
CSE291-14: The Number Field Sieve
https://cseweb.ucsd.edu/classes/wi22/cse291-14

Emmanuel Thomé

February 17, 2022

CSE291-14: The Number Field Sieve 1/30

https://cseweb.ucsd.edu/classes/wi22/cse291-14


Part 6c

Sparse linear algebra algorithms

The Lanczos algorithm

The Wiedemann algorithm

Computing the linear generator in Wiedemann

Block algorithms



Plan

The Lanczos algorithm

The Wiedemann algorithm

Computing the linear generator in Wiedemann

Block algorithms



Lanczos

Here we assume K = Fℓ, with ℓ large. “almost characteristic zero”.
Lanczos requires a symmetric matrix so we consider A = MT M.

Temporarily inhomogenous
The Lanczos algorithm is easier to state for an inhomogenous linear
system, so let b = Az for some random z ∈ KN . We will solve

Av = b

from which we will have A(v − z) = 0.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 3/30



A few definitions

Def. Let y ∈ KN . Krylov subspace KA,y =
〈
y , Ay , . . . , Aiy , . . .

〉
.

dimKA,y ≤ N.
KA,y has a known basis.

Def. (pseudo-) scalar product associated to A: (u, v) def= uT Av .
Note: over a finite field, there are isotropic vectors.
Gram-Schmidt orthogonalization process:

build an orthogonal basis from an arbitrary one.
defined in characteristic zero for a real scalar product, but
let’s see.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 4/30



GSO in positive characteristic

We take the method for its merits.

It builds a sequence of vectors with (ei , ej) = 0 if i ̸= j .
We believe for a moment that nothing fails.
We’ll see what might fail and why.

Apply GSO to the basis
(
Aib

)
i of KA,b. Denote Si =

〈
b, . . . , Aib

〉
.

e0 ← b,

ej ← Ajb −
∑
i<j

(Ajb, ei)
(ei , ei)

ei = Ajb −
∑
i<j

bT Aj+1ei
eT

i Aei
ei .

Prop. (ei , ej) = 0 if i ̸= j .
Note that ⟨e0, . . . , ei⟩ = Si . Optimization: replace Ajb by Aej−1.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 5/30



Lanczos (cont’d)

ej ← Aej−1 −
∑
i<j

(Aej−1, ei)
(ei , ei)

ei = Aej−1 −
∑
i<j

eT
j−1A2ei

eT
i Aei

ei ,

Note that
i < j − 2⇒ Aei ∈ Sj−2 ⊂ e⊥

j−1 ⇒ (Aej−1, ei) = (ej−1, Aei) = 0.

ej ← Aej−1 −
(Aej−1, ej−1)
(ej−1, ej−1) ej−1 −

(Aej−1, ej−2)
(ej−2, ej−2) ej−2,

← Aej−1 −
eT

j−1A2ej−1

eT
j−1Aej−1

ej−1 −
eT

j−1A2ej−2

eT
j−2Aej−2

ej−2

Algorithm. compute this, maintaining O(1) vectors.
What do we have to do ? Examine failure cases.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 6/30



Lanczos over Fℓ: failure cases

Two possible reasons for stopping:
We may reach an isotropic (a.k.a. self-orthogonal) vector:
(ei , ei) = 0.

We have (ei , ei) = eT
i Aei = (Mei)T Mei = 0.

Mei might be isotropic for the “standard” bilinear form, but
heuristically Prob ≈ 1

ℓ only.
Eventually, we reach ei = 0 at the end. This means success.

This implies that ⟨e0, . . . , ei−1⟩ = ⟨b, Ae0, . . . , Aei−1⟩.
Let z be a solution to Az = b (z is not known). Let
w =

∑
j<i

(ej ,z)
(ej ,ej ) ej =

∑
j<i

eT
j b

eT
j Aej

ej .

By construction, ∀j , (ej , w − z) = 0.
Thus w − z ∈ Ker M (and Aw = b) with proba ≈ 1− 1

ℓ .
If we started with b = Az (z known), this gives w − z ∈ Ker M.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 7/30



Lanczos: remarks

Note: As is, the Lanczos algorithm does not work over F2
because for ℓ = 2, a failure probability of 1

ℓ at each step is a lot.
Complexity:

N products A× v ,
hence 2N products M (or MT ) times v .

Important (mis-)features:

Needs fast operations for both MT and M.
Must keep track of several vectors.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 8/30



Plan

The Lanczos algorithm

The Wiedemann algorithm

Computing the linear generator in Wiedemann

Block algorithms



The Wiedemann algorithm

The Wiedemann algorithm for Mv = 0 over Fp is easy.

Pick x , y ∈ FN
ℓ at random.

Compute ai = xT M iy . These are all scalars.
Compute the generator F of this linear recurring sequence.
F̂ divides the minimal polynomial µM . Hope XλF̂ = µM .
We then have MλF̂ (M)y = 0. Which means
Mλ−1F̂ (M)y ∈ Ker M.

This is very accessible to proofs of success probabilities.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 9/30



The Wiedemann algorithm: workflow

Implementation of the Wiedemann algorithm is fairly
straightforward.

Computation of the sequence of ai .
Computation of the linear generator F .
Computation of the kernel vector.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 10/30



The sequence of ai

i ← 0;
v ← y ;
While i < 2N.

ai ← xT v ∈ Fℓ.
v ← Mv ;
i ← i + 1.

return (ai)i , sequence of 2N elements of Fℓ.

Cost
To compute 2N terms, we need:

Exactly 2N matrix-times-vector products.
If the weight of M is W , this means ≈ 2N ×W operations.
here, operation = addition in Fℓ.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 11/30



The linear generator

Linear generator
The linear generator of the sequence is such that:

∀i ≥ d , F0ai + F1ai−1 + · · ·+ Fdai−d = 0.

Note. The set of polynomials
∑d

i=0 FiX i is an ideal of Fℓ[X ],
and µ̂M belongs to it. So d ≤ N.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 12/30



The linear generator
Another point of view
Let A(X ) =

∑
i≤2N aiX i , then:

A(X )F (X ) = (terms of deg < N) + (terms of deg ≥ 2N).

By construction, there is an infinite precision solution to
(
∑

aiX i)F (X ) = G(X ), and looking at precision 2N will be
sufficient to find it.

Several possible restatements (deg F ≤ N and deg G < N):
A(X )F (X )− X 2NR(X ) = G(X ).

A(X ) = G(X )
F (X ) + O(X 2N).

A(X )F (X ) = G(X ) + O(X 2N).
O(X i) means X i times any polynomial in Fℓ[X ]

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 13/30



Computing the linear generator

Various algorithms can be used to compute F .

The Berlekamp-Massey algorithm (from coding theory).
The Euclidean algorithm!

We have several ways to do this in time O(N2) or even
O(N log2 N). More on this later.

Probabilistic aspect
We hope that we’ll find a generator F which is such that
XλF̂ = µM . with λ ≥ 1.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 14/30



Reconstructing the solution

To compute F̂ (M)y , the process is similar to the first phase:

k ← 0;
v ← y ;
w ← 0;
While k ≤ deg F ;

w ← w + v × (coefficient of degree k in F̂ (X ));
v ← Mv ;
k ← k + 1.

return w .

Cost
N matrix-times-vector products.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 15/30



Wiedemann: summary

The Wiedemann algorithm costs about 3N matrix-times-vector
products.
Probability of failure is O(1/ℓ).
(main failure case: νX (µM) = 1, dim Ker M = 1, and y ∈ Im M).

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 16/30



Comparison with the Lanczos method

The Wiedemann algorithm:

costs 3N matrix-times-vector products.
has a three-stage workflow which is a little bit more
complicated than the Lanczos algorithm.

The Lanczos algorithm (not described):

costs only 2N matrix-times-vector products.
is comparatively slightly simpler.

Neither is really usable over F2.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 17/30



Plan

The Lanczos algorithm

The Wiedemann algorithm

Computing the linear generator in Wiedemann

Block algorithms



Linear generator

The problem of computing the linear generator is central in the
Wiedemann algorithm.

Next few slides: a brief review of how we can do in quasi-linear
time, with a view towards a possible generalization.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 18/30



Problem

Problem statement
Given A ∈ Fℓ[X ] with deg A < 2N, find F , G ∈ Fℓ[X ] such that:

deg F ≤ N and deg G < N. IOW,
max(deg F , 1 + deg G) ≤ N.
A(X )F (X ) = G(X ) + O(X 2N).

We may look at the linear algebra point of view.

Degrees of freedom: N + 1 (coefficients of F ).
Constraints: N (coefficients of degree N to 2N − 1).

But of course we can do much better than O(N3) here!

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 19/30



Fixed versus infinite precision

The series A(X ) is a truncation (to degree 2N) of the series∑
aiX i .

By construction, (ai)i is linearly generated with a generator of
degree at most N.

The Berlekamp-Massey algorithm finds this generator F (X ).
If we ever attempt to compute A(X )F (X ) with more terms of the
series A(X ), we will see that the trailing terms are zero!

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 20/30



Berlekamp-Massey vs Euclid

While we often look at the problem with high degrees first
(Euclid), the Berlekamp-Massey presentation (low degrees first)
generalizes much better.

Berlekamp-Massey point of view

Form solutions to A(X )F (X ) = G(X ) + O(X t), for increasing
values of t (starting with t = 1).
We work with two candidates at a time.
F (X ) and G(X ) are extended to matrices.
The value t = 2N is the target of this process.
Do so in a way that max(deg F , 1 + deg G) does not grow too
fast (not as fast as t).

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 21/30



Example

Let N = 4, ℓ = 17, and A = 2 + 5X + 3X 2 + X 3 + · · · .
We work with two candidates (two series in Fℓ[[X ]]).

(
1
X

)
· A =

(
2
0

)
+
(

5 + 3X + X 2 + · · ·
2 + 5X + 3X 2 + · · ·

)
· X(

1
X + 3

)
· A =

(
2
6

)
+
(

5 + 3X + X 2 + · · ·
0− 3X + 6X 2 · · ·

)
· X(

X
3 + X

)
· A =

(
2X
6

)
+
(

5 + 3X + · · ·
−3 + 6X + · · ·

)
· X 2

(
5− 3X

3X + X 2

)
· A =

(
2X − 7

6X

)
+
(
−4 + · · ·
−3 + · · ·

)
· X 3.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 22/30



Berlekamp-Massey

At each step, we decide on the linear combination to use based on
the degree t coefficients on the right-hand side.

Which row we add to the other depends on which is smallest
with respect to max(deg F , 1 + deg G).
This smallest row is eventually multiplied by X , while the
degree of the other is unchanged.
On average max(deg F , 1 + deg G) grows like t/2.
Complexity: N steps, O(N) at each step, so O(N2).

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 23/30



Berlekamp-Massey

Key aspects
The computation involves matrices of polynomials.
The control flow is directed by the knowledge of:

the knowledge of max(deg F , 1 + deg G) for each candidate.
the error matrix E (X ) = (A(X )F (X )− G(X )) div X t

The output is a matrix of polynomials π(X ) that encodes the
necessary transformations to move from the pair of solutions
(F , G) at t = 1 to the pair of solutions at some larger value of t.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 24/30



Berkekamp-Massey, recursively

Compute the initial error matrix E (X ).
Truncate E (X ) to degree N (=half of 2N).
Recurse and find a matrix such that π(X )E (X ) = O(XN).
keep track of max(deg F , 1 + deg G) for each candidate.
Multiply π(X ) by the full E (X ), get coefficients of degrees N
to 2N − 1. (middle product)
Recurse and find a second matrix π′(X ).

Compute π′(X ) · π(X ) ·
(

1
X

)
. (polynomial product)

Benefit: complexity is driven by large polynomial multiplications,
doable in quasi-linear time.
The complexity of the linear generator step becomes Õ(N).

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 25/30



Plan

The Lanczos algorithm

The Wiedemann algorithm

Computing the linear generator in Wiedemann

Block algorithms



Block algorithms

Two popular block algorithms, with block size n:
Block Lanczos (BL). 2N

n−0.76 black box applications (for ℓ = 2);
Block Wiedemann (BW). In its simplest form: 3N

n .

There are, however,

multiple aspects beyond just this computational cost
and multiple ways to parameterize BW, which end up
modifying the picture a lot.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 26/30



Montgomery’s block Lanczos algorithm

BL (Montgomery) is a terrible mess, notationally speaking.
Key idea:

Try to “orthogonalize” a sequence of subspaces of dim = n.
When ℓ is small, the dimension of our subspaces may decrease
in the process. (whenever we hope to find n new vectors, we
find only n − 0.76 on average when ℓ = 2.)

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 27/30



Problem with BL

The procedure we have given does build a nice sequence of
spaces, until it collapses.
rank(Wi) decreases slowly to 0.

V0
W0, dimension n0 ≤ n
n − n0 vectors dropped

V1 = AW0
W1, dimension n1 ≤ n0
n0 − n1 vectors dropped

V2 = AW1
W2, dimension n2 ≤ n1
n1 − n2 vectors dropped

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 28/30



Problem with BL

The procedure we have given does build a nice sequence of
spaces, until it collapses.
rank(Wi) decreases slowly to 0.

V0
W0, dimension n0 ≤ n
n − n0 vectors dropped

V1 = AW0
W1, dimension n1 ≤ n0
n0 − n1 vectors dropped

V2 = AW1
W2, dimension n2 ≤ n1
n1 − n2 vectors dropped

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 28/30



What makes BL work

Solution to the problem: reinject vectors from previous steps to
make the thing work.

It is possible to obtain a recurrence equation with small depth, but
presenting it is really painful.
⇒ I’m deliberately skipping details here.

Various presentations: Montgomery (1995), Montgomery &
Elkenracht-Huizing (1996), T. (2017).

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 29/30



Limitations of the block Lanczos algorithm

The BL algorithm does not offer a huge lot of parameterization
opportunities.

If one wants to involve multiple cores and nodes, all have to
participate in the same matrix-times-vector product at each
iteration.
The implementation must keep track of a significant number
of vectors, and does dot products at each iteration.
AFAIK, there is no known mechanism to quickly validate some
intermediary checkpoint data.

CSE291-14: The Number Field Sieve; Sparse linear algebra algorithms 30/30


	Sparse linear algebra algorithms
	The Lanczos algorithm
	The Wiedemann algorithm
	Computing the linear generator in Wiedemann
	Block algorithms


