
CSE291-14: The Number Field Sieve
https://cseweb.ucsd.edu/classes/wi22/cse291-14

Emmanuel Thomé

February 24, 2022

CSE291-14: The Number Field Sieve 1/51

https://cseweb.ucsd.edu/classes/wi22/cse291-14

Part 7

The square root step

Introduction

The lifting approach

Couveignes’ algorithm

Another CRT method

Montgomery’s algorithm

Conclusion

Plan

Introduction

The lifting approach

Couveignes’ algorithm

Another CRT method

Montgomery’s algorithm

Conclusion

Forcing squares

Recall where relations are coming from:

the integer ai − bim is smooth. ai − bim = ±
∏

pej
j ,

the ideal (ai − biα) is also smooth. (ai − biα) =
∏

p
e′

k
k ,

We consider a combination S(x) =
∏

i(ai − bix).

How do we make S(m) a square in Q ?
How do we make S(α) a square in Z[α] ?

(we mostly focus on the algebraic side.)

CSE291-14: The Number Field Sieve; The square root step 3/51

Computing the square root

Once we know that some combination S(x) is such that S(α) is a
square in Z[α], how do we actually compute the square root?
If we succeed, we find:

A rational number R such that R2 = S(m).
An integer polynomial such that T (α)2 = S(α).

This means that R2 ≡ T (m)2 mod N, which gives a non-trivial
factor with probability ≥ 1/2.

CSE291-14: The Number Field Sieve; The square root step 4/51

Factoring only!

All this square root business is only relevant for the integer
factorization context.

CSE291-14: The Number Field Sieve; The square root step 5/51

Forcing squares: several steps

First part of the answer: linear algebra.

By solving a linear system, we force all valuations to be even.

Is this enough ? Clearly not.

We only guarantee that the principal ideal (S(α))OK is the
square of an ideal.
This is not the same as having S(α) = □ in Z[α].

We can overcome these obstructions heuristically with characters.

CSE291-14: The Number Field Sieve; The square root step 6/51

Obstructions

Obstructions
Many reasons for S(α) to not be a square in Z[α].

If we were lazy with algebraic number theory, the ideal
S(α)OK has even valuations at almost all ideals, but perhaps
not all.
The ideal S(α)OK could perhaps be the square of an ideal,
but would that ideal be principal ?
As a generator, S(α) would still have a unit contribution.
Even if S(α) is a square, is it a square in Z[α] ?

Also for S(m): the sign (= unit contribution in Q) is an issue.

CSE291-14: The Number Field Sieve; The square root step 7/51

Characters

Bad news Deciciding principality is intractable.
Units cannot be computed.

Our goal: find ways around these obstacles!

CSE291-14: The Number Field Sieve; The square root step 8/51

Characters

Formally for all row dependencies S(x) =
∏

i(ai − bix):

S(α) belongs to a subgroup V of K× (using K = Q(α)).
squares of elements of V form a subgroup of V .
The quotient Ω = V /V 2 is a F2-vector space.
(But computing a basis is not possible.)
Algebraic number theory allows us to bound dim Ω.

Unit rank + Class group 2-rank + skipped ideals + 2-torsion
units.
Only the class group 2-rank is not easy to know. But it’s well
under 20 anyway.
Thus dim Ω is significantly below 64.

Def: character = F2-linear map (Ω, ×) → (F2, +).

CSE291-14: The Number Field Sieve; The square root step 9/51

Characters

How do we use characters ?
Let χ be an algebraic character Ω = V /V 2 → F2.

Let S1(x) be a row dependency with χ(S1(α)) = 1.
Let S2(x) be a row dependency with χ(S2(α)) = 1.
Then S1S2 has χ(S1(α)S2(α)) = 0.

If we can compute χ, we can fabricate combinations in Ker χ.

Idea: pick several characters, hoping that
⋂

χ Ker χ = 0 ∈ Ω.

CSE291-14: The Number Field Sieve; The square root step 10/51

Characters

We know some characters:
Parity of the valuation at an ideal.

This should be zero for all ideals that we took into account
when computing valuations.

Sign at any real embedding.
Square-ness of the value modulo a maximal ideal p.

Only works if non-zero modulo p.
Can also divide by uniformizing element.

yet some other choices, but mostly useful in the DL context.

Really plenty to choose from. Stick to the most efficient ones.

CSE291-14: The Number Field Sieve; The square root step 11/51

Characters

Example of a fast character check
Let p = (p, x − r) be prime ideal, with p < 264.

Compute S(r) mod p.
In the (unlikely) case p | S(r), use p−νp(S(r))S(r) instead.
Define χ(S(α)) =

(S(r)
p

)
.

This is 1 if S(α) maps to a square mod p, and −1 if not.

Implementation: never compute the S(x) for real.

Compute characters directly on the (a − bα).
Map +1 to 0 mod 2, and −1 to 1 mod 2.
Apply the merge matrix to the obtained characters.
Deduce (linear algebra) the recombinations with {χ} → 0.

CSE291-14: The Number Field Sieve; The square root step 12/51

Characters = necessary conditions

Being a square at the reduction modulo a prime ideal is certainly a
necessary condition.

Heuristically, we expect that the different characters that we pick
will generate the full dual space Ω∗, so that something that
evaluates trivially at all of them is zero in Ω = V /V 2, and so is an
element of V 2 ⊂ (K×)2.

Some class field theory results can bring some rigor, e.g. the
Grunwald-Wang theorem.

CSE291-14: The Number Field Sieve; The square root step 13/51

Input of the square root step

Linear algebra ⇒ all valuation even.
Characters step ⇒

∏
i(ai − biα) = □ in Q(α).

Multiply by some power of fd , and then by f ′(α)2 ⇒ □ in
Z[α].
(by a textbook number theoretic trick)

Thus

(a1−b1m)×· · ·×(as−bsm) ≡ ϕ((a1−b1α)×· · ·×(as−bsα)) mod N

is actually a congruence of squares
BUT computing the square root is non trivial, esp. on algebraic
side.

CSE291-14: The Number Field Sieve; The square root step 14/51

Square root psychology

The sqrt step is mathematically interesting
rarely an issue computationally speaking.

However it comes LAST in a long computation.

The “user” is in front of his terminal.
Having to wait is annoying, esp. if code improvements are
easily obtained.

The algebraic square root:

gathers most mathematical difficulties.
is computationally harder.

⇒ Focus on alg. sqrt.

CSE291-14: The Number Field Sieve; The square root step 15/51

Approaches for sqrt

We investigate several approaches.

All algorithms are linear or quasi-linear in the input size.
However the input is large. 21GB for RSA-768.
Input known as a product form

∏
(ai − biα) = S(α).

The output really is T (m) mod N where T (α)2 = S(α).
If possible, try to avoid computing T (α) itself.

The different approaches compute different things.

Some compute S(α), some don’t.
Some compute T (α), some compute T (m) mod N directly.
Some exploit the known factorization of (a − bα).

CSE291-14: The Number Field Sieve; The square root step 16/51

NFS square root 30 years ago

May rephrase the problem as factoring X 2 − S(α) in K = Q(α).

Quasi-linear (we take K = Q(α) constant).
BUT unacceptably expensive 30 years ago.
(by then, a Karatsuba implementation was all it took to have
the edge in a bignum battle).
Motivation to explore specially adapted algorithms:

Montgomery;
Couveignes.

Since then: practicality of asymptotically fast methods everywhere.
May explore again the direct approach.

Easy to program.
Can leverage fast implementations in e.g. Gnu MP.

We are also interested in parallelization.

CSE291-14: The Number Field Sieve; The square root step 17/51

NFS square root 30 years ago

May rephrase the problem as factoring X 2 − S(α) in K = Q(α).

Quasi-linear (we take K = Q(α) constant).
BUT unacceptably expensive 30 years ago.
(by then, a Karatsuba implementation was all it took to have
the edge in a bignum battle).
Motivation to explore specially adapted algorithms:

Montgomery;
Couveignes.

Since then: practicality of asymptotically fast methods everywhere.
May explore again the direct approach.

Easy to program.
Can leverage fast implementations in e.g. Gnu MP.

We are also interested in parallelization.

CSE291-14: The Number Field Sieve; The square root step 17/51

The best way

The most efficient algorithm for the square root is Montgomery’s.
Montgomery’s algorithm is much different from the others.

Requires some number-theoretic primitives not there in typical
NFS code.

Zassenhaus round-2.
Complete ideal factorization.
Arbitrary ideal arithmetic.
Lattice reduction.

Cado-NFS has only had this functionality for a short time.
This led us to postpone (indefinitely?) the implementation of
Montgomery’s square root algorithm.

It makes more sense to describe Montgomery’s algorithm last in
this talk.

CSE291-14: The Number Field Sieve; The square root step 18/51

Plan

Introduction

The lifting approach

Couveignes’ algorithm

Another CRT method

Montgomery’s algorithm

Conclusion

The direct (lifting) approach

The direct/lifting/naive/brute-force way:

Compute S(α) from the set of ai − biα.
Compute T (α) as a square root in Z[α].
Deduce T (m) mod N.

Key: take an inert prime p: such that pOK is prime.

The field OK /pOK is isomorphic to Fpd .
The field Kp = K ⊗ Zp is a degree d extension of Qp.
Elements of Z[α] easy to recognize in Kp: expansion
terminates.
p-adic structure allows for a lifting approach.

CSE291-14: The Number Field Sieve; The square root step 19/51

I love diagrams

OK K ⊗Z Zp ∼= Qpd

Fpd

modp modp

CSE291-14: The Number Field Sieve; The square root step 20/51

Lifting approach: strategy
Projection map π : Zp[α] → Fpd to the residue field.
Consider t ∈ Kp an arbitrary lift of ±

√
π(S(α)).

We thus have t − T (α) ≡ 0 mod p.
T (α) is a fixed point of x → x + S(α)−x2

2x .
lift, lift, lift.

Requirements Arithmetic in Kp (fixed precision will do).
Fast integer multiplication.
How high should we lift ?
Inert primes...

T (α) determined only up to sign !
There is no such thing as “the” square root.
The choice of t determines the T (α) obtained by lifting.

CSE291-14: The Number Field Sieve; The square root step 21/51

How high is the lift ?

Rough estimate: Coefficients of S(α) have, say, n bits.
So coefficients of T (α) should have ≈ n/2 bits.

Easy to make it slightly more serious.
Compute floating-point approximations to log |ai − biz |.

z runs over complex roots of f (recall f (α) = 0).
Round (take ceil)

We obtain an upper bound for log |T (z)|.
Derive upper bound on coefficients of T .
Can restrict the lift to sufficiently large pλ.

CSE291-14: The Number Field Sieve; The square root step 22/51

Inert primes ?

(Chebotarev) The density of primes inert in a degree d
number field is proportional to the ratio

#{σ ∈ G , ord(σ) = d}
#G

where G is the Galois group.
But that number could be zero ! E.g. for G ∼=Z/2Z ×Z/2Z.
Fortunately for GNFS, polynomials have the generic G = Sd .
Not so for SNFS.
The lifting approach does not work as is for non-generic
Galois group.

CSE291-14: The Number Field Sieve; The square root step 23/51

Lifting approach implementations

For RSA-768, the lifting approach could not handle the sqrt step.

Memory requirement probably ≈ 100GB. We did not have
that much RAM by then (2010).
No longer an issue now. RSA-250 square root: 900GB RAM,
10 hours.

Several existing implementations (msieve, cado-nfs).

CSE291-14: The Number Field Sieve; The square root step 24/51

Without inert primes

It is possible to do without inert primes.
(e.g. Pari does that to factor polynomials in number fields.)

Pick a prime which is “as inert as it can be”: splits in the
smallest possible number of factors.
(This may still mean up to d/2 factors.)
Compute desired roots modulo each of the several factors of
pOK , and lift appropriately.
Find the correct combination.

This roadmap will be explored later in this talk.

CSE291-14: The Number Field Sieve; The square root step 25/51

Plan

Introduction

The lifting approach

Couveignes’ algorithm

Another CRT method

Montgomery’s algorithm

Conclusion

Working modulo many primes ?

1990 era: no widely available FFT implementation for
multiplying integers (GMP has one only since 1999).
Explore ways to avoid it.

Can’t we work with several primes ?
Suppose we have 100 inert primes.

Compute square root modulo p0, . . . , p99.
Try to recombine via CRT.
Problem: only 2 correct square roots among 2100 possible
combinations !

We need a way to tell apart the two square roots consistently
modp.

CSE291-14: The Number Field Sieve; The square root step 26/51

Couveignes’ algorithm
Couveignes’ trick for odd-degree number fields
We have NormK/Q(−T (α)) = − NormK/Q(T (α)).
Thus for t ≡ ±π(T (α)), we have:

NormFpd /Fp (t) = ± NormK/Q(T (α)) mod p.

∣∣∣NormK/Q(T (α))
∣∣∣ is something we can compute.

Define the square root T (α) as the one with positive norm.
This leads to a well-defined choice of root modulo each p.

Notations Let {pi} be a collection of sufficiently many primes.
Let Ti(x) be such that Ti(α) ≡ T (α) mod pi .
Let qi ∈ [0,

∏
i pi [satisfy qi mod pj = δi ,j .

CSE291-14: The Number Field Sieve; The square root step 27/51

Couveignes’ algorithm

We have T (α) =
∑

i qiTi(α).

We need not compute T (α).
Directly computing T (m) mod N is simpler.
⇒ accumulate the contributions modulo each pi .

Complexity:

dominated by the computation of {S(α) mod pi}.
if S(α) is read for each pi , quadratic complexity.

Key characteristics: Limited to odd degree.
Requires inert primes.

CSE291-14: The Number Field Sieve; The square root step 28/51

Plan

Introduction

The lifting approach

Couveignes’ algorithm

Another CRT method

Montgomery’s algorithm

Conclusion

Another CRT method

Goal: have something which works in the CRT way, but:

without requiring inert primes.
with good complexity.

We only target a small number of primes.
Mixing existing ideas is enough to achieve this.

Borrow from the structure of number field root finding.
Use subproduct trees very often.

CSE291-14: The Number Field Sieve; The square root step 29/51

Setup

Let {pi} be a collection of primes totally split in K .

Facts with CRT modulo prime ideals
We let (pi) = pi ,1 · · · pi ,d , and P =

∏
pi .

CRT: Knowing {T mod pi ,j}, we can recover T mod P.
Each of the coefficients of T above is expressed linearly.

Indeed we may write polynomials Qi ,j(x) such that:

T (x) ≡
∑
i ,j

Qi ,j(x)Ti ,j mod P.

It is also posssible to do the same with the pi -adic lifts of Ti ,j .

CSE291-14: The Number Field Sieve; The square root step 30/51

CRT and lifting together
Let p be totally split in K . We have:

Z[α] ↪→ Kp ∼= Qp × · · · × Qp.

For computing ±
√

S(α) in all the Zp parts, one has to:
Compute the roots of f modulo p: r1, . . . , rd .
Lift each p-adically to some precision: r̃1, . . . , r̃d .
Deduce the image of S(α) in each part.
Compute the p-adic square root (by lifting).

If we do so modulo many primes pi , we can recover the result as in
the CRT setup.
Lift up to precision λ modulo each pi , then:

T (x) ≡
∑
i ,j

±Qi ,j(x)Ti ,j mod Pλ.

CSE291-14: The Number Field Sieve; The square root step 31/51

Finding the correct combination

Issue already encountered:
many CRT shares ⇒ intractable recombination problem

This is the reason why we focus on relatively few primes
(number of shares k = d × #{pi} ⪅ 60).
Improved reconstruction allows more parallelism.

CSE291-14: The Number Field Sieve; The square root step 32/51

Streamlining reconstruction

Let M be a bound on the coefficients of T (x), and let Pλ > M
ϵ .

T (x) ≡
∑
i ,j

±Qi ,j(x)Ti ,j mod Pλ,

1
Pλ

T (x)︸ ︷︷ ︸
coeffs<ϵ

≡
∑
i ,j

±Qi ,j(x)Ti ,j
Pλ

mod 1.

Problem reduced to (e.g.) finding a sum of floating-point values
close to an integer.

Trivially implementable in O(2k/2) for k shares.
Can go up to k ≈ 60 easily.
Best complexity O(20.313k).

CSE291-14: The Number Field Sieve; The square root step 33/51

Overcoming obstacles

For computing {S(α) mod pi ,j}, use subproduct trees.

Compute S(α).
Compute Pλ as a subproduct tree.
Make S(α) descend along the tree.

The method achieves the same complexity as the lifting approach.

Waived the inert prime assumption.
Possible to parallelize: on t2 nodes, t-fold reduction in both
time and space complexity on each node.

CSE291-14: The Number Field Sieve; The square root step 34/51

Plan

Introduction

The lifting approach

Couveignes’ algorithm

Another CRT method

Montgomery’s algorithm

Conclusion

Montgomery’s algorithm

The specificity of Montgomery’s algorithm is that it computes a
square root of S(α) ∈ Z[α] by exploiting

S(α)OK =
∏

i
p2ei

i

where all pi and ei are known.
Note that Montgomery’s algorithm is also valid for computing
arbitrary λ-th roots.

CSE291-14: The Number Field Sieve; The square root step 35/51

A bit of history look back

When is it described ? Known three versions by Montgomery.

1994; proceedings of a conference celebrating 50th anniversary
of Math. Comp. Published as AMS PSAM #48, 1994, p.
567-571. Text says: “the final version of this paper will be
submitted for publication elsewhere”.
1995; draft dated May.
1997; draft dated May 16, 24 pages. Used to be available on
the web. Lots of "HELP", "TBD" and so on. Most advanced
version.
1998; P. Nguyen version in ANTS-III. A few extra remarks.
2012; E. Thomé. Survey article on these algorithms and the
otherwise existing folklore.

CSE291-14: The Number Field Sieve; The square root step 36/51

A short note

The characters step gives a vector v s.t. vM = 0 over F2.
Montgomery’s algorithm really finds a square root in the field
Q(α), not in Z[α].

We don’t have to bother with f ′
d(α).

We’re free to create our starting S(α) as a fraction.

CSE291-14: The Number Field Sieve; The square root step 37/51

A short note

Deciding on the starting S(α) from the coefficients of v :
The naive approach is to lift v to Z as
0̄ ∈ F2 → 0 ∈ Z
1̄ ∈ F2 → 1 ∈ Z

but we could also lift 1̄ ∈ F2 to any odd integer, in particular −1.

Optimization trick
Instead of computing a square root for

∏
i(ai − biα), depending on

the algorithm, it might be more suitable to address
∏

i(ai − biα)ϵi

with ϵi = ±1 a random coin flip.
For s terms, |νp| drops from expected s/p to 2

√
s/p.

Cf random walks, etc.

CSE291-14: The Number Field Sieve; The square root step 38/51

Preliminaries

How does one force an algebraic number ζ to be small ?

Answer 1: minimize the factorization of the ideal ζOK .

Answer 2: minimize the complex embeddings of ζ.

Let K have r real embeddings, and s pairs of complex embeddings.

Φ :
{

K× → Rr+s ,
ζ 7→ (log |ρ1(ζ)|, . . . , log |ρr (ζ)|, 2 log |σ1(ζ)|, . . . , 2 log |σs(ζ)|).

We have | Norm(ζ)| = exp(
∑

i Φi(ζ)).
This is as a crucial ingredient in the proof of the Unit theorem.

CSE291-14: The Number Field Sieve; The square root step 39/51

Preliminaries

How does one force an algebraic number ζ to be small ?

Answer 1: minimize the factorization of the ideal ζOK .
Answer 2: minimize the complex embeddings of ζ.

Let K have r real embeddings, and s pairs of complex embeddings.

Φ :
{

K× → Rr+s ,
ζ 7→ (log |ρ1(ζ)|, . . . , log |ρr (ζ)|, 2 log |σ1(ζ)|, . . . , 2 log |σs(ζ)|).

We have | Norm(ζ)| = exp(
∑

i Φi(ζ)).
This is as a crucial ingredient in the proof of the Unit theorem.

CSE291-14: The Number Field Sieve; The square root step 39/51

Logarithmic embeddings and finiteness

Consider an algebraic integer ζ.

the coefficients of its characteristic polynomial χ are integers.
if Φ(ζ) is bounded, then so are all the symmetric functions on
the complex embeddings.
finite number of possible χ finite number of possible ζ.
the stricter the bound on Φ(ζ), the fewer possible ζ.

Immediate corollary
The unit rank is ≤ r + s − 1 (hyperplane

∑
= 0 in Rr+s).

The equality is moderately more expensive to obtain.

Bottom line: something which has trivial factorization and trivial
embeddings is a torsion unit.

CSE291-14: The Number Field Sieve; The square root step 40/51

Do not compute the big thing!

In Montgomery’s algorithm, we never compute S(α). We only
keep track of its product form, and of valuations.

CSE291-14: The Number Field Sieve; The square root step 41/51

Montgomery’s algorithm: key idea

This is an iterative algorithm, where at each step k ≥ 0 we have:

Sk(α) = S(α)(γϵ0
0 . . . γ

ϵk−1
k−1)−λO =

∏
p∈F

pλ·e(k)
p .

λ = 2 for square roots
The notation ϵi denotes a sign ±1.
At each step k, we know the tuple (e(k)

p)p.
Positive exponents = numerator, negative = denominator.

Goal of step k: find a new multiplier γk .

Objective 1: reduce the numerator or the denominator;
Objective 2: reduce the complex embeddings.

CSE291-14: The Number Field Sieve; The square root step 42/51

Steps – meeting objective 1
How do we choose the new multiplier ?

Target num. or den. depending on which has largest norm.
WLOG, assume numerator, whence we set ϵ = 1.
Pick a subset Ik of the numerator ideals
(pick p at most e(k)

p times).
Ik is an ideal, i.e. a Z-lattice. Find a “nice” element in Ik .

Lattice reduction (e.g. LLL) on a basis of Ik provides small
generating elements. Basis elements vi satisfy:

NormK/Q(Ik) | NormK/Q(vi),

m(vi)
def=

∣∣∣∣∣ NormK/Q(vi)
NormK/Q(Ik)

∣∣∣∣∣ ≤ CK ,

with CK an effectively computable constant (depends only on K).
CSE291-14: The Number Field Sieve; The square root step 43/51

Steps – meeting objective 1

For the new multiplier γk , we may choose one of the vi .

This kills the valuation from the ideals in Ik in the numerator.
New ideals pop up in the denominator, with norm at most CK .
If we can cope with Norm(Ik) suitably larger than CK , we’re
on the right track.

Repeating this procedure will lead to something with trivial (or
very small) ideal factorization.
BUT we have not taken care of the complex embeddings.
⇒ the resulting element will be an unacceptably large unit.

CSE291-14: The Number Field Sieve; The square root step 44/51

Steps – meeting objective 2

At step k, pick instead a combination
∑

civi so that:

coefficients ci remain small;
cplx. emb. of the updated-unknown-square-root-to-discover
are reasonably small, too.
Note: uusrtd = vi · Sk(α)−ϵk/2 if we are to take γk = vi .

IOW, a second lattice reduction step in dimension 2d :

wi =
(
(coeffs of vi) ,

(
M · |π(vi · Sk(α)−ϵk/2)|

)
π

)
where π runs through ρ1, . . . , ρr , σ1, σ1, . . . , σs , σs (d embeddings
in total), and M is a scaling constant so that the lattice
coefficients are overall balanced.

CSE291-14: The Number Field Sieve; The square root step 45/51

That’s it

This is about all there is to it. Nothing terrible.
Known implementations:

Original Pari-GP implementation probably buried in the CWI
sources.
Textbook-accurate implementation by Chris Monico in Ggnfs.
Magma toy implementation (from 2007) buried in the
cado-nfs history.
C implementation by F. Bahr, J. Franke and T. Kleinjung,
hardly available.

Only the last one is parallelized.

CSE291-14: The Number Field Sieve; The square root step 46/51

https://gitlab.inria.fr/cado-nfs/cado-nfs/-/tree/2ba842967/sqrt/magma-manu

Parallelizing Montgomery’s sqrt

It is possible to treat S(α) =
∏

i(ai − biα) in batches.
Core operation:

{(ai , bi)} + factorizations⇝ multipliers + factorization of quotient.

The first pass on the input data is inevitably I/O bound.

list of relation-sets;
list relevant (a, b) pairs;
for each (a, b) pair, we need to access/compute the
factorization;
of course the whole relation dataset won’t fit in memory.

Stream the matrix (complete relation dataset) in memory. One
pass should be enough, provided we dispatch on several nodes.

CSE291-14: The Number Field Sieve; The square root step 47/51

Using Montgomery’s algorithm for λ-th roots

When d is constant:

λ = 2; S(α) =
∏

(a,b)∈S(a − bα): size(S) = Θ(size(S)).
general case: S(α) =

∏
(a,b)∈S(a − bα)ki with (ki) = Θ(λ):

size(S) = Θ(λsize(S)).

Complexity keypoint
Montgomery’s algorithm is sensible to the size of the set S, not of
the product S(α) (which is never computed).

Possible to successfully run Montgomery-like e-th roots for e in the
1015 range.

CSE291-14: The Number Field Sieve; The square root step 48/51

Plan

Introduction

The lifting approach

Couveignes’ algorithm

Another CRT method

Montgomery’s algorithm

Conclusion

CRT versus lifting

The CRT algorithm has been implemented in Cado-NFS.
Has been used to (re-)do the sqrt for RSA-768.

Computation time 6 hours on 144 Intel cores.
Montgomery: 2 hours on 12 nodes (one of 12 cores on each,
I/O + memory bound), + 2 hours on 1 node (12 cores),
total 4 hours wall-clock mobilizing similar resources as above.

Has also been used for a 190-digit SNFS.

Beyond that, the lifting approach remains the preferred one.

CSE291-14: The Number Field Sieve; The square root step 49/51

Crazy optimizations

Waiting for the globally insignificant sqrt computation to complete
is annoying.
Improvements in November 2019, before the RSA-240 square root:

parallel I/O all over the place!
more parallelization in various pieces of the code.

CSE291-14: The Number Field Sieve; The square root step 50/51

Conclusion

Asymptotically fast algorithms are fast.
Lifting approach has some limitations:

Needs inert primes.
Memory-hungry (probably soon no longer a problem).

New CRT approach.
Nice parallelizable version of the lifting approach.
Waives the number field assumptions.
Almost competitive with Montgomery’s algorithm.

On the other hand, code size in the end almost invalidates the
“lazy programmer” assumption that this is more pragmatic than
coding all the background for Montgomery’s algorithm.

CSE291-14: The Number Field Sieve; The square root step 51/51

	The square root step
	Introduction
	The lifting approach
	Couveignes' algorithm
	Another CRT method
	Montgomery's algorithm
	Conclusion

