
CSE291-14: The Number Field Sieve
https://cseweb.ucsd.edu/classes/wi22/cse291-14

Emmanuel Thomé

March 1st, 2022

CSE291-14: The Number Field Sieve 1/29

https://cseweb.ucsd.edu/classes/wi22/cse291-14

Part 8a

Discrete logarithms in finite fields

Black-box algorithms for discrete logarithm

Index Calculus in Fp

Building the diagram

What we would like to do with relations

Plan

Black-box algorithms for discrete logarithm

Index Calculus in Fp

Building the diagram

What we would like to do with relations

The discrete logarithm problem

Definition of DLP in a cyclic group
In a cyclic group G , the Discrete Logarithm Problem (DLP) is,
given a generating element g and a target h, to find x such that

gx = h.

The solution x def= logg h is defined modulo the order of the group.

Many cryptographic primitives can be based on a cyclic group
(DSA, ElGamal, . . .). Their security relies on the hardness of DLP
in the underlying group.

Some groups have trivially easy DLP, and must not be used
for cryptography.
DLP is often harder. (FF, EC: no poly-time algorithm known).

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 3/29

Pohlig–Hellman
Let G be a cyclic group of size n =

∏k
i=1 ℓei

i .
Theorem (Pohlig–Hellman): It is possible to compute a discrete
logarithm in G by computing ei discrete logarithms in groups of
size ℓi , for 1 ≤ i ≤ k.
Tools: Elementary group theory (to deal with prime powers) and
Chinese Remainder Theorem (to combine results from different
primes).

Asymptotically, computing a discrete logarithm in a cyclic group of
order n is (up to a polynomial factor) as hard as computing a
discrete logarithm with a black box algorithm in a cyclic group of
order ℓ, where ℓ is the largest prime factor of n.

⇒ For cryptography, do not use groups with smooth order.
CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 4/29

Pollard ρ for discrete logarithm
Let h = gx . Computing the discrete logarithm x can be done with
Pollard ρ algorithm by looking for an equality of the form

gα1hβ1 = gα2hβ2 .

Then, x is a solution of the equation (α2 − α1)x = β1 − β2
modulo the group order.
The “random” function must be defined so that it is possible to
keep track of the exponent of g and h.
Example of a “random” function:

f (t) =


ht, for t ∈ G0
t2, for t ∈ G1
gt, for t ∈ G2

,

where G0 ∪ G1 ∪ G2 is a partition of the group G.
Complexity: O(

√
#G).

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 5/29

Multiple variants of Pollard ρ

Following the same basic idea, Pollard ρ has several known
variations, notably “Parallel collision search”.

This is part of the old algorithmic number theory folklore, and is
still the state of the art for problems such as ECDLP.

Most of the improvements on this in the last 2 decades or so have
been about the possibility of winning a constant factor below 2, or
about usefully employing platform X for this problem (X=FPGA,
GPU, . . .).

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 6/29

Baby-step Giant-step algorithm

Let h = gx . Write x = iM + j for a chosen integer M, with
0 ≤ i ≤ #G/M and 0 ≤ j ≤ M.
Goal: find i and j such that h(g−M)i = g j .
Algorithm:

compute γ = g−M .
Baby steps: compute S = {g j | 0 ≤ j ≤ M}.
Giant steps: for 0 ≤ i ≤ #G/M, compute hγ i and stop if it is
in S.

Complexity: O(
√

#G) (deterministic, proven).

if M is chosen to be ⌈
√

#G⌉
if the test “is in S” is done in O(1) (e.g., with hash tables)

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 7/29

Shoup’s theorem

Let G be a cyclic group of prime order ℓ.
Shoup’s theorem: any “generic” algorithm that solves the
discrete logarithm problem in G must perform at least Ω(

√
ℓ)

group operations.
“generic” means that the algorithm has access to the group
structure only via to two oracles: one for performing group
operations and one for testing for equality in the group.
In practice, we always have access to much more information on
the group !
So there is still hope to find better algorithms than Pollard ρ and
BSGS for specific groups.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 8/29

Similarity with factoring

Note that we have analogies:

Pollard ρ for DL ↔ Pollard ρ for factoring.
BS/GS for DL ↔ Pollard-Strassen.

As we will see, this carries over to the index calculus setting.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 9/29

Plan

Black-box algorithms for discrete logarithm

Index Calculus in Fp

Building the diagram

What we would like to do with relations

Plan

Index Calculus in Fp

L(1/2) algorithm
L(1/3) algorithm: NFS-DL

Index Calculus: algorithm for Fp

Lots of common points with Dixon’s algorithm.
Based on Kraitchik’s idea of combination of congruences.
Formalized in the 1970’s. Proven Lp(1/2).
Let h = gx , where g is a generator of (a subgroup of) F×

p .

We are interested in the factorization of h × g i mod p (seen
as an integer) only if it is smooth.
We fix a smoothness bound B.

A relation is interpreted as an equality between the unknown x and
the (unknown) logarithms of the elements of the factor base:

h × g i ≡ pei,1
1 × · · · × pei,k

k (mod p)
x + i logg(g) ≡ ei ,1 logg p1 + · · ·+ ei ,k logg pk (mod p − 1)

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 10/29

Index Calculus: algorithm for Fp

Algorithm:

Pick i at random. Test divisibility by all primes below B.
If h × g i mod p is B-smooth, keep the relation:

h × g i ≡ pei,1
1 × · · · × pei,k

k (mod p).

Solve the linear system to find x (and the logarithms of all
elements of the factor base that appear in at least one
relation).
This is a linear algebra problem modulo (a factor of) p − 1.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 11/29

Index Calculus: example

Example with p = 107, ℓ = 53, g = 2 and h = 43.

h × g12 mod 107 = 6 = 2× 3
h × g22 mod 107 = 45 = 32 × 5
h × g36 mod 107 = 50 = 2× 52

h × g46 mod 107 = 54 = 2× 33.

=⇒


−1 1 1 0
−1 0 2 1
−1 1 0 2
−1 1 3 0




x
logg(2)
logg(3)
logg(5)

 =


12
22
36
46


Solving the linear system modulo ℓ = 53 gives x ≡ 6 mod ℓ.
Indeed, 26 ≡ ±43 mod p.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 12/29

We don’t care about the 2-part!

Note that the previous example (on purpose) is not helpful to tell
apart the cases logg h = 6 and logg h = 6 + 53.

This is expected, as we’re only trying to illustrate our capacity
to solve the problem modulo large (prime) factors of p − 1.
There are always easy ways to find out the discrete logarithm
modulo other small factors.
Extreme case modulo 2: the Legendre symbol.
Pohlig-Hellman/CRT can be used to combine the information
(possibly from various sources) and obtain “the” logarithm.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 13/29

Main steps of index calculus

This (very basic) index calculus method goes through the following
steps.

Collect relations.
Solve linear system modulo ℓ.

Complexity: Lp(1/2), proven (like Dixon’s algorithm).
Next: how do we use a Number Field Sieve-like setup?

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 14/29

Plan

Index Calculus in Fp

L(1/2) algorithm
L(1/3) algorithm: NFS-DL

Setting from here on

a finite field Fq,
Our main case of interest is q = p prime.
But q = pk a prime power sometimes.

a prime factor ℓ of q − 1, without multiplicity.
This technicality implies that the ℓ-th roots of unity in F×

q can
be used as representatives for the quotient group (F×

q)/(F×
q)ℓ.

Goal
We want to find a non-trivial discrete logarithm map

L :
{

F×
q → Z/ℓZ,

x 7→ L(x).

with Ker L = (F×
q)ℓ.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 15/29

Setting from here on

Goal
We want to find a non-trivial discrete logarithm map

L :
{

F×
q → Z/ℓZ,

x 7→ L(x).

with Ker L = (F×
q)ℓ.

There is more than one solution to this problem.

Any two solutions are proportional, since (F×
q)/(F×

q)ℓ is a
1-dimensional vector space.
Each can be linked to the logarithm in some base, but we
don’t really have to care, as loga b ≡ L(b)/L(a) mod ℓ.
Given L, we can find out the corresponding base easily.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 16/29

The diagram

The diagram for factoring looked like:

Z[x]

subring of Q Z[m] ⊂ Q Z[α] subring of Q(α)

Z/NZ

x → m x → α

mod N α→ m

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 17/29

Some adaptation work ahead

Several differences.

The structure below should be Fq, or even better, a subgroup
of F×

q .
It might be useful to write down something with only group
morphisms throughout the diagram. (not rings)
We know that Fq is field. We can do more things in a field
than in Z/NZ.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 18/29

Write something multiplicative

group generated by
Z[x]− ⟨p, x −m⟩

subgroup of Q× subgroup of Q(α)×

F×
p

x → m x → α

mod p α→ m

Goal 1: build the diagram.
How do we create the two sides?
Generalization to two number fields.

Goal 2: understand it and use it.
How do we make sense of relations?
How do we formulate the linear algebra problem?

Goal 3: how do we compute discrete logarithms in Fp?

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 19/29

Write something multiplicative

group generated by
Z[x]− ⟨p, x −m⟩

subgroup of Q×

mod ℓ-th powers
subgroup of Q(α)×

mod ℓ-th powers

(F×
p)/(F×

p)ℓ

x → m x → α

mod p α→ m

Goal 1: build the diagram.
How do we create the two sides?
Generalization to two number fields.

Goal 2: understand it and use it.
How do we make sense of relations?
How do we formulate the linear algebra problem?

Goal 3: how do we compute discrete logarithms in Fp?
CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 19/29

Plan

Black-box algorithms for discrete logarithm

Index Calculus in Fp

Building the diagram

What we would like to do with relations

Polynomial selection methods

Easy starting point: any polynomial selection methods that works
for N (for factoring) will work for p (for DLP in Fp).
Several computations actually used that in the past.

Rephrasing of the polynomial selection problem:

Find two polynomials f0, f1 with a common known root in the target
ring (here, Fp).

HUGE difference with the Z/NZ case: we can find roots of
polynomials in Fp in polynomial time.
Can we use that to find a better pair of polynomials?

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 20/29

Joux-Lercier polynomial selection (2003)

Let d be a target degree.
Algorithm:

Pick any irreducible polynomial f0 of degree d + 1 and very
small coefficients (good for NFS).
Test if f0 has a root m modulo p (and find it).
There are polynomials f1 of degree ≤ d that also have m as a
root modulo p.

f0 is NOT one of them. (degree too large!)
The set of such polynomials f1 is a lattice. Find a small
(irreducible) one.
Any solution will be coprime with f0 over Z.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 21/29

Joux-Lercier polynomial selection (2003)

Input: p prime, degree d
Output: f0, f1, m with f0, f1 ∈ Z[x] irreducible of degrees

d + 1, d , f0(m) = f1(m) = 0 mod p
1 repeat
2 Choose f0 of degree d + 1 and tiny coefficients, irreducible

in Z[x] and having a root m modulo p

3 LLL


p
−m 1

.
−m 1


 d+1 =


c0 c1 · · · cd

∗


4 f1 ←

∑d
i=0 cix i

5 until f1 is irreducible in Z[x]
6 return (f0, f1, m)

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 22/29

Joux-Lercier polynomial selection (2003)

Joux-Lercier polynomial selection creates two number fields of
degrees d + 1 and d .

It is certainly not a big deal as far as building the diagram
goes.

Both f0 and f1 have the root m modulo p.
Number field K0 = Q(α0). Map to Fp sends α0 to m mod p.
Number field K1 = Q(α1). Map to Fp sends α1 to m mod p.

Defining relations as simultaneous occurrences of Res(·, f0)
and Res(·, f1) being smooth is easy as well.
We’ll need need to be somewhat more formal in order to
properly make sense of relations.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 23/29

Joux-Lercier polynomial selection

Search is pretty simple.

Pick good-looking f0
(upper bound on coefficients, upper bound on α(f0), . . .).
Run LLL, see the quality of the resulting f1
(metrics: size of coefficients, and α(f1), . . .).
Break ties with some sample sieving.

Many unexplored things:

There’s no ultra-specialized algorithm like Kleinjung’s
algorithms.
Our real focus of interest is the infinity (max-) norm, while
lattice reduction gives a Euclidean short vector. Any possible
improvement here, no idea.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 24/29

Joux-Lercier polynomial selection in practice

As a rule of thumb, for identical bit size:

If NFS-factoring would like a (deg f0 = 1, deg f1 = d) pair,
with even d = 2d ′, then a JL pair with (1 + d ′, d ′) would be a
better choice at this size (for NFS-DL).
For odd d , the JL construction puts us further from the
optimum, so factoring-like polynomial selection can win.

Example for 240 decimal digits:

Factoring (RSA-240): (deg f0 = 1, deg f1 = 6).
DLP (DLP-240, current record): (deg f0 = 4, deg f1 = 3).

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 25/29

Plan

Black-box algorithms for discrete logarithm

Index Calculus in Fp

Building the diagram

What we would like to do with relations

Fast forward to after relation collection
Relation collection works exactly the same way.
Of course, we want to keep track valuations in Z, and no longer
reduce them modulo 2.
A relation is. . .

a − bα0 factors into small prime ideals in OK0 .

(a − bα0)OK0 =
∏

i
pei

i .

a − bα1 factors into small prime ideals in OK1 .

(a − bα1)OK1 =
∏

j
q

gj
j .

and both map to the finite field element (a − bm) ∈ F×
p .

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 26/29

Why is it not a trivial question?

(a − bα0)OK0 =
∏

i
pei

i and (a − bα1)OK1 =
∏

j
q

gj
j .

Can we turn this into an additive relation involving
logarithms?∑

i
eiL(image of pi) “=”

∑
j

gjL(image of qj).

Main problem: ideals are not elements. No image in Fp!!

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 27/29

An idealized approach
Assume that we know the class number and the unit group in both
number fields. This is totally unrealistic!

Rosy setup

Class number h0 in K0 is such that for any ideal p in OK0 , the
ideal ph0 is a principal ideal. Same on the other side.
Small note: we may safely assume that ℓ and h0 are coprime.
Knowledge of the unit group: any unit can be rewritten as a
combination of some known generators.

Approach:
For all ideals, compute a generator γp of the ideal ph0 .
Then all valuations of (a − bα0)h0/

∏
i γei

pi cancel. This is a
unit!
Decompose this unit w.r.t. the generating system.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 28/29

An idealized approach

The idealized approach rewrites (a − bα0) and (a − bα1) as
products of elements.

(a − bα0)h0 = usomething
1 × · · · × usomething

something ×
∏

i
γei
pi .

These elements form a generating system of the set of
(a − bα0) we are considering, and we have an explicit
decomposition.
We can map each of these elements (ui and γpi) to Fp, and
write a linear relation involving L(only elements of Fp).
Alas, it is not practical.

CSE291-14: The Number Field Sieve; Discrete logarithms in finite fields 29/29

	Discrete logarithms in finite fields
	Black-box algorithms for discrete logarithm
	Index Calculus in Fp
	L(1/2) algorithm
	L(1/3) algorithm: NFS-DL

	Building the diagram
	What we would like to do with relations

