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Block Wiedemann

BW is a direct translation of Wiedemann to using vector blocks.
Things to do:

properly define the notion of linear generator.
show that using vector blocks reduces the number of needed
iterations.

The expected benefits versus Wiedemann are clear:

Better use of arithmetic power of CPUs (block operations).
Hopefully better success probability.

We may state it and use it either over K = F2, or K = Fℓ.
This presentation: try to solve M × v = 0.
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BW: the blocking parameters

The Wiedemann algorithm had vectors x and y in FN
ℓ .

Blocking parameters
Block Wiedemann chooses two parameters m and n.

x becomes a block of m vectors: x ∈ FN×m
ℓ .

y becomes a block of n vectors: y ∈ FN×n
ℓ .
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BW workplan

Let m and n be the blocking parameters.

Initial setup. Choose starting blocks of vectors x and y .
Sequence computation. Want L first terms of the sequence:

ai = xT Mky (ai are m × n matrices !).

The length L will be given by the analysis.
Compute some sort of linear generator.
Build solution as:

v =
deg f∑
k=0

Mkyfk .

coefficients fk here are n × r matrices, so that can combine
things together.
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BW: the sequence step

i ← 0;
v ← y , a block of n vectors;
While i < L, where L is the length:

ai ← xT v , an m × n matrix;
v ← Mv ;
i ← i + 1.

return (ai)i , sequence of L matrices of size m × n.

For example, a straightforward case with bits: our black box deals
with (say) 64-bit machine words. BW with n = 64 is as here.

In Cado-NFS, this sequence step is done by the krylov program.
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BW: sub-sequences

What if we have n = 192, and our black box still does only 64-bit?

Split y into three pieces
y0...63, y64...127, y128...191

i ← 0;
v ← y0...63, a block of 64 vectors;
While i < L, where L is the length:

ai ← xT v , an m × 64 matrix;
v ← Mv ;
i ← i + 1.

return (ai)i , sequence of L matrices
of size m × 64.

i ← 0;
v ← y64...127, a block of 64 vectors;
While i < L, where L is the length:

ai ← xT v , an m × 64 matrix;
v ← Mv ;
i ← i + 1.

return (ai)i , sequence of L matrices
of size m × 64.

i ← 0;
v ← y128...191, a block of 64 vectors;
While i < L, where L is the length:

ai ← xT v , an m × 64 matrix;
v ← Mv ;
i ← i + 1.

return (ai)i , sequence of L matrices
of size m × 64.

Collect the different pieces of matrices ai into (ai)i ,
sequence of L matrices of size m × n.
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Sub-sequences

Sub-sequences
In BW, the processing with the various sub-sequences is completely
independent.
We define sub-sequences that match the optimal block width.

over F2, we may for example define sub-sequences of width 64.
over Fℓ, we will probably define sub-sequences of width 1.
This will STILL be block Wiedemann because we have
matrices (ai)i to handle, yet our black box will not really do
blocks by itself.

A sub-sequence is identified by which range of columns of y it
processes. Its output is the same range of columns for all the final
matrices (ai)i .
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Sub-sequences
Example: RSA-768 — we had n = 512 = 8× 64

A contributor in Japan had a slow network and preferred to
use two sub-sequences at the same time in interleaving
fashion.
Other 6 sub-sequences were processed independently in
France and Switzerland.
By periodically saving iterates M iy (say when 1000 | i), we
have a trivial chekpoint/restart feature.
We actually exchanged sub-sequences to adapt to the various
processing speeds.
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More recent examples

In the 2016 kilobit hidden-SNFS-DLP computation, we had
n = 12.

Each black box deals with one product at a time.
12 independent sequences, 6 on each side of the ocean.
Progress leveling every now and then (by hand).

More of the same with the records in 2019-2020, which all used
multiple sequences.
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BW: the length

The length of the sequence step is:

L = N/m + N/n + O(n/m + m/n).

The O() term is less than 1000 for all practical ranges.
In practice we always have max(n/m, m/n)≪ N.

Number of matrix-times-vector products
Whether or not we split into sub-sequences, the L steps of the
sequence computation are performing:

n × L = N · (1 + n/m + o(1))

matrix-times vector products.
This is better than the 2N we had with the Wiedemann algorithm.
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The name of the game

Out of the sequence computation step (krylov), we have:

A(X ) ∈ Fℓ[X ]m×n, deg A = N
m + N

n .

Wanted: matrix linear generator
We search for F (X ) ∈ Fℓ[X ]n×n and G(X ) ∈ Fℓ[X ]m×n such that:

A(X )F (X ) = G(X ) + O(XN/m+N/n),

deg F , G ≤ N
n .

This involves arithmetic with matrices of polynomials.
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Lingen algorithms

Several algorithms, rediscovered multiple times.
Costs (with m = n, to make things simpler):

Coppersmith, 1994. O(nN2).
Beckermann-Labahn, 1994. O(nN2), but also fast version
O(n2(n + log N)N log N). This is the most general setting.
T. 2001. O(n(n + log N)N log N).
Giorgi, Lebreton, 2014. Current state of the art, + online
behaviour.

[T. 2001] is used for large NFS computations.
The lingen computation has significant memory requirements.
(Proportional to the input size when m and n are constant.)
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Linear generator: basic idea

Fairly similar to Berlekamp-Massey.

Analyze what can be done in quadratic complexity.
Then build a recursive version.
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Linear generator: quadratic base case

Recall A(X ) ∈ Fℓ[X ]m×n. Ultimate goal:

A(X )F (X ) = G(X ) + O(XL).

Work with m + n candidates (in columns) at a time.
Extend F and G to F (X ) ∈ Fℓ[X ]n×(m+n), and

G(X ) ∈ Fℓ[X ]m×(m+n).
Initial error matrix E (X ) = (A(X )F (X )−G(X )) div X something.
We have E (X ) ∈ Fℓ[X ]m×(m+n).

We want a transformation matrix π(X ) ∈ Fℓ[X ](m+n)×(m+n) such
that

E (X )π(X ) ≡ 0 mod X t
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Linear generator: quadratic base case

What does it take to get E (X )π(X ) ≡ 0 mod X t?

we need to find solutions to m× (m + n)× t linear constraints.
with deg π < d , we have (m + n)× (m + n)× d degrees of
freedom.
Therefore, we should be able to do it with d ≈ m

m+n t.

Advancing by t steps (in time O(t2))
We find π(X ) such that E (X )π(X ) ≡ 0 mod X t by setting
approximately m

m+n t coefficients in each matrix entry in π(X ).
This is completely doable with a sort of Gaussian elimination.

More precise complexity: dependence on m and n is subtle.
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Linear generator: recursive

Compute an initial “error matrix” E (X ).
Truncate to degree ⌈L/2⌉.
Recurse, find π(X ) such that E (X )× π(X ) ≡ 0 mod X ⌈L/2⌉.
Middle product (full) E (X )× π(X )÷ X ⌈L/2⌉.
Recurse a second time.
Multiply π(X )π′(X ).

Again, quasi-linear algorithms and so on. More on this later.
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One or many solutions ?

The linear generator step works with m + n candidates internally,
but eventually finds n solutions.

This is exactly similar to Berlekamp-Massey working with 2
candidates internally, but finding one generator.

How do we tell generators from non-generators eventually? By
observing the fact that all matching columns in the error vector are
canceled all of a sudden.
Interesting part of the linear generator
The linear generator step really outputs F (X ) ∈ Fℓ[X ]n×n.
Input length: L ≈ N

m + N
n . Output length: m

m+nL ≈ N
n .
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More on the linear generator matrix

The linear generator matrix, from a computer algebra perspective,
has many interesting properties.

Its determinant is close to (the reciprocal of) χM .
Its Smith normal form is very close to the Smith normal form
of M − XIN (invariant factors).
F (X ) is very much a useful computer algebra thing!

However, we will not need these fancy properties.
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Equation for one solution vector

The generator is a matrix in Fℓ[X ]n×n.

Each column of this matrix will yield a solution of the linear
generator problem.

(
∑

i
aiX i)F (X ) = G(X ). (infinite precision!)

One column is made of n polynomials.
There is mathematical ground to say that the set of columns
of the generator matrix form a basis of the set of solutions
(according to a Z[X ]-module structure that is not hard to
introduce).

Next step: move from a solution of the linear generator problem to
a solution of the homogenous linear problem that we try to solve.
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Many coefficients
Assume deg F ≤ N/n, deg G < N/n. Write matrix F (X ) as

Fi ,j(X ) =
N/n∑
k=0

fi ,j,kX k .

Coefficients of degree N/n + d in A(X )F (X ) are zero, ∀d ≥ 0.

∀d ≥ 0 [XN/n+d ](A(X )F (X )) = 0.

More precisely, if columns j of F and G have degrees δj,F and δj,G ,
then coefficients of degree δj = max(δj,F , 1 + δj,G) and above in
the j-th column of A(X )F (X ) are zero.

Fact: we have columns j for which δj > δj,F .
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Many coefficients
Since ai = xT M iy , we have (still for any j , and δj as above):

∀d ≥ 0 [X δj +d , column j](A(X )F (X )) = 0,

δj,F∑
k=0

ad+δj −δj,F +k [X δj,F −k , column j]F (X ) = 0,

xT Md ·Mδj −δj,F

δj,F∑
k=0

Mk
n∑

i=0
yi

column i of y
fi ,j,δj,F −k︸ ︷︷ ︸

vj

= 0.

Mδj −δj,F vj is orthogonal to many vectors in FN
ℓ .

We can quantify the probability that it be zero: it is high.
we may rearrange the expression so that vj really looks like a
combination of evaluations of polynomials at M (and y).
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Equation for one solution vector
A combination of polynomial evaluations

vj =
δj,F∑
k=0

Mk
n∑

i=0
yi fi ,j,δj,F −k .

The equation of the solution is a bit like this:

vj = F̂0,j(M)y0 + F̂1,j(M)y1 + · · ·+ F̂n−1,j(M)yn−1.

where (F̂0,j · · · F̂n−1,j) = (X δj,F Fi ,j(1/X ))i .

This is:

a bit like what we had with the Wiedemann algorithm
except that we blend the different columns of the vector block
y together.
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mksol: procedures

vj = F̂0,j(M)y0 + F̂1,j(M)y1 + · · ·+ F̂n−1,j(M)yn−1.

This evaluation, called mksol, can be arranged in multiple ways.

Compute all n solutions (w0 to wn−1) that are given by the n
columns of F (not all will be linearly independent).
Output would be a block of n vectors.
Restrict to only r among n solutions. E.g. r = 64 or r = 1.
Output would be a block of r vectors.
Evaluate with a Horner scheme or not.
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1st approach: mksol, n solutions, no Horner

k ← 0;
v ← y , a block of n vectors;
w ← 0, a block of n solutions;
While k ≤ deg F ;

∀i , w ← w + vi × (coefficients of degree k in ̂Fi,0···n−1(X ));
v ← Mv ; (block width is n)
k ← k + 1.

return w .

Our black box deals with n vectors at a time (or, equivalently,
we may split into sub-sequences).
Note: we’re reusing exactly the same vector iterates M iy as in
the krylov step.
This used to be the way I had always used BW until 2016.
For K = F2 and n = 64, this is an entirely valid way to
proceed. Not much else to do.
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Benefits of using the same iterates

Since we use the same iterates M iy as in the krylov step, we can
trade storage for more parallelism.
If we saved a few iterates M iy in the krylov (e.g. for 1000 | i):

As we already said, this provides checkpoint/restart for
krylov.
But this also allows us to compute the result of the mksol as
the sum of many independent calculations.

k intermediary vectors saved ↔ k-fold distribution for mksol.
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2nd approach: fewer solutions, no Horner

k ← 0;
v ← y , a block of n vectors;
w ← 0, a block of r vectors. Goal: solutions s to s + r − 1;
While k ≤ deg F ;

∀i , w ← w + vi × (coefficient of degree k in ̂Fi,s···s+r−1(X ));
v ← Mv ; (block width is n)
k ← k + 1.

return w .

This saves a little bit on the vector multiplication part.
We are still going through the same vector iterates.
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mksol cost, no Horner

The degree of F is ≈ N/n. Therefore the previous process does
N/n application of the black box, of width n.

In this setting, mksol costs N matrix-times-vector products.
The total cost of krylov+mksol is now

(2 + n/m)N

matrix-times-vector products.
Better than non-block (if m > n), but still more expensive
than (block) Lanczos.
Increasing m and n only works to a certain extent, since the
linear generator step becomes more expensive as m + n grows.
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3rd approach: mksol, n solutions, Horner

k ← deg F ;
v ← y , a block of n vectors;
w ← 0, a block of n solutions;
While k ≥ 0, where L is the length:

w ← Mw (block width is n);
∀i , w ← w + yi × (coefficients of degree k in ̂Fi,0···n−1(X ));
k ← k − 1.

return w .

We are no longer using the same iterates.
However, we can still reuse M1000y in order to compute the
contribution of the terms of degree 1000 to 1999 in the sum!
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A piece of the Horner computation

fragment of vj =
1999∑

k=1000
Mk

n∑
i=0

yi fi ,j,δj,F −k ,

This is exactly the same as a degree-999 evaluation of the same
kind, with M1000 as a starting vector.

This means that with Horner evaluation, we can still benefit
from the checkpoints that we have saved in the Krylov space.
However, our computation w ← Mw is still operating on a
block of n vectors.
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4th approach: mksol, r solutions, Horner

k ← deg F ;
v ← y , a block of n vectors;
w ← 0, a block of r vectors. Goal: solutions s to s + r − 1;
While k > 0, where L is the length:

w ← Mw (block width is now r here);
∀i , w ← w + yi × (coefficient of degree k in ̂Fi,s···s+r−1(X ));
k ← k − 1.

return w .

We can do new things!

r = 1 solution with only N/n matrix times vector products,
with a block width of 1 (typical with large ℓ).
or r = 64 solutions with

rN/n matrix times vector products,
or equivalently, N/n matrix times vector (block) products, with
a block width of 64.
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Improved cost

New cost: rN/n for mksol (for r solutions).
The total cost of krylov+mksol is now

(1 + n/m + r/n)N

matrix-times-vector products.
References: Kaltofen95, FGHT17.

New
In this setting, for N large enough and fixed r , we can choose
parameters so that the cost of BW is

(1 + o(1))N

matrix-times-vector products.
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Splitting the computation in pieces

In krylov we may periodically save the vectors Mk×1000y .

This makes it possible to checkpoint and restart.
Of course we cannot compute from iteration k × 1000 until
we have at least reached this iteration.
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mksol checkpoints
These same checkpoints can also be used:

by mksol/no-horner, trivially;
by mksol/horner also: we let Mk×1000y play the role of y ,
and we compute a part of the final sum.

Of course the value interval=1000 can be adjusted:

Smaller = more checkpoints, more disk, many independent
tasks;
Larger = fewer checkpoints, fewer (longer) tasks.

Note: all necessary checkpoints are already there when mksol
starts! We can do everything in parallel if we want.
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Example

In FGHT17, we had N = 28.3× 106 and m = 24, n = 12.
Total number of products: 44× 106.
We could have made this lower but:

we were not absolutely confident about whether the lingen
step would go smoothly;
this was our very first experiment with this strategy.

sieving linear algebra
sequence generator solution

cores ≈3000 2056 576 2056
CPU time (core) 240 years 123 years 13 years 9 years
calendar time 1 month 1 month
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Example

In BGGHTZ20, for DLP240, we had

N = 36× 106, m = 48, n = 16.

Total number of products: 50× 106.

sieving linear algebra
sequence generator solution

cores ≥10000 3072 576 26880
CPU time (core) 2400 years 700 years 12 years 70 years
calendar time 6 months 3 months 62h 1 day
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Example

In BGGHTZ20, for RSA240, we had

N = 282× 106, m = 512 = 8× 64, n = 256 = 4× 64, r = 64.

Total number of products (block width 64): 7.7× 106.

sieving linear algebra
sequence generator solution

cores ≥10000 2048 512 2048
CPU time (core) 800 years 70 years 10 months 13 years
calendar time 2 months 37 days 13h 7 days

Note: linear algebra computation done in best-effort mode,
calendar time is not really meaningful.
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Guarding against errors

We can check the data on disk. It is useful because data on disk
could be corrupted (disk errors, disk full, . . . ).

Simple idea: let C0 be a random vector (or vector block);
compute C1000 = (MT )1000C0 (pre-compute);
check that CT

1000(Mk×1000y) = CT
0 (M(k+1)×1000y).

we detect errors with good probability.

Caveat: C0 must not have zero coefficients: it would limit our
ability to detect errors.
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Different steps

There are two ways to run the block Wiedemann algorithm.
BW has several steps, and Cado-NFS has several binaries.
Some steps are computational, some are mere bookkeeping.

Steps in BW

Let m, n be. . . . . . . . . . . . . . . . . . . . . . . . .

Let x , y be. . . . . . . . . . . . . . . . . . . . . . . . .

Compute C1000. . . . . . . . . . . . . . . . . . . . . .

Compute A(X ) =
∑

i
txM iy X i . . . . . .

Compute F (X ). . . . . . . . . . . . . . . . . . . . . .

Compute
∑

i M iyfi . piecewise,. . .
then the sum

Steps in BWC

command line

prep

secure

krylov

lingen

mksol

gather
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Block algorithms

Both block algorithms we know of use a block black box.
That black box is able to deal with blocks of (say) n1 vectors at
the same time.

When the base field is F2, we probably want to choose
n1 = 64, while for larger fields it is likely that n1 = 1 is best.
Per se, the black box rather offers a SIMD mode of operation
(a.k.a. table soccer) rather than parallelism.
Whenever we can do some n1, it is trivial to emulate n1 twice
or three times larger (with a loop!)

The 1st level of “parallelism” is SIMD
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SIMD level: optimal value for n1

When matrices are sparse, most of the time in the
matrix-times-vector operation comes from memory throughput
rather than from CPU computation.

Using SSE-2 (128-bit) types instead of 64-bit types might
take a bit less than twice the time per iteration.
But it is not even clear.
Furthermore, doing too much SIMD can hamper parallelism at
higher levels.
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Thread-level / SMP

One core has the matrix data and multiplies it by a
block of n1 vectors

n2 cores each have 1/n2-th of the matrix data and
collectively work to multiply it by a block of n1 vectors

The 2nd level of parallelism is threads (intra-node, SMP)

Implicitly, the thread level can make nice use of shared memory.

NUMA is something we have to pay attention to,
our communication pattern must be well thought.
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MPI-level / cluster

One node (n2 cores) has the matrix data and multiplies
it by a block of n1 vectors

n3 nodes each have 1/n3-th of the matrix data and
collectively work to multiply it by a block of n1 vectors

The 3rd level of parallelism is MPI (inter-node)

The interconnect topology is important. Again, we must pay
attention to our communication pattern.
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Distribution

One cluster (n3 nodes) has the matrix data and some
init data, and is busy for time T

n4 clusters each have the matrix data and some init
data, and are busy for time T/n4

The 4th level of parallelism is the distribution level
Only the block Wiedemann algorithm can do this

Practically no communication between clusters, at this level (only
dispatch & reconcile).
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Three caveats

We must pay attention to three important things:

Scaling, esp. at the MPI- (n3) and thread- (n2) levels,
because communication costs are pure overhead.
Global block size (n1n4), and how it should not go out of
control.
Choice of n1.
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Scaling

For fixed n1:

we expect levels 2, 3, 4 to bring time T to T/(n2n3n4);
in practice it might not be so, esp. if n2 and n3 are large.

Answers: careful implementation and thread placement.
CPU binding is particularly important.
well-organized communication patterns.

CSE291-14: The Number Field Sieve; The block Wiedemann algorithm 46/59



Block size

Given our presentation with multiple levels, the block size that we
see from the global algorithm point of view is n = n1n4.

Block Wiedemann lingen has some cost related to the block
size, of the order of Õ(nN).
We must really pay attention to it.
Block Lanczos, too, has some additional costs that are
proportional to n (n = n1 for BL, since n4 = 1).
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Choosing n1 properly
When K = F2, a black box iteration with n1 = 1 or n1 = 8 take
the same time. The time is well sub-linear until some block size,
and then super-linear.
Two examples on my laptop:

matrix rsa100, 135krows c163, 10Mrows
100 iterations 4 iterations

n1 = 8 2.25 16.80
n1 = 16 2.75 19.79
n1 = 32 3.93 23.65
n1 = 64 5.00 27.44

n1 = 128 5.85 35.25
n1 = 256 17.86 68.40

This is no definite truth, but it indicates that 128-bit looks like a
sweet spot.
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Choosing n1 properly

Whatever the sweet spot, a large n1 certainly forces us to reduce
n4 if we would like their product to remain bounded.
⇒ too much SIMD may actually be a nuisance.
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Plan

Coppersmith’s block Wiedemann algorithm

Parallelization levels

Parallelization of the linear generator step



FFT in the linear generator step

The main operations of the linear generator step in BW are

Multiplications of matrices of polynomials over finite fields.

We want to use asymptotically fast algorithms.

First approach: ci ,j =
∑

k ai ,k ×
here!

bk,j
Better complexity: use the fact that we are using FFT-based
algorithms.

Compute all forward transforms âi,k .
Compute all forward transforms b̂k,j .
Compute all convolutions ĉi,j =

∑
k âi,k ∗

linear

b̂k,j

Compute all inverse transforms ̂̂ci,j = ci,j .
Caveat: memory goes totally out of control.
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Memory cost of fast multiplication
How much memory do we need to multiply two integers of the
same size?

Input size Peak memory
bits MB MB
223 1 18
224 2 28
225 4 49
226 8 90
227 16 172
228 32 336
229 64 664
230 128 1320

· · ·
240 128GB 1.3TB

One Fourier transform = about 5 times the input size!
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Parallelization of the linear generator step

Two reasons to parallelize:

Use more CPU power and get the result faster.
Have more memory available.

This requires appropriate scheduling of the computation of the
transforms.
Guiding principles:

limit the lifetime of transforms as much as we can.
adapt the control flow when relevant.
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Parallelization of the linear generator step

Typical context:

r2 nodes participate in a big matrix product of two n × n
matrices. (n: dozens)
Each “owns” a submatrix n

r ×
n
r of both inputs and the output.

Simple case: each node is ok with allocating space for n2

r2

transforms, but not much more.
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Parallelizing lingen carefully
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Everything happens simultaneously
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Memory cost

Each node here needs space for n2

r2 AND for 2(r − 1)n
r transforms

from other nodes.
This may be too much in certain cases.
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Parallelizing lingen: less memory
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Memory cost

Each node here needs space for n2

r2 + (r − 1)n
r + (r − 1) transforms.

This is achieved only by reorganizing the scheduling of
computations and communications.
Now this may still be too much in certain cases. Then we may
want to split the computation even more, at the expense of
recomputing several transforms.
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Keeping track of memory is important!
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 0  50000  100000  150000  200000  250000

We can adjust the scheduling at each recursion depth.
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Better memory usage → better scaling

We can predict the total runtime of BW quite well.

26 27 28 29 210 211 212 213 214 215 216
cores22

23

24

25

26

27

28

29

210

211

212

time to solution (days)

n=48
n=32
n=24
n=16
n=8
n=4
n=2
n=1

BW scales! (more than people tend to think).
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