
CSE291-14: The Number Field Sieve
https://cseweb.ucsd.edu/classes/wi22/cse291-14

Emmanuel Thomé

March 3rd, 2022

CSE291-14: The Number Field Sieve 1/51

https://cseweb.ucsd.edu/classes/wi22/cse291-14

Part 8b

Virtual and individual logarithms

Making sense: virtual logarithms

Computing Schirokauer maps

Schirokauer maps and sparse linear algebra

Computing individual logarithms

The descent

Plan

Making sense: virtual logarithms

Computing Schirokauer maps

Schirokauer maps and sparse linear algebra

Computing individual logarithms

The descent

Plan

Making sense: virtual logarithms
Something that works
Characterizing elements
Virtual logarithms

What do we need?

Algebraic structure of the set of (a − bα0):

(abelian) subgroup of Q(α0)×.
Z-module, if we so wish.
It is also finitely generated, thanks to smoothness. (We just
proved it!)

If we look at this set of (a − bα0) modulo ℓ-th powers, we see that
it is a finite dimensional Z/ℓZ-vector space.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 3/51

Vector spaces

lucky elements in
group generated by
Z[x] − ⟨p, x − m⟩

(FDVS) Σ0 = subgroup of Q(α0)×

mod ℓ-th powers
subgroup of Q(α1)×

mod ℓ-th powers = Σ1 (FDVS)

(F×
p)/(F×

p)ℓ

also FDVS

x → α0 x → α1

α0 → m α1 → m

Z/ℓZ

L

(curvy map)1(curvy map)0

Our goal (as stated): find L.
Alternative goal: find the two curvy linear forms, + a lifting map.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 4/51

Previous picture is important

Digression: how can we characterize elements in Σ0 and Σ1?

Note: in the following slides, α, K , Σ denote things that can be
instantiated on either side of the diagram.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 5/51

Plan

Making sense: virtual logarithms
Something that works
Characterizing elements
Virtual logarithms

Riddles

I’m thinking of some rational number.
What does it take to identify it without ambiguity?

valuations (in Z) at all primes.
sign.

Next: we want to generalize.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 6/51

Riddles

I’m thinking of some B-smooth rational number.
What does it take to identify it without ambiguity?

valuations (in Z) at all primes below B.
sign.

Next: we want to generalize.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 6/51

Riddles

I’m thinking of some B-smooth rational number mod ℓ-th powers.
What does it take to identify it without ambiguity?

valuations (in Z/ℓZ) at all primes below B.
sign. (not needed since ℓ odd).

Next: we want to generalize.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 6/51

Characterizing an algebraic number

I’m thinking of some element of Σ (Σ0 or Σ1).
i.e. some B-smooth element of Q(α)× mod ℓ-th powers.
To identify it without any ambiguity, we need:

valuations modulo ℓ at all prime ideals whose norm is ≤ B.
any information that can break ties. Ties are related to units.

in our rosy picture, valuations at the generating units played
this role.
but in fact, we do not have to take this long-winded path.
Other functions could do.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 7/51

Characterizing with characters

Requirements for tie breakers
Suppose that we have a finite set of characters {χ} such that:

The domain of all χ is Q(α)× (focus: B-smooth elements).
χ : (Q(α)×, ×) → (Z/ℓZ, +).
Characters χ are efficiently computable.
O×

K ∩
(⋂

χ Ker χ
)

= (O×
K)ℓ.

Then two elements that agree on all ideal valuations AND on all of
these characters must be equal modulo ℓ-th powers.

In the NFS-DL context, we use the Schirokauer maps for these
characters.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 8/51

Valuations and characters

Consider the set {νp}N(p)≤B ∪ {χ1, . . . , χc}.

νp are valuations mod ℓ at each ideal that is allowed to appear.
χi are our characters.

All of these are linear forms defined on Σ.

As such, they are elements of the dual space Σ∗.

The curvy map Σ →Z/ℓZ that we are looking for is also an
element of Σ∗.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 9/51

Plan

Making sense: virtual logarithms
Something that works
Characterizing elements
Virtual logarithms

Virtual logarithms

If B = {νp} ∪ {χ1, . . . , χc} is a basis of the dual space Σ∗.
(analogue for Q: elements of B would be just “valuations at primes”)

Then the curvy map Σ0 →Z/ℓZ decomposes along B0.
= There exists an identity of linear forms:

(curvy map)0 =
∑

e∈B0

λee.

Because a − bα0 and a − bα1 are known to map identically
through (F×

p)/(F×
p)ℓ, then both curvy maps must agree:

(curvy map)0(a − bα0) = (curvy map)1(a − bα1).∑
e∈B0

λee(a − bα0) =
∑

e′∈B1

λe′e′(a − bα1).

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 10/51

Virtual logarithms

∑
e∈B0

λee(a − bα0) =
∑

e′∈B1

λe′e′(a − bα1).

Virtual logarithms
The virtual logarithm of e ∈ B is the coefficient λe .

It can be the virtual logarithm at some ideal, or the virtual
logarithm at some character.
Relations in NFS-DL express necessary conditions on all these
virtual logarithms.
As previously mentioned, our linear system finds solutions up
to a constant factor, since all constraints are homogeneous.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 11/51

The “too many characters” case

Other case: B = {νp} ∪ {χ1, . . . , χc} contains a basis of the dual
space Σ∗.

Then there is some ambiguity in the decomposition along B0.
This means that a full vector space of (all “correct”) virtual
logarithm choices work. None is privileged.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 12/51

Bear in mind

Virtual logarithm = the coefficient that goes alongside a
“valuation at p” or “character value at χ” and meets the
conditions that come from the diagram.

If everything were simple and easy, we would only have valuations
at a set of elements, and these coefficients would be logarithms of
images of these elements in Fp.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 13/51

Linear algebra

The linear algebra problem
A pair (a, b) yields a constraint that binds the virtual logarithms.
With sufficiently many constraints, we have the correct kernel.
Equations in this linear system are hybrid:

Coefficients νp(a − bα) come from valuations (very sparse),
and coefficients χ(a − bα) are likely to be dense.
The system can be written as M × v = 0, or (M|C) × v = 0.
(depending on whether we include the character block C in M or
not.)

This is homogeneous, and we are looking for a right kernel vector.
This is subtly different from the factoring case.
Our characters here have to enter before linear algebra.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 14/51

Plan

Making sense: virtual logarithms

Computing Schirokauer maps

Schirokauer maps and sparse linear algebra

Computing individual logarithms

The descent

Requirements

Requirements for characters Σ →Z/ℓZ
We want a finite set of characters {χ} such that:

The domain of all χ is Q(α)× (focus: B-smooth elements).
χ : (Q(α)×, ×) → (Z/ℓZ, +).
Characters χ are efficiently computable.
O×

K ∩
(⋂

χ Ker χ
)

= (O×
K)ℓ.

We will build such characters with ℓ-adic arithmetic.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 15/51

Setting

We can safely assume that:

we deal with elements that are coprime to ℓOK . (B-smooth
elements and their products certainly are).
the ideal ℓOK does not ramify (ℓ is coprime to disc K), and ℓ
is coprime to fd as well.

Let us suppose that the defining polynomial factors modulo ℓ as

f (x) mod ℓ = (degree d1) × · · · × (degree dk).

(with no repeated factors, by our assumption above.)

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 16/51

Step 1: Σ → OK/ℓOK

The quotient OK /ℓOK is a product of fields, not a field.
The projection is a simple coefficient-wise reduction.

R :

OK → OK /ℓOK ∼= Fℓd1 × · · · × Fℓdk

ϕ(α), ϕ ∈ Z[x] 7→ ϕ(R(α)), ϕ ∈Z/ℓZ[x].
u/v 7→ R(u)/R(v).

Elements coprime to ℓOK map to invertible elements, so the
projection R is well defined on Σ as well.
For any element u ∈ Σ:

the first component of R(u) is in (Fℓd1)×. Then its
(ℓd1 − 1)-th power is 1.
by extension, the lcm({ℓdi − 1}i)-th power of R(u) is 1 on all
components, so it is really 1.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 17/51

Precision ℓ2

To obtain something useful, we need R to project modulo ℓ2

instead of just ℓ.

Schirokauer maps
Let R : OK 7→ OK /ℓ2OK .
Let Xu(x) be the degree-(d − 1) polynomial such that:

R(u(α))lcm({ℓdi −1}i) = 1 + ℓ · Xu(R(α)) mod ℓ2.

What is Xuv ? Since (1 + ℓx)(1 + ℓy) = (1 + ℓ(x + y)) mod ℓ2, we
have:

Xuv = Xu + Xv .

Therefore u 7→ Xu is a morphism from (Σ, ×) to (Z/ℓZd , +).

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 18/51

Sage code

ZP.<x>=ZZ[’x’]
f=ZP([randrange(-100,100) for i in range(6)])
ell=1009
assert gcd(ell,f.discriminant()*f[f.degree()]) == 1
f2=ZP.change_ring(R2)(f)
ZR2ell=quotient(ZP.change_ring(R2),f2/f2[f2.degree()])
big=lcm([ell^(fac[0].degree())-1

for fac in f.change_ring(GF(ell)).factor()])
def schirokauer_map(u):

u a polynomial with coefficients in ZZ
return vector([GF(ell)(ZZ(c)//ell)

for c in list(ZR2ell(u)^big-1)])

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 19/51

Sage code

sage: u=ZP([randrange(10) for i in range(5)])
sage: v=ZP([randrange(10) for i in range(5)])
sage: schirokauer_map(u)
(772, 522, 920, 969, 740)
sage: schirokauer_map(u*v)
(415, 10, 406, 215, 473)
sage: schirokauer_map(u)+schirokauer_map(v)
(415, 10, 406, 215, 473)

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 20/51

Do we meet the requirements?

If units are well-behaved, yes.

In some highly unlikely scenarios, we might need larger
ℓ-precision.
Some more dramatic failures are guarded by Leopoldt’s
conjecture (widely believed to be true).

In all likelihood, if u is a unit, then X (u) = 0 iff u ∈ (O×
K)ℓ.

The set of coordinates of X can be used as our desired set of
characters {χ}.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 21/51

Faster computation

It is actually a little bit faster to compute the Schirokauer maps
piecewise modulo each of the factors.

We may decide to compute only part of the coordinates, if we
know that the unit rank is not that big.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 22/51

Plan

Making sense: virtual logarithms

Computing Schirokauer maps

Schirokauer maps and sparse linear algebra

Computing individual logarithms

The descent

The linear algebra problem

Values of the Schirokauer maps
If we write the linear system as (M | C) × v = 0, note that:

M: very sparse, small coefficients.
C : dense, coefficients modulo ℓ.

Note that we cannot first ignore the C block, and add it
afterwards. It won’t work. So the factoring case (v × M) and DLP
case (M × v) are very different.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 23/51

First approach

The first approach is to solve the system (M | C) × v = 0 as is.
Each matrix-times-vector operation involves multiplication of
several full-length integers modulo ℓ.

Typically, “normal” matrix coefficients are ±1, and processing
them entail one addition modulo ℓ.
Multiplications cost O(log ℓ) times more, and dealing with the
Schirokauer block ends up being a large part of the overall
cost.

This also means more code, more storage, etc.
DLP240: M ≈ 70G , C ≈ 30G .

Note that in this context, one kernel vector is enough.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 24/51

Alternative approach

It is way better to use the block Wiedemann in a smart way.
Assumptions:

r columns in the Schirokauer block,
BW blocking parameters m, n such that n ≥ r .
For simplicity, assume n = r .

Use only M as the matrix, and in BW set y = C .
Given one column j of the linear generator matrix, we have:

0 = (C0f0,j,0 + · · · + Cr−1fr−1,j,0)+
M(C0f0,j,1 + · · · + Cr−1fr−1,j,1)+
M2(C0f0,j,2 + · · · + Cr−1fr−1,j,2) + · · ·

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 25/51

Alternative approach

0 = (C0f0,j,0 + · · · + Cr−1fr−1,j,0)+
M(C0f0,j,1 + · · · + Cr−1fr−1,j,1)+
M2(C0f0,j,2 + · · · + Cr−1fr−1,j,2) + · · ·

0 = C × some vector + M × some other vector,

which is exactly what we’re looking for. In particular, we need only
look at one of the possible solutions.

This brings only benefits, since in practice:

r is at most (deg f0 − 1) + (deg f1 − 1) ≤ 5. (DLP240: r = 4).
We like to choose n so that some distribution is possible.
(DLP240: n = 16).

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 26/51

Plan

Making sense: virtual logarithms

Computing Schirokauer maps

Schirokauer maps and sparse linear algebra

Computing individual logarithms

The descent

Where are we?

After the linear algebra step, we have a big database of (virtual)
logarithms for many ideals and Schirokauer maps.

p

polynomial
selection

sieving filtering linear
algebra

log db

one-off precomputation

Cost thus far:
the analysis is exactly the same.
Joux-Lercier polynomial selection doesn’t change anything.

Cost of NFS-DL precomputation

relation collection ≈ sieving ≈ Lp(1/3, (64/9)1/3 + o(1)).

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 27/51

Where are we?

After the linear algebra step, we have a big database of (virtual)
logarithms for many ideals and Schirokauer maps.

p

polynomial
selection

sieving filtering linear
algebra

log db

one-off precomputation

This is not enough.
We want to compute L(x) for arbitrary things.
Anyway, the keys of our database are NOT elements of F×

p .

How do we compute L(h) for an arbitrary h ∈ F×
p , given our

database?

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 27/51

Not so easy to get it right

General idea
If h ∈ F×

p is something that decomposes along our factor base,
we’re good.
Caveat: our factor base consists of ideals.

The process consists of two steps.

An initial lift of our target data on one of the sides.
A descent process that allows us to relate our target to the
things that are referenced in the database.

The earliest version of this process, although in a different context,
appeared in Coppersmith’s 1984 paper on L(1/3) discrete
logarithms in F2n .

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 28/51

Random self-reduction

If we want to compute L(h), note that for any invertible e mod ℓ,
we have:

L(h) = 1
e L(he).

This implies that we have worst-case to average-case reduction for
this problem.

We will use this randomization property soon.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 29/51

Lifting / Finding preimages

Our element h ∈ F×
p must be lifted on one of the two sides.

From a mathematical standpoint, both sides would “work”.
In practice, one side is often “smaller” than the other, and
therefore preferred.

In the Joux-Lercier case, we choose the larger-degree,
smaller-coefficients polynomial f0, whose degree is asymptotically

deg f0 ≈ loglog p Lp(1/3, ·).

In what follows, (f , K , α, . . .) are shorthands for (f0, K0, α0, . . .)

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 30/51

Lifting / Finding preimages

The map from K to F×
p sends α to m mod p.

Naive approach
First stategy: lift h to some integer representative, viewed as an
element of K .

Our hope: maybe h (or he) is a smooth integer.
Would it be useful?

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 31/51

Can we use a smooth integer?

We are able to evaluate L on any element which factors into ideals
of norm below B ≈ Lp(1/3).
We have:

h ≈ Lp(1). In time Lp(1/3), we can hope for some he to be
Lp(2/3)-smooth.
This would be useful if we were lifting to the rational field,
but not here.
The norm NormK/Q is a lot larger! Not all small primes factor
into small prime ideals in the number field.
We have NormK/Q(h) ≈ Lp(1)loglog p Lp(1/3) ≈ Lp(4/3), which
is way too large.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 32/51

Rational reconstruction

Using rational reconstruction
Second approach: lift h to a rational representative such that

h ≡ u
v mod p.

Such (u, v) can be obtained with the extended Euclidean
algorithm, with u ≈ v ≈ √p.

Two half-size numbers have better chances of smoothness than
one that is twice as large.
Yet, this still does not work, as it does not change the asymptotics.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 33/51

Use sieving

Using rational reconstruction + sieving
Third approach: use two consecutive rational representations of h:

h ≡ u0
v0

≡ u1
v1

mod p.

Then, look for multipliers k0 and k1 such that
k0u0 + k1u1 is a smooth integer;
k0v0 + k1v1 is a smooth integer.

This can be done with sieving

This might have a tremendous practical impact, but does not really
solve the problem. We’re dealing with BIG integers and norms
here.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 34/51

Lift to algebraic numbers

Use the fact that α → m to lift h to something that involves α.
We have more freedom, we have some hope to obtain smaller
things, and in particular a smaller algebraic norm.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 35/51

Lifting to algebraic numbers

Joux–Lercier polynomial selection:
two polynomials of degree (d , d + 1)
Baby example for a 30-digit prime factor.

p = 3037544709654617415632521514287
f = x3 − x + 1

m = 1788278648776251718269437065057
g = 5383086967x2 − 13169419660x − 2588305959

→ no rational side.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 36/51

Lifting to algebraic numbers (Joux-Lercier)

Lift h ∈ F×
p to a fraction u0 + · · · + udαd

v0 + · · · + vdαd 7→ h.

Define the following lattice

L =

p
−m 1

.
−m 1

h 0 . . . 0 1
.

h 1

Each row vector in this lattice is such that

(u0 + · · · + udαd) − h(v0 + · · · + vdαd) 7→ 0.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 37/51

Lifting to algebraic numbers (Joux-Lercier)

target: h = 92800609832959449330691138186 ∈ F×
p .

Matrix:

3037544709654617415632521514287 0 0 0 0 0
−1788278648776251718269437065057 1 0 0 0 0
0 −1788278648776251718269437065057 1 0 0 0
92800609832959449330691138186 0 0 1 0 0
0 92800609832959449330691138186 0 0 1 0
0 0 92800609832959449330691138186 0 0 1

Apply LLL:

52606 44203 −25671 −6448 −66975 5015
25671 26935 44203 −5015 −1433 −66975
44203 −69874 −26935 −66975 71990 1433
71307 −42105 21380 106583 −10333 35519

−49927 −50582 20725 −71064 −131769 −25186
3531 −5555 −115510 101265 36952 −39608

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 38/51

Lifting to algebraic numbers (Joux-Lercier)

target: h = 92800609832959449330691138186 ∈ F×
p , lift as y ∈ Z

Each row of LLL output is [u0, u1, u2, v0, v1, v2]:

PREIMAGE(h) = u0 + u1x + u2x2

v0 + v1x + v2x2

First row gives:

h ≡ 52606 + 44203m − 25671m2

−6448 − 66975m + 5015m2 mod p

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 39/51

Is this a win?

This method encompasses rational reconstruction, and is
compatible with sieving as well.
Is the norm smaller?

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 40/51

Some analysis

The dimension of the lattice is 2d + 2 ≈ loglog p(Lp(1/3)).
Its determinant is p = Lp(1).
The L2 norm of its small vectors are expected to be

(approximation factor)×det1/ dim ≈ Lp(1)1/ loglog p Lp(1/3) ≈ Lp(2/3).

The algebraic norm of the resulting elements can be expected
to be

Lp(2/3)d ≈ Lp(1).

It is a win, because the algebraic norm is what we need for the rest
of the process.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 41/51

Summary of the initial step

Try many he simultaneously.
Form lattices, pick short vectors. Perhaps do some sieving.
Compute algebraic norms, try to factor them into prime
factors below some bound Binit ≈ Lp(2/3). ECM is here to
help.
This costs Lp(1/3).

We are left with some algebraic number whose ideal factorization
involves only prime ideal of norm below Lp(2/3).

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 42/51

An example

The initial step for the DLP-240 individual logarithm computation
obtains u(α)

v(α) 7→ (target)e , with:

U(α) = 11115814654987621436651726313

+84293370936324477859384006099α

+101013631005385213436119240940α2

−401910637140654498305458570967α3

V (α) = −140220538264790317274834216493

+153214328933512769640372578392α

−10489210686953161453362359657α2

−624779326557421402049330473855α3

U(α)OK = p3×p5×p113×p1543×p6dd ×p10dd ×p18dd ×p20dd ×p20dd ×p22dd ×p25dd

V (α)OK = p3×p7×p41×p113×p401×p14dd ×p15dd ×p19dd ×p22dd ×p24dd ×p26dd

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 43/51

Plan

Making sense: virtual logarithms

Computing Schirokauer maps

Schirokauer maps and sparse linear algebra

Computing individual logarithms

The descent

The descent

The descent is the process through which we will try to
compensate all the oversize ideals in the previous factorization.

Note
The initialization step used only one side (side 0) of the NFS
diagram.
The descent process involves BOTH SIDES.

The main idea is to find some a − bx such that:

(a − bα0)OK0 is divisible by one of these oversize ideals.
Both (a − bα0)OK0 AND (a − bα1)OK1 are somewhat
smooth ideals.

It may be too much of a stretch to aim at our ultimate factor base
bound just yet, though.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 44/51

The descent

Starting point (initialization):{
side 0: S0(α0) = something,
side 1: S1(α1) = 1,

}
and S0(m)

S1(m) = target.

S0(α0)OK0 is divisible by some large ideals.

With a properly chosen a − bx , we have after this first step:{
S ′

0(α0) = S0(α0)/(a − bα0),
S ′

1(α1) = S1(α1)/(a − bα1),

}
and S′

0(m)
S′

1(m) = target.

S ′
0(α0)OK0 has one large ideal less, and might have gained a

few other ideals.
S ′

1(α1)OK1 might have gained a few other ideals.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 45/51

Finding the multiplier

How do we choose a − bx? With special-q sieving!

The ideal that we’re trying to cancel has a norm ≈ Binit.
If we can obtain smoothness with a new bound B1 ≤ Bc

init for
some c < 1, we’re probably good.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 46/51

Analysis of the descent steps
Here’s how the analysis of the descent could work.

Norm q ≈ Binit ≈ Lp(2/3, k)
q-lattice coefficients ≈

√
Norm q ≈ Lp(2/3, k/2)

Norm(a − bα0) ≈ Lp(1, something × k/2)
B1 ≈ Lp(2/3, kc).

prob. smoothness ≈ Lp(1/3, − 1
6c × something)

We might keep going, and reach Lp(2/3, kcn) after n steps.
Messy, but works. This yields a cost of L(1/3, ·), smaller than the
rest.
This is pretty much what we do in practice, although the different
bounds are rather chosen by hand.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 47/51

Alternative descent strategy

Another approach could be not to search for a − bα, but for larger
degree polynomials with degree δ = loglog p Lp(1/6, ·) (at the first
step).

The q-lattice coefficients are smaller in this case: (Norm q) 1
δ .

This makes it possible to obtain smaller norms.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 48/51

Alternative descent strategy

Norm u ≈ L(1)
Norm q ≈ L(1 − 1/3 = 2/3 = 1/3 + 1/3)

→δ=dim(q-lattice)≈loglog p Lp(1/6)

→||
∑

i ai αi =ϕ(α)||∞≈|ai |≈Lp(2/3−1/6=1/2=1/3+1/6)

→Norm(ϕ(α))≈||ϕ||d∞||f ||δ≈Lp(max(1/3+1/6+1/3,2/3+1/6)=5/6)

Norm q′ ≈ L(5/6 − 1/3 = 1/2 = 1/3 + 1/6)
→δ=dim(q-lattice)≈loglog p Lp(1/12)

→||
∑

i ai αi =ϕ(α)||∞≈|ai |≈Lp(1/2−1/12=5/12=1/3+1/12)

→Norm(ϕ(α))≈||ϕ||d∞||f ||δ≈Lp(max(1/3+1/12+1/3,2/3+1/12)=9/12)

etc. . .

Eventually (and probably very quickly!) loglog p Lp(1/(3 · 2i)) is
very small. For comparison, loglog p Lp(1/6) ≈

√
d .

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 49/51

Alternative descent strategy

Asymptotically, this gives a much nicer descent complexity, quite in
line with Coppersmith’s descent idea from 1984.
In practice, higher degree sieving is not used in the descent, but it
was a close call for the first step of some of the latest
computations.

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 50/51

Overall complexity
While it is a complicated process, the descent is comparatively a
lot cheaper than the rest of the computation.

The initialization step is the most expensive part, with cost
Lp(1/3, 1.232 + o(1)) with an early-abort strategy.
The rest of the descent is cheaper.

p

polynomial
selection

sieving filtering linear
algebra

log db

one-off precomputation

y , g descent

x

per-key computation

Typical data (elapsed time using many machines):

precomputation per-key
Logjam (512 bits) week minutes
DLP-240 (795 bits) months hours

CSE291-14: The Number Field Sieve; Virtual and individual logarithms 51/51

	Virtual and individual logarithms
	Making sense: virtual logarithms
	Something that works
	Characterizing elements
	Virtual logarithms

	Computing Schirokauer maps
	Schirokauer maps and sparse linear algebra
	Computing individual logarithms
	The descent

