a row are very far apart.

Most reads of vj will be cache misses.
This yields (inverse) throughputs of hundreds of CPU cycle
per coefficient.
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Improvement strategies

Straightfoward approach: split the matrix in blocks.

Either fixed-size blocks (but what about the processing order?)
Or: NW, NE, SE, SW and recurse, until some cut-off.

Problem: density is not uniform at all!
The vast majority of coefficients will still incur cache misses.
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Nonuniform density

Because of the nonuniform density:

Coefficients in the heaviest columns are processed very fast,
even with the naive methods.
As we reach more sparse areas, performance drops sharply.

This calls for some kind of adaptive mechanism.

Process the “dense” vertical band with the heaviest columns
with a fast simple-minded approach.
Find a way to deal with the more sparse parts.
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Two-pass

Preferred approach (totally reminiscent of bucket sieving!)
Assume that column density of M is ↘. Let the control flow
evolve as column density decreases.

Have several temporary lists, on per column density cutoff.
Load coefficients, arrange them in temporary memory in a way
that is:

quickly accessible at the moment we do the memory store.
convenient to read back when we eventually store to the
output vector.

Access the temporary lists, store to output vector.
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Example for M × v
Note: The dimensions of the vertical bands may be uneven.
We want to limit to the reach of efficient random access.
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Example for M × v
Load a batch of coefficients from the source vector.
Copy to list L1, by increasing row index.
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Example for M × v
Load some new coefficients. Do the same, fill list L2.
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Example for M × v
We have four lists which can be read in order, allowing us to
compute a sequence of coefficients from the destination vector.
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Example for M × v
Periodically, we need to read again a batch of coefficients from the
source vector, in order to refill the list L1.
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Analysis

Each time the source vector is read, its data is used as much
as we can.
This amortizes the cost of reading data outside cache!
We fill the list Li with source vector coefficients exactly in the
order they will be read later on.
The destination vector is written to progressively.
At the same time, data is read from many lists Li in parallel.

Note: this applies also to v ×M:

progressive writes → progressive reads.
random-access reads → random-access +=.
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Bucketized matrix-times-vector

Implementation details are somewhat hairy.

Ideally, dynamic tuning would be welcome: we need to
appreciate at runtime how many random-access writes /
parallel reads can be sustained by multiple cores
simultaneously. Hard-coded thresholds are unsatisfactory.
Cutoffs don’t necessarily match our picture that well.
Maybe a two-layer approach could make sense.
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Thread- and MPI- level

To a certain extent, the concerns are similar.
How could we split our matrix ?

The latter is preferred because it goes in the direction of favoring
data locality.
Data exchange happens on each row or each column of the mesh.
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Plans for splitting the matrix

Quite clearly a bad idea.

Some nodes or threads would have a much harder time than
others doing the product.
All other nodes will have to wait for them.
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We may reorganize data

We are not bound to the internal representation of the matrix. We
may rearrange coefficients (in a compatible way) so the splitting
becomes better.
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Balancing per-node weights

We may: sort columns, and distribute evenly ⇒ T ∈ SN .
sort rows, and distribute evenly ⇒ S ∈ SN .

. . . because Mv = 0 or SMTv = 0 are reducible to one another !

Core-level splits
Node-level splits

But the balancing story goes much beyond this.
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Balancing per-node weights

Core-level splits
Node-level splits

In Cado-NFS, the core-level and thread-level splits are specified
with thr= and mpi= (here, 2x2 and 4x4).
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A simple communication algorithm

How do several nodes work together for computing M × v?

Simplifying assumptions: square mesh of size t × t.
ignore core split vs node split.

Task list for each node (mesh row i , mesh column j):

Have a fraction (1/t) of the input vector (j-th part).
Compute the local product.
Sum all the contributions across one row, for the fraction of
the destination vector.
Accumulate the sum on the i-th node of the row.
On each column, the j-th node broadcasts the part of the
computed vector for the next product.
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Simple MPI product, graphically
fragments of the input vector

fragments of the next input vector
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Initial situation:
all fragments of the input vector are
present in columns.

There are some downsides with this approach.
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Step 1: local multiplications.
No communication here.

There are some downsides with this approach.
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Simple MPI product, graphically
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Step 2: reduction across rows.
MPI_Reduce

There are some downsides with this approach.
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Simple MPI product, graphically
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Step 3: broadcast across columns.
MPI_Bcast

There are some downsides with this approach.
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Simple MPI product, graphically
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Final situation:
ready for next iteration !

There are some downsides with this approach.
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Limitations of the simple scheme

+
+

+
+

+
+

+
+

During the reduction step.
I/O not balanced across rows.
If linear complexity algorithm:

work ratio 1 : n.
If log-complexity algorithm:

work ratio 1 : log2 n.
Logarithmic delay incurred.

(Obvious) answer
It is better to parallelize work.

Reduction step to collect parts of size 1
t2 on each t nodes.

Bcast step to run t broadcasts of size 1
t2 in each col.
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Limitations of the simple scheme
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During the broadcast step.
Exactly the same issue.
Hypothetical hardware-level multicast?
The answer is mostly no.

(AFAIK, no MPI impl. uses IB mcast !)

(Obvious) answer
It is better to parallelize work.

Reduction step to collect parts of size 1
t2 on each t nodes.

Bcast step to run t broadcasts of size 1
t2 in each col.

CSE291-14: The Number Field Sieve; Linear algebra: introduction 39/43



Limitations of the simple scheme

+
+

+
+

+
+

+
+

(Obvious) answer
It is better to parallelize work.

Reduction step to collect parts of size 1
t2 on each t nodes.

Bcast step to run t broadcasts of size 1
t2 in each col.

CSE291-14: The Number Field Sieve; Linear algebra: introduction 39/43



Parallelized MPI collectives
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+
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This even bears a name in MPI dialect: MPI_Reduce_scatter.

MPI_AllGather.
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Important for performance: cpubinding

Cado-NFS uses a feature called CPU binding.
Threads are “pinned” to specific cores, or groups of cores.
We prevent them from wandering too far from the memory they
use the most.
A configuration file has to be passed to bwc.pl. It should be
adjusted specifically for each machine.

Cado-NFS looks for a section that matches the current
machine, and then looks for an entry that matches the thr
parameter.
An example file (good starting point) with documentation is
in parameters/misc/cpubinding.conf

Trial and error is the only good way.

CSE291-14: The Number Field Sieve; Linear algebra: introduction 41/43



Building for MPI

Caveat: by default, Cado-NFS builds in non-MPI mode.
In order to build for MPI, one must pass an environment variable
to make, e.g.:

MPI=/opt/openmpi-x.y.z/ make -j4

The MPI-enabled binaries should preferrably not be mixed with the
non-MPI ones. Wipe your build directory first.
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Caveat: jitter

We have:
sorted columns, and
distributed them evenly.
sorted rows, and distributed
them evenly.

Things don’t always go well
Use case: we split a matrix with average density ≈ 200 across
(say) 64 nodes with 64 threads on each (4096 cores total)

Even though rows and columns are evenly balanced globally,
the weights of the 4096 sub-matrices can vary a lot!
The CPU-bound workload per thread will likely differ, and this
will cause wait times. Averting this is really hard.
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